
Chapter 5

Quorum Systems

What happens if a single server is no longer powerful enough to service all your
customers? The obvious choice is to add more servers and to use the majority
approach (e.g. Paxos, Chapter 1) to guarantee consistency. However, even if
you buy one million servers, a client still has to access more than half of them per
request! While you gain fault-tolerance, your efficiency can at most be doubled.
Do we have to give up on consistency?

Let us take a step back: We used majorities because majority sets always
overlap. But are majority sets the only sets that guarantee overlap? In this
chapter we study the theory behind overlapping sets, known as quorum systems.

Definition 5.1 (quorum, quorum system). Let V = {v1, . . . , vn} be a set of
nodes. A quorum Q ⊆ V is a subset of these nodes. A quorum system
S ⊂ 2V is a set of quorums s.t. every two quorums intersect, i.e., Q1 ∩Q2 6= ∅
for all Q1, Q2 ∈ S.

Remarks:

• When a quorum system is being used, a client selects a quorum, ac-
quires a lock (or ticket) on all nodes of the quorum, and when done
releases all locks again. The idea is that no matter which quorum is
chosen, its nodes will intersect with the nodes of every other quorum.

• What can happen if two quorums try to lock their nodes at the same
time?

• A quorum system S is called minimal if ∀Q1, Q2 ∈ S : Q1 6⊂ Q2.

• The simplest quorum system imaginable consists of just one quorum,
which in turn just consists of one server. It is known as Singleton.

• In the Majority quorum system, every quorum has bn2 c+ 1 nodes.

• Can you think of other simple quorum systems?

47

48 CHAPTER 5. QUORUM SYSTEMS

5.1 Load and Work

Definition 5.2 (access strategy). An access strategy Z defines the probability
PZ(Q) of accessing a quorum Q ∈ S s.t.

∑
Q∈S PZ(Q) = 1.

Definition 5.3 (load).

• The load of access strategy Z on a node vi is LZ(vi) =
∑
Q∈S;vi∈Q PZ(Q).

• The load induced by access strategy Z on a quorum system S is the max-
imal load induced by Z on any node in S, i.e., LZ(S) = maxvi∈S LZ(vi).

• The load of a quorum system S is L(S) = minZ LZ(S).

Definition 5.4 (work).

• The work of a quorum Q ∈ S is the number of nodes in Q, W (Q) = |Q|.

• The work induced by access strategy Z on a quorum system S is the
expected number of nodes accessed, i.e., WZ(S) =

∑
Q∈S PZ(Q) ·W (Q).

• The work of a quorum system S is W (S) = minZWZ(S).

Remarks:

• Note that you cannot choose different access strategies Z for work and
load, you have to pick a single Z for both.

• We illustrate the above concepts with a small example. Let V =
{v1, v2, v3, v4, v5} and S = {Q1, Q2, Q3, Q4}, with Q1 = {v1, v2},
Q2 = {v1, v3, v4}, Q3 = {v2, v3, v5}, Q4 = {v2, v4, v5}. If we choose
the access strategy Z s.t. PZ(Q1) = 1/2 and PZ(Q2) = PZ(Q3) =
PZ(Q4) = 1/6, then the node with the highest load is v2 with LZ(v2)
= 1/2 + 1/6 + 1/6 = 5/6, i.e., LZ(S) = 5/6. Regarding work, we have
WZ(S) = 1/2 · 2 + 1/6 · 3 + 1/6 · 3 + 1/6 · 3 = 15/6.

• Can you come up with a better access strategy for S?

• If every quorum Q in a quorum system S has the same number of
elements, S is called uniform.

• What is the minimum load a quorum system can have?

Primary Copy vs. Majority Singleton Majority

How many nodes need to be accessed? (Work) 1 > n/2
What is the load of the busiest node? (Load) 1 > 1/2

Table 5.5: First comparison of the Singleton and Majority quorum systems.
Note that the Singleton quorum system can be a good choice when the failure
probability of every single node is > 1/2.



5.2. GRID QUORUM SYSTEMS 49

Theorem 5.6. Let S be a quorum system. Then L(S) ≥ 1/
√
n holds.

Proof. Let Q = {v1, . . . , vq} be a quorum of minimal size in S, with sizes |Q| = q
and |S| = s. Let Z be an access strategy for S. Every other quorum in S
intersects in at least one element with this quorum Q. Each time a quorum is
accessed, at least one node in Q is accessed as well, yielding a lower bound of
LZ(vi) ≥ 1/q for some vi ∈ Q.

Furthermore, as Q is minimal, at least q nodes need to be accessed, yielding
W (S) ≥ q. Thus, LZ(vi) ≥ q/n for some vi ∈ Q, as each time q nodes are
accessed, the load of the most accessed node is at least q/n.

Combining both ideas leads to LZ(S) ≥ max (1/q, q/n) ⇒ LZ(S) ≥ 1/
√
n.

Thus, L(S) ≥ 1/
√
n, as Z can be any access strategy.

Remarks:

• Can we achieve this load?

5.2 Grid Quorum Systems
Definition 5.7 (Basic Grid quorum system). Assume

√
n ∈ N, and arrange

the n nodes in a square matrix with side length of
√
n, i.e., in a grid. The basic

Grid quorum system consists of
√
n quorums, with each containing the full row

i and the full column i, for 1 ≤ i ≤ √n.

Figure 5.8: The basic version of the Grid quorum system, where each quorum
Qi with 1 ≤ i ≤ √n uses row i and column i. The size of each quorum is
2
√
n− 1 and two quorums overlap in exactly two nodes. Thus, when the access

strategy Z is uniform (i.e., the probability of each quorum is 1/
√
n), the work

is 2
√
n− 1, and the load of every node is in Θ(1/

√
n).

Remarks:

• Consider the right picture in Figure 5.8: The two quorums intersect
in two nodes. If both quorums were to be accessed at the same time,
it is not guaranteed that at least one quorum will lock all of its nodes,
as they could enter a deadlock!

• In the case of just two quorums, one could solve this by letting the
quorums just intersect in one node, see Figure 5.9. However, already
with three quorums the same situation could occur again, progress is
not guaranteed!

• However, by deviating from the “access all at once” strategy, we can
guarantee progress if the nodes are totally ordered!

50 CHAPTER 5. QUORUM SYSTEMS

Figure 5.9: There are other ways to choose quorums in the grid s.t. pairwise
different quorums only intersect in one node. The size of each quorum is between√
n and 2

√
n − 1, i.e., the work is in Θ(

√
n). When the access strategy Z is

uniform, the load of every node is in Θ(1/
√
n).

Algorithm 5.10 Sequential Locking Strategy for a Quorum Q

1: Attempt to lock the nodes one by one, ordered by their identifiers
2: Should a node be already locked, release all locks and start over

Theorem 5.11. If each quorum is accessed by Algorithm 5.10, at least one
quorum will obtain a lock for all of its nodes.

Proof. We prove the theorem by contradiction. Assume no quorum can make
progress, i.e., for every quorum we have: At least one of its nodes is locked by
another quorum. Let v be the node with the highest identifier that is locked by
some quorum Q. Observe that Q already locked all of its nodes with a smaller
identifier than v, otherwise Q would have restarted. As all nodes with a higher
identifier than v are not locked, Q either has locked all of its nodes or can
make progress – a contradiction. As the set of nodes is finite, one quorum will
eventually be able to lock all of its nodes.

Remarks:

• But now we are back to sequential accesses in a distributed system?
Let’s do it concurrently with the same idea, i.e., resolving conflicts by
the ordering of the nodes. Then, a quorum that locked the highest
identifier so far can always make progress!

Theorem 5.13. If the nodes and quorums use Algorithm 5.12, at least one
quorum will obtain a lock for all of its nodes.



5.3. FAULT TOLERANCE 51

Algorithm 5.12 Concurrent Locking Strategy for a Quorum Q

Invariant: Let vQ ∈ Q be the highest identifier of a node locked by Q s.t. all
nodes vi ∈ Q with vi < vQ are locked by Q as well. Should Q not have any
lock, then vQ is set to 0.

1: repeat
2: Attempt to lock all nodes of the quorum Q
3: for each node v ∈ Q that was not able to be locked by Q do
4: exchange vQ and vQ′ with the quorum Q′ that locked v
5: if vQ > vQ′ then
6: Q′ releases lock on v and Q acquires lock on v
7: end if
8: end for
9: until all nodes of the quorum Q are locked

Proof. The proof is analogous to the proof of Theorem 5.11: Assume for con-
tradiction that no quorum can make progress. However, at least the quorum
with the highest vQ can always make progress – a contradiction! As the set of
nodes is finite, at least one quorum will eventually be able to acquire a lock on
all of its nodes.

Remarks:

• What if a quorum locks all of its nodes and then crashes? Is the
quorum system dead now? This issue can be prevented by, e.g., using
leases instead of locks: leases have a timeout, i.e., a lock is released
eventually.

5.3 Fault Tolerance

Definition 5.14 (resilience). If any f nodes from a quorum system S can fail
s.t. there is still a quorum Q ∈ S without failed nodes, then S is f -resilient.
The largest such f is the resilience R(S).

Theorem 5.15. Let S be a Grid quorum system where each of the n quorums
consists of a full row and a full column. S has a resilience of

√
n− 1.

Proof. If all
√
n nodes on the diagonal of the grid fail, then every quorum will

have at least one failed node. Should less than
√
n nodes fail, then there is a

row and a column without failed nodes.

Remarks:

• The Grid quorum system in Theorem 5.15 is different from the Basic
Grid quorum system described in Definition 5.7. In each quorum in
the Basic Grid quorum system the row and column index are identical,
while in the Grid quorum system of Theorem 5.15 this is not the case.

Definition 5.16 (failure probability). Assume that every node works with a
fixed probability p (in the following we assume concrete values, e.g. p > 1/2).
The failure probability Fp(S) of a quorum system S is the probability that at
least one node of every quorum fails.

52 CHAPTER 5. QUORUM SYSTEMS

Remarks:

• The asymptotic failure probability is Fp(S) for n→∞.

Facts 5.17. A version of a Chernoff bound states the following:
Let x1, . . . , xn be independent Bernoulli-distributed random variables with
Pr[xi = 1] = pi and Pr[xi = 0] = 1 − pi = qi, then for X :=

∑n
i=1 xi and

µ := E[X] =
∑n
i=1 pi the following holds:

for all 0 < δ < 1: Pr[X ≤ (1− δ)µ] ≤ e−µδ2/2 .

Theorem 5.18. The asymptotic failure probability of the Majority quorum sys-
tem is 0.

Proof. In a Majority quorum system each quorum contains exactly bn2 c + 1
nodes and each subset of nodes with cardinality bn2 c+ 1 forms a quorum. The
Majority quorum system fails, if only bn2 c nodes work. Otherwise there is at
least one quorum available. In order to calculate the failure probability we
define the following random variables:

xi =

{
1, if node i works, happens with probability p

0, if node i fails, happens with probability q = 1− p
and X :=

∑n
i=1 xi, with µ = np,

whereas X corresponds to the number of working nodes. To estimate the
probability that the number of working nodes is less than bn2 c+ 1 we will make
use of the Chernoff inequality from above. By setting δ = 1 − 1

2p we obtain

FP (S) = Pr[X ≤ bn2 c] ≤ Pr[X ≤ n
2 ] = Pr[X ≤ (1− δ)µ].

With δ = 1− 1
2p we have 0 < δ ≤ 1/2 due to 1/2 < p ≤ 1. Thus, we can use

the Chernoff bound and get FP (S) ≤ e−µδ2/2 ∈ e−Ω(n).

Theorem 5.19. The asymptotic failure probability of the Grid quorum system
is 1.

Proof. Consider the n = d · d nodes to be arranged in a d × d grid. A quorum
always contains one full row. In this estimation we will make use of the Bernoulli
inequality which states that for all n ∈ N, x ≥ −1 : (1 + x)n ≥ 1 + nx.

The system fails, if in each row at least one node fails (which happens with
probability 1 − pd for a particular row, as all nodes work with probability pd).
Therefore we can bound the failure probability from below with:

Fp(S) ≥ Pr[at least one failure per row] = (1− pd)d ≥ 1− dpd −→
n→∞

1.

Remarks:

• Now we have a quorum system with optimal load (the Grid) and one
with fault-tolerance (Majority), but what if we want both?

Definition 5.20 (B-Grid quorum system). Consider n = dhr nodes, arranged
in a rectangular grid with h · r rows and d columns. Each group of r rows is a
band, and r elements in a column restricted to a band are called a mini-column.
A quorum consists of one mini-column in every band and one element from
each mini-column of one band; thus every quorum has d+hr− 1 elements. The
B-Grid quorum system consists of all such quorums.



5.4. BYZANTINE QUORUM SYSTEMS 53

Figure 5.21: A B-Grid quorum system with n = 100 nodes, d = 10 columns,
h ·r = 10 rows, h = 5 bands, and r = 2. The depicted quorum has a d+hr−1 =
10 + 5 · 2 − 1 = 19 nodes. If the access strategy Z is chosen uniformly, then
we have a work of d + hr − 1 and a load of d+hr−1

n . By setting d =
√
n and

r = log n, we obtain a work of Θ (
√
n) and a load of Θ (1/

√
n).

Theorem 5.22. The asymptotic failure probability of the B-Grid quorum sys-
tem is 0.

Proof. Suppose n = dhr and the elements are arranged in a grid with d columns
and h · r rows. The B-Grid quorum system does fail if in each band a complete
mini-column fails, because then it is not possible to choose a band where in each
mini-column an element is still working. It also fails if in a band an element in
each mini-column fails. Those events may not be independent of each other, but
with the help of the union bound, we can upper bound the failure probability
with the following equation:

Fp(S) ≤ Pr[in every band a complete mini-column fails]

+ Pr[in a band at least one element of every m.-col. fails]

≤ (d(1− p)r)h + h(1− pr)d

We use d =
√
n, r = ln d, and 0 ≤ (1−p) ≤ 1/3. Using nln x = xlnn, we have

d(1− p)r ≤ d · dln 1/3 ≈ d−0.1, and hence for large enough d the whole first term
is bounded from above by d−0.1h � 1/d2 = 1/n.

Regarding the second term, we have p ≥ 2/3, and h = d/ ln d < d. Hence
we can bound the term from above by d(1 − dln 2/3)d ≈ d(1 − d−0.4)d. Using
(1 + t/n)n ≤ et, we get (again, for large enough d) an upper bound of d(1 −
d−0.4)d = d(1− d0.6/d)d ≤ d · e−d0.6 = d(−d0.6/ ln d)+1 � d−2 = 1/n. In total, we
have Fp(S) ∈ O(1/n).

5.4 Byzantine Quorum Systems

While failed nodes are bad, they are still easy to deal with: just access another
quorum where all nodes can respond! Byzantine nodes make life more difficult
however, as they can pretend to be a regular node, i.e., one needs more sophis-
ticated methods to deal with them. We need to ensure that the intersection
of two quorums always contains a non-byzantine (correct) node and further-
more, the byzantine nodes should not be allowed to infiltrate every quorum. In

54 CHAPTER 5. QUORUM SYSTEMS

Singleton Majority Grid B-Grid∗

Work 1 > n/2 Θ (
√
n) Θ (

√
n)

Load 1 > 1/2 Θ
(
1/
√

n
)

Θ
(
1/
√

n
)

Resilience 0 < n/2 Θ (
√
n) Θ (

√
n)

F. Prob.∗∗ 1− p → 0 → 1 → 0

Table 5.23: Overview of the different quorum systems regarding resilience, work,
load, and their asymptotic failure probability. The best entries in each row are
set in bold.
∗ Setting d =

√
n and r = logn

∗∗Assuming prob. q = (1− p) is constant but significantly less than 1/2

this section we study three counter-measures of increasing strength, and their
implications on the load of quorum systems.

Definition 5.24 (f -disseminating). A quorum system S is f -disseminating
if (1) the intersection of two different quorums always contains f + 1 nodes,
and (2) for any set of f byzantine nodes, there is at least one quorum without
byzantine nodes.

Remarks:

• Thanks to (2), even with f byzantine nodes, the byzantine nodes
cannot stop all quorums by just pretending to have crashed. At least
one quorum will survive. We will also keep this assumption for the
upcoming more advanced byzantine quorum systems.

• Byzantine nodes can also do something worse than crashing - they
could falsify data! Nonetheless, due to (1), there is at least one
non-byzantine node in every quorum intersection. If the data is self-
verifying by, e.g., authentication, then this one node is enough.

• If the data is not self-verifying, then we need another mechanism.

Definition 5.25 (f -masking). A quorum system S is f -masking if (1) the
intersection of two different quorums always contains 2f + 1 nodes, and (2) for
any set of f byzantine nodes, there is at least one quorum without byzantine
nodes.

Remarks:

• Note that except for the second condition, an f -masking quorum sys-
tem is the same as a 2f -disseminating system. The idea is that the
non-byzantine nodes (at least f + 1 can outvote the byzantine ones
(at most f), but only if all non-byzantine nodes are up-to-date!

• This raises an issue not covered yet in this chapter. If we access some
quorum and update its values, this change still has to be disseminated
to the other nodes in the byzantine quorum system. Opaque quorum
systems deal with this issue, which are discussed at the end of this
section.



5.4. BYZANTINE QUORUM SYSTEMS 55

• f -disseminating quorum systems need more than 3f nodes and f -
masking quorum systems need more than 4f nodes. Essentially, the
quorums may not contain too many nodes, and the different intersec-
tion properties lead to the different bounds.

Theorem 5.26. Let S be a f -disseminating quorum system. Then L(S) ≥√
(f + 1)/n holds.

Theorem 5.27. Let S be a f -masking quorum system. Then L(S) ≥
√

(2f + 1)/n
holds.

Proofs of Theorems 5.26 and 5.27. The proofs follow the proof of Theorem 5.6,
by observing that now not just one element is accessed from a minimal quorum,
but f + 1 or 2f + 1, respectively.

Definition 5.28 (f -masking Grid quorum system). A f-masking Grid quo-
rum system is constructed as the grid quorum system, but each quorum contains
one full column and f + 1 rows of nodes, with 2f + 1 ≤ √n.

Figure 5.29: An example how to choose a quorum in the f -masking Grid with
f = 2, i.e., 2 + 1 = 3 rows. The load is in Θ(f/

√
n) when the access strategy is

chosen to be uniform. Two quorums overlap by their columns intersecting each
other’s rows, i.e., they overlap in at least 2f + 2 nodes.

56 CHAPTER 5. QUORUM SYSTEMS

Remarks:

• The f -masking Grid nearly hits the lower bound for the load of f -
masking quorum systems, but not quite. A small change and we will
be optimal asymptotically.

Definition 5.30 (M -Grid quorum system). The M-Grid quorum system is
constructed as the grid quorum as well, but each quorum contains

√
f + 1 rows

and
√
f + 1 columns of nodes, with f ≤

√
n−1
2 .

Figure 5.31: An example how to choose a quorum in the M -Grid with f = 3,
i.e., 2 rows and 2 columns. The load is in Θ(

√
f/n) when the access strategy

is chosen to be uniform. Two quorums overlap with each row intersecting each

other’s column, i.e., 2
√
f + 1

2
= 2f + 2 nodes.

Corollary 5.32. The f -masking Grid quorum system and the M -Grid quorum
system are f -masking quorum systems.

Remarks:

• We achieved nearly the same load as without byzantine nodes! How-
ever, as mentioned earlier, what happens if we access a quorum that is
not up-to-date, except for the intersection with an up-to-date quorum?
Surely we can fix that as well without too much loss?

• This property will be handled in the last part of this chapter by opaque
quorum systems. It will ensure that the number of correct up-to-date
nodes accessed will be larger than the number of out-of-date nodes
combined with the byzantine nodes in the quorum (cf. (5.33.1)).

Definition 5.33 (f -opaque quorum system). A quorum system S is f -opaque
if the following two properties hold for any set of f byzantine nodes F and any
two different quorums Q1, Q2:

|(Q1 ∩Q2) \ F | > |(Q2 ∩ F ) ∪ (Q2 \Q1)| (5.33.1)

(F ∩Q) = ∅ for some Q ∈ S (5.33.2)

Theorem 5.35. Let S be a f -opaque quorum system. Then, n > 5f .

Proof. Due to (5.33.2), there exists a quorum Q1 with size at most n− f . With
(5.33.1), |Q1| > f holds. Let F1 be a set of f (byzantine) nodes F1 ⊂ Q1, and
with (5.33.2), there exists a Q2 ⊂ V \ F1. Thus, |Q1 ∩ Q2| ≤ n − 2f . With
(5.33.1), |Q1 ∩ Q2| > f holds. Thus, one could choose f (byzantine) nodes
F2 with F2 ⊂ (Q1 ∩ Q2). Using (5.33.1) one can bound n − 3f from below:
n− 3f > |(Q2 ∩Q1)| − |F2| ≥ |(Q2 ∩Q1) ∪ (Q1 ∩ F2)| ≥ |F1|+ |F2| = 2f.



5.4. BYZANTINE QUORUM SYSTEMS 57

Figure 5.34: Intersection properties of an opaque quorum system. Equation
(5.33.1) ensures that the set of non-byzantine nodes in the intersection of Q1, Q2

is larger than the set of out of date nodes, even if the byzantine nodes “team up”
with those nodes. Thus, the correct up to date value can always be recognized
by a majority voting.

Remarks:

• One can extend the Majority quorum system to be f -opaque by setting
the size of each quorum to contain d(2n+ 2f)/3e nodes. Then its load
is 1/n d(2n+ 2f)/3e ≈ 2/3 + 2f/3n ≥ 2/3.

• Can we do much better? Sadly, no...

Theorem 5.36. Let S be a f -opaque quorum system. Then L(S) ≥ 1/2 holds.

Proof. Equation (5.33.1) implies that for Q1, Q2 ∈ S, the intersection of both
Q1, Q2 is at least half their size, i.e., |(Q1 ∩ Q2)| ≥ |Q1|/2. Let S consist of
quorums Q1, Q2, . . . . The load induced by an access strategy Z on Q1 is:

∑

v∈Q1

∑

v∈Qi

LZ(Qi) =
∑

Qi

∑

v∈(Q1∩Qi)

LZ(Qi) ≥
∑

Qi

(|Q1|/2) LZ(Qi) = |Q1|/2 .

Using the pigeonhole principle, there must be at least one node in Q1 with load
of at least 1/2.

Chapter Notes

Historically, a quorum is the minimum number of members of a deliberative
body necessary to conduct the business of that group. Their use has inspired the
introduction of quorum systems in computer science since the late 1970s/early
1980s. Early work focused on Majority quorum systems [Lam78, Gif79, Tho79],
with the notion of minimality introduced shortly after [GB85]. The Grid quo-
rum system was first considered in [Mae85], with the B-Grid being introduced
in [NW94]. The latter article and [PW95] also initiated the study of load and
resilience.

58 CHAPTER 5. QUORUM SYSTEMS

The f -masking Grid quorum system and opaque quorum systems are from
[MR98], and the M -Grid quorum system was introduced in [MRW97]. Both
papers also mark the start of the formal study of Byzantine quorum systems.
The f -masking and the M -Grid have asymptotic failure probabilities of 1, more
complex systems with better values can be found in these papers as well.

Quorum systems have also been extended to cope with nodes dynamically
leaving and joining, see, e.g., the dynamic paths quorum system in [NW05].

For a further overview on quorum systems, we refer to the book by Vukolić
[Vuk12] and the article by Merideth and Reiter [MR10].

This chapter was written in collaboration with Klaus-Tycho Förster.

Bibliography

[GB85] Hector Garcia-Molina and Daniel Barbará. How to assign votes in a
distributed system. J. ACM, 32(4):841–860, 1985.

[Gif79] David K. Gifford. Weighted voting for replicated data. In Michael D.
Schroeder and Anita K. Jones, editors, Proceedings of the Seventh
Symposium on Operating System Principles, SOSP 1979, Asilomar
Conference Grounds, Pacific Grove, California, USA, 10-12, Decem-
ber 1979, pages 150–162. ACM, 1979.

[Lam78] Leslie Lamport. The implementation of reliable distributed multipro-
cess systems. Computer Networks, 2:95–114, 1978.

[Mae85] Mamoru Maekawa. A square root N algorithm for mutual exclusion
in decentralized systems. ACM Trans. Comput. Syst., 3(2):145–159,
1985.

[MR98] Dahlia Malkhi and Michael K. Reiter. Byzantine quorum systems.
Distributed Computing, 11(4):203–213, 1998.

[MR10] Michael G. Merideth and Michael K. Reiter. Selected results from the
latest decade of quorum systems research. In Bernadette Charron-
Bost, Fernando Pedone, and André Schiper, editors, Replication:
Theory and Practice, volume 5959 of Lecture Notes in Computer Sci-
ence, pages 185–206. Springer, 2010.

[MRW97] Dahlia Malkhi, Michael K. Reiter, and Avishai Wool. The load and
availability of byzantine quorum systems. In James E. Burns and
Hagit Attiya, editors, Proceedings of the Sixteenth Annual ACM Sym-
posium on Principles of Distributed Computing, Santa Barbara, Cal-
ifornia, USA, August 21-24, 1997, pages 249–257. ACM, 1997.

[NW94] Moni Naor and Avishai Wool. The load, capacity and availability
of quorum systems. In 35th Annual Symposium on Foundations of
Computer Science, Santa Fe, New Mexico, USA, 20-22 November
1994, pages 214–225. IEEE Computer Society, 1994.

[NW05] Moni Naor and Udi Wieder. Scalable and dynamic quorum systems.
Distributed Computing, 17(4):311–322, 2005.



BIBLIOGRAPHY 59

[PW95] David Peleg and Avishai Wool. The availability of quorum systems.
Inf. Comput., 123(2):210–223, 1995.

[Tho79] Robert H. Thomas. A majority consensus approach to concurrency
control for multiple copy databases. ACM Trans. Database Syst.,
4(2):180–209, 1979.

[Vuk12] Marko Vukolic. Quorum Systems: With Applications to Storage and
Consensus. Synthesis Lectures on Distributed Computing Theory.
Morgan & Claypool Publishers, 2012.


