Eidgendssische Technische Hochschule Ziirich <
Swiss Federal Institute of Technology Zurich

S8 2007 Prof. R, Wattenholer, Prol. Po Widmayer. Prot. S. Suri
Thomas Locher. Yvanne Anne Oswald

Exam
Principles of Distributed Computing
Thursday, Augnst 23rd, 2007

Do not open or turn until told so by the §}3pcrvisor!

Notes

There is a total of 90 points, The number of points s given before each mdividual question in
parentheses, The total for encl group of questions is indicated after the title.

Your answers may be in English or in German. Algorithms can be specified in high-level
pseudocode or as a verbal descriplion, unless otherwise mentioned, You do not need to give every
last detail, but the main aspects need to be there, Big-O notation is acceptable when giving
algorithmic complexities. However, give algarithmic complexilies as tight as possible.

Points

Please Gl in your nsme and student 1D before the exam starts

Name Legl-NNr.

[Question Nr., | Achicved Points | Max Poiuts
1 23
2 25
3 18
4 12
5 12
Total 90

1 Butterfly Networks (23 Points)

Let d € N. The d-dimensional butterfly BF(d) is a graph with node set V = [d + 1] x [2]¢ and
edge set £ = E; U Fy with

o By ={{(i,q),(i+ 1)} i€ [d],a < [2/%)
o By ={{(t,a),(i+1,8)} | a,B € 2] a and 3 differ only at the i** position}.
The three-dimensional butterfly BF(3) is depicted in Figure 1.

a) (3) In a butterfly BF(d), what is the maximum number of shortest paths between any vertex
on layer 0 and any vertex on layer d (so-called end-to-end-paths)? Explain!

b) (3) If the d 4 1 layers are merged together, we get a d dimensional hypercube (consisting
of n =24 vertices). What is the maximum number of shortest paths between any pair of
vertices in the hypercube? Explain!

c) (4) In a butterfly BF(d), describe an instance of a permutation routing problem for which
many shortest paths (as many as you can get) pass through the same edge. How many paths
pass through this edge? Recall that a permutation routing problem instance in a butterfly
requests for each vertex on layer 0 a path to a specific vertex on layer d, so that no vertex
on layer d appears more than once as a destination.

The packing problem in a butterfly BF(d) takes a set of packets at a subsequence of s < 2¢
vertices on layer 0 (with one packet per vertex) and routes them to the first s vertices on layer d
in such a way that the relative order of the packets is preserved. Intuitively, this “packs” packets
on vertices with “spaces” in between on layer 0 into consecutive vertices on layer d (see Figure 1).

000 001 010 011 100 101 110 111
0)
1
2
3
(000) (010) (011) (101) (110)

Figure 1: The subsequence in this example consists of the (circled) vertices 000, 010, 011, 101, and 110.
Packets from these vertices are routed to the first 5 vertices on layer d, preserving the relative order.

d) (7) Initially, a packet at a vertex i on layer 0 does not know its destination vertex on layer d.
Propose an efficient distributed algorithm that lets each packet on layer 0 find its destination
vertex number, and show how many steps this takes in total.

e) (6) Assume now that each packet knows its destination. Greedy routing sends each packet
on a shortest path (end-to-end). Prove that all greedy routes are vertex disjoint.
Hint: Prove first that no two such paths enter a vertex on layer 1, and then use induction
over the layers.

2 Problems in Complete Graphs (25 Points)

We are given the complete graph K, consisting of n nodes with undirected edges between each
pair of nodes. Each node v has a unique identifier id,, and each edge e has a positive weight w(e).
You can assume that no two edge weights are equal. Each node further knows the weight of all
incident edges and the identifiers of the nodes at the other end of the edges. Thus, every node
knows all other nodes.

We use the synchronous model of communication where in each round each node can send
(potentially different) messages to all its neighbors, receive messages, and perform some local
computation. The size of any message is restricted in that only a constant number of node
identifiers and edge weights, and additionally a constant number of other numbers of the same
magnitude as identifiers and weights, can be sent in a single round.

a) (3) A specific node v wants every other node to know all its n — 1 edge weights. Give an
algorithm that achieves this goal as fast as possible, in particular requiring much less than
n rounds!

In the lecture, we discussed algorithms to compute the minimum spanning tree (MST) in this
model. Now we are interested in finding the n lightest edges overall, i.e., after the algorithm
terminates, every node knows the weights of the n lightest among all (';) edges and which nodes
these edges connect.

Consider the following simple algorithm: Every node sends its i" lightest edge to all other
nodes in round i. After a sufficiently large number of rounds, the algorithm terminates and each
node knows that the n smallest weights it has learnt belong to the n lightest edges overall.

b) (8) Show an example (that means, an assignment of edge weights to the nodes) where the
above algorithm is as slow as possible!
Hint: The problem with this simple algorithm is that nodes potentially send edge weights
that have already been broadcast (by other nodes) before.

In order to overcome the problem mentioned above, we modify the algorithm in the following
way: In each round, broadcast the lightest incident edge weight that has not already been broadcast
before.

c) (10) Prove an upper bound on the number of rounds required when the modified algorithm
is used! Moreover, prove that your bound is asymptotically tight by providing a worst-case
example (of the same asymptotic time complexity)!

Now, we are going to derive a randomized algorithm whose ezpected time complexity is only
O(logn). Use the fact that a single node can determine the n'* smallest among all (}) edge
weights in O(logn) rounds in expectation.’

d) (4) Given that node v knows the n'* smallest edge weight (after O(logn) rounds), how can
all nodes (v and all other nodes) learn all the weights of the n lightest edges? Describe an
algorithm that solves this problem! The total time complexity must not exceed O(logn)
rounds!

INote that this algorithm cannot be parallelized! This means that this subroutine cannot be used to compute
all n lightest edges in parallel in O(logn) time.

3 MIS on Planar Graphs (18 Points)

In the lecture, we showed that a maximum independent set (MIS) on a general graph G = (V, E)
can be computed using a randomized algorithm in O(logn) synchronized rounds in expectation.
As a reminder, a single round of the algorithm consists of the following three steps:

1. Node v marks itself with probability #(v), where d(v) is the current degree of v.

2. If no higher degree neighbor of v is also marked, node v joins the MIS. If a higher degree
neighbor of v is marked, node v unmarks itself again. If the neighbors have the same degree,
ties are broken arbitrarily, e.g. by identifier.

3. Delete all nodes that joined the MIS and their neighbors (that cannot join the MIS anymore).

It is now your task to prove that this algorithm constructs a MIS on a planar graph also in
O(logn) rounds in expectation. A planar graph is a graph that can be drawn so that no edges
intersect.

Note that this immediately follows from the theorem proven in the lecture, but the proof for
planar graphs is substantially easier, because a planar graph can have at most 3n — 6 edges.

| a) (4) Prove that at least n/7 nodes in a planar graph have degree at most 6.

b) (5) Analogous to the proof in the lecture, prove that a node with degree at most 6 joins the
MIS in Step 2 with probability at least 1/24.

c) (4) Using both a) and b), prove that the algorithm terminates after O(logn) rounds in
expectation.

As all planar graphs have a constant fraction of nodes whose degree is at most 6, it is also

easy to compute a MIS deterministically using another algorithm presented in the lecture as a
subroutine.

synchronous rounds!?

2log*n is the number of times the logarithm function must be iteratively applied before the result is less than
or equal to 1.

|
|
|
\
\
|
|
d) (5) Describe a deterministic algorithm that computes a MIS on planar graphs in O(log n log™ n)

4 Network Flows (12 Points)

a) (3) State the maxflow-mincut theorem. Explain the relevant terms (mazflow and mincut).

b) (4) Prove or disprove the following assertion: A mincut remains a mincut if we uniformly
increase the capacity of every edge in the network by 1.3

Consider the following method to find a maximum cardinality matching (the maximum number
of disjoint edges) in a general (non-bipartite) graph G = (V, E) using network flows.

1. Construct a bipartite graph H, with vertex set E U V. (That is, each edge and vertex of G
corresponds to a node in our bipartite graph.)

Add an artificial source node s and an artificial sink ¢.
Join s to each node of E, with capacity 2.
Join each node of V to ¢, with capacity 1.

. For each edge e = (u,v), put edges of capacity 1 between e and u, and e and v.

S oA @

. The cardinality of the maximum cardinality matching in G is half of the maxflow from s to
¢t in this network H.

The intuition behind this algorithm is that each edge in the matching covers 2 vertices, so by
sending a flow of 2 units to each edge, and placing a capacity of 1 at each node, we can model the
matching problem as a flow problem.

¢) (5) Either prove that this algorithm is always correct, or give a counterexample.

3In other words, suppose (A, B) is a mincut in the original network. Then, (A, B) is still a mincut (although
with a different capacity value) in the modified network.

5 Network Failure (12 Points)

We are given an undirected graph G with vertex set V' and edge set E. An (e, k)-detection
set is a set of vertices with the property that if (adversarial) deletion of up to k edges breaks the
graph into two components, each containing at least an e fraction of the node set V| then at least
two nodes of the detection set are also disconnected. If any two nodes in the detection set fail to
communicate, we declare a cut.

a) (3) Suppose the graph is a path graph (a linear chain of nodes). What is the optimal
(smallest) size of a (e, k)-detection set?

b) (3) Is it true that if each node in G has degree at least k + 1, then the adversary cannot
disconnect the network (by deleting at most k edges)? Justify your answer.

c) (6) Assume now that you are given an arbitrary tree T consisting of n nodes, and a detection
set (a subset of the nodes) in this graph. You can further assume that the number of nodes
in the detection set is even.

The goal is to match up each detector with a partner detector. Describe an asynchronous
distributed algorithm, starting at the leaves of the tree, that finds for each detector a partner
in such a way that all the paths connecting two partner detectors are pairwise edge-disjoint.

