
Distributed
 Computing

HS 2017 Prof. R. Wattenhofer

Distributed Systems Part II
Solution to Exercise Sheet 9

Quiz

1 Quiz

a) For consensus we considered distributed participants without shared memory, which could
crash or even be Byzantine. The focus was on designing algorithms that could always
progress, even if some messages or nodes were lost.

For locking we only consider uncrashable, faithful processes with shared memory and are
interested in the practical performance on real-life system architectures.

b) Mutual exclusion is possible using only shared memory! The classic example is Peterson’s
algorithm (for 2 processes only):

boolean[] interested = {false, false};
int lockowner = 0;
const int myid; // 0 or 1

void lock() {
interested[myid] = true;
lockowner = 1 - myid;
while (interested[1 - myid] && lockowner == 1 - myid);

}

void unlock() {
interested[myid] = false;

}

This idea can also be generalized to an arbitrary amount of processors.

c) The extra test avoids writes (such as the TAS operation) and thus traffic on the bus while
the lock is held. However, as all waiting processes are spinning on the same memory location
an invalidation storm erasing each of their cache lines will occur upon lock release.

Basic

2 Spin Locks

a) We use the shared integer state to indicate the state of the lock. The lock is free if state
is 0. The lock is in write mode if state is -1. And it is in read-mode if state is n, with
n > 0.

// the shared integer
AtomicInteger state = new AtomicInteger(0);

// acquire the lock for a read operation
void read_lock() {

while (true) {
int value = state.read();
if (value >= 0) {

if (state.compareAndSet(value, value + 1)) {
// lock acquired
return;

}
}

}
}

// release the lock
void read_unlock() {
while (true) {
int value = state.read();
if (state.compareAndSet(value, value - 1))) {

return;
}

}
}

// acquire the lock for a write operation
void write_lock() {
while (true) {

int value = state.read();
if (value == 0) {

if (state.compareAndSet(0, -1)) {
// lock acquired
return;

}
}

}
}

// release the lock
void write_unlock() {
// no need to test, no other process can call this at
// the same time.
state.compareAndSet(-1, 0);

}

b) Starvation is a problem. Example: if many processes constantly acquire and release the
read-lock, then the state variable always remains bigger than 0. If one process wants to
acquire the write-lock, it will never get the chance.

c) The basic idea behind this lock is a ticketing service as can be found in Swiss post offices.

i) The tail is the ticket which can be drawn by the next process. The head denotes the
ticket which can acquire the lock. If we assume an integer consists of 32 bits, then we
can use the first 16 bits for the head, and the last 16 bits for the tail.

ii) The process reads the value of the tail, and then increments the tail. This should of
course happen in a secure way, i.e. no two processes have the same ticket.

iii) When its ticket equals the head.

iv) The process increments the head by one.

d) // the shared integer containing head|tail
AtomicInteger queue = new AtomicInteger(0);

// the ticket of this process
ThreadLocal<Integer> local = new ThreadLocal<Integer>();

2

// acquire the lock
void lock() {
// 1. add this process to the queue
local = add();
// 2. wait until the lock is acquired
while (head() != local);

}

// add this process to the queue
int add() {

while (true) {
int value = queue.read();
if (queue.compareAndSet(value, value + 1)) {

return value & 0xFFFF;
}

}
}

// returns the current head of the queue
int head() {

int value = queue.read();
return (value >> 16) & 0xFFFF;

}

// releases the lock
void unlock() {

while (true) {
int value = queue.read();
int head = (value >> 16) & 0xFFFF;
int tail = value & 0xFFFF;
int next = (head + 1) << 16 | tail;
if (queue.compareAndSet(value, next)) {

return;
}

}
}

Advanced

3 ALock2

a) The author wants that two processes can acquire the lock simultaneously.

b) The lock is seriously flawed. An example shows how the lock will fail: Assume there are
n processes, all processes try to acquire the lock. The first two processes (p1, p2) get the
lock, the others have to wait. Process p1 keeps the lock a very long time, while p2 releases
the lock almost immediately. Afterwards every second process (p4, p6, ...) acquires and
releases the lock. One half of all process are waiting on the lock (p3, p5, ...), the others
continue to work (p4, p6, ...). If the working process now starts to acquire the lock again,
then they wait in slots that are already in use.

It is also not FIFO (first in, first out) anymore. If p1 keeps the lock after p2 has released
its lock, p4 can acquire the lock before p3.

c) A solution would be to increase the size of the array to at least 2 ∗ n and further block
the lock() method if a process holds the other lock for a (too) long time. By using the
FINISHED state we guarantee that all lock holding processes are within an interval of slot
numbers of size n. This is how we can make sure, that our slot numbers do not run into
the still running processes from behind.

Unfortunately FIFO (first in, first out) is still not guaranteed. In a second step one could
make the unlock method more intelligent: instead of jumping two slots, the method

3

searches for the oldest slot waiting for a lock. To simplify this search, the boolean array
is replaced by an enum (or integer) array holding four states: unused, lockable, working,
and finished. We can use a CAS operation to protect the unlock method against race
conditions (two process may invoke the method concurrently).

class ALock2 implements Lock {
ThreadLocal<Integer> mySlotIndex = new ThreadLocal<Integer> () {
protected Integer initialValue() {

return 0;
}

};
AtomicInteger tail;
enum State {UNUSED, LOCKABLE, WORKING, FINISHED};
State[] states;
AtomicBoolean setLockable = new AtomicBoolean(false);
int size;

ALock2(int capacity) {
size = capacity;
tail = new AtomicInteger(0);
// >= 2n elements: 2 lockable, >= (n-2) unused, n finished
states = new State[2 * size];
states[0] = LOCKABLE;
states[1] = LOCKABLE;
Arrays.fill(states, 2, size, UNUSED);
Arrays.fill(states, size, 2 * size, FINISHED);

}

public void lock() {
// spin until slot becomes lockable
int slot = tail.getAndIncrement() % (2 * size);
mySlotIndex.set(slot);
while (states[slot] != LOCKABLE) {}

// mark as working
states[slot] = WORKING;

// wait for other lock if its process is too slow (larger array helps here)
// & mark the slot as unused to support wrap-arounds
while (states[(slot + size) % (2 * size)] != FINISHED) {}
states[(slot + size) % (2 * size)] = UNUSED;

}

public void unlock() {
int slot = mySlotIndex.get();
states[slot] = FINISHED; // mark my slot as finished...

// set next unused slot to lockable
int index = slot + 1;
while (setLockable.getAndSet(true)) {}
while (states[index % (2 * size)] != UNUSED) {
index++;

}
states[index % (2 * size)] = LOCKABLE;
setLockable.set(false);

}
}

4

Mastery

4 MCS Queue Lock

a) There is more than one solution, but we can solve this problem without using RMW
registers or other locks. It is important to set and read the flags in the right order: The
unlock method first sets locked, then reads aborted. The abort method on the
other hand first sets aborted, then reads locked. This way if unlock and abort run
in parallel, one of them must already have written its flag before the other can read it.
In the worst case unlock is called twice for some process, but that is not a problem.
Unlocking an already unlocked lock results in no action.

public void unlock(){
if(... missing successor ...)
... wait for missing successor

qnode.next.locked = false;
if(qnode.next.aborted){

if(... qnode.next misses successor ...){
if(... really no successor ...)
return;

}
else{

... wait for missing successor ...
}
qnode.next.next.locked = false;

}
}

public void abort(){
qnode.aborted = true;
if(!qnode.locked){

unlock();
}

}

b) The solution of a) does not yet work for concurrent aborts. Making the unlock method
recursive will help.

public void unlock(){
unlock(qnode);

}
private void unlock(QNode qnode){

// as before...
if(... missing successor ...)

... wait for missing successor

qnode.next.locked = false;
if(qnode.next.aborted){

// wait for successor of qnode.next
if(...){ ... } else{ ... }

unlock(qnode.next);
}

}

c) There are four combinations of values the locked and aborted flag can have. We can
easily encode these combinations in an integer. We would not need too worry about
the order in which we read and write to the flags, as we could do this atomically. So
the algorithm would get easier. We could also ensure that unlock is called only once.
Depending on the benchmark this could increase the performance. On the other hand, a
CAS operation is quite expensive and could decrease performance.

5

d) - There could be problems with caches: spinning on a value that “belongs” to another
process can introduce additional load on the bus, and thus slow down the entire
application.

+ The implementation is much easier: when releasing the lock one has only to set its
own locked flag to false.

+ Also aborting is easier: a blocked process could read the state of its predecessor. If the
predecessor is aborted, then the successor can just remove the node from the queue,
and continue reading values from its predecessor’s predecessor.

6

