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1 Multiple Choice (15 points)

Evaluate each of the following statements in terms of correctness. Indicate whether a statement
is true or not by ticking the corresponding box. Each correct answer gets 1 point, each wrong
answer gets -1 point. An unanswered statement gets 0 points. If the sum of collected points is
negative you get 0 points for this question set.

Statement true false

In the LOCAL model, local computation is only accounted for if it
takes longer than the average delay in the network.

2 2

There is a constant time algorithm to compute a constant approx-
imation of a minimum vertex cover (MVC) for the class of graphs
where all nodes have constant degree.

2 2

To deterministically color a ring in one round, there are Ω(
√
n) colors

needed.
2 2

To deterministically color a ring in 10 rounds, there are Ω(log(3) n)
colors needed.

2 2

It takes Ω(log∗ n) time to compute a dominating set on a ring deter-
ministically.

2 2

The Ramsey number R(4, 4) is strictly smaller than 500. 2 2

An augmented grid with parameter α = 0 has a smaller diameter
than an augmented grid with parameter α =∞.

2 2

In an augmented grid each node is incident to at most 5 bi-directional
links.

2 2

Greedy routing from a node u to another node v in an augmented grid
of size m×m takes at most m times more steps than distance(u, v).

2 2

There exists a two player rumor game where the player that plays
second can always win.

2 2

In a d-dimensional hypercube, the number of shortest routes between
two peers is upper bounded by d! (“d factorial”).

2 2

Peers with a constant degree cannot form an overlay with a diameter
that is logarithmic in n.

2 2

Hypercubes are better than butterfly networks regarding routing fault
tolerance.

2 2

A set of vertices in a graph is a vertex cover if and only if its com-
plement is an independent set.

2 2

If the graph of a dynamic network is 72–interval connected then the
graph is connected at any time.

2 2
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2 Diameter on Trees (20 points)

Develop asynchronous message passing algorithms that compute the network diameter on trees
for two models with bounded message size. Assume the tree nodes have unique IDs from 1 to n,
and–opposed to the normal message passing model–the message size is bounded by O(log n) bits
where n is the number of nodes in the tree.

A) [10] Give an algorithm that computes the diameter as fast as possible under the given model.
Show that your algorithm is correct, and analyze its time and message complexity.

B) [10] Now assume the All-to-All model where any node can exchange messages of size O(log n)
with any other node. Give an algorithm that computes the diameter of the tree as fast as
possible in this model. Show that your algorithm is correct, and analyze its time and message
complexity.
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3 Shared Clustering Coefficient (18 points)

Definition

The local clustering coefficient C(vi) of a vertex vi is defined as the probability that a randomly
chosen pair of neighbors of vi are neighbors of each other, i.e.,

C(vi) =
# edges between neighbors of vi(|Nvi

|
2

) ,

where Nvi is the set of neighbors of vi. The clustering coefficient C(G) of a graph G = (V,E)
is the average of the local clustering coefficients of all the vertices vi ∈ V .

For this task we look at the parallel computation of clustering coefficients of a graph G = (V,E)
using a set of n processor cores. The graph G has |V | = n nodes and a node degree of at most 10.
All processor cores can access a read-only shared memory M . This memory contains the graph G
in the following form: For each vertex vi ∈ V , the memory holds a list Mi containing the indices
of vi’s neighbors, i.e. Mi[j] is the index of the j-th neighbor of vi. Note that the size of a list Mi

equals the degree of vi.

A) [5] Give a shared memory algorithm to compute all local clustering coefficients C(vi),
i = 1, . . . , n, in G (assuming that all processor cores can run in parallel). What is your
algorithm’s time complexity?

B) [5] Once the local clustering coefficients have been computed, the graph clustering coefficient
can be computed by averaging them. Assume that we have one shared read-write memory
register R of capacity O(log n) bits. Given that any processor core i ∈ {1, . . . , n} knows its
local clustering coefficient C(vi), outline an algorithm that uses R to compute C(G) as fast
as possible, and give its time complexity.

C) [5] Assume now that we have an unlimited number of shared read-write memory registers
Rk, k = 1, 2, . . ., each with capacity O(log n) bits. Again, given that any processor core
i ∈ {1, . . . , n} knows C(vi), outline a fast algorithm that computes C(G) using these registers,
and give its time complexity.

D) [3] Is your solution in C) asymptotically optimal? Give an informal explanation why it is
optimal, or why it is not.
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4 Distributed Sorting (20 points)

A) 1) [5] You are given the labelled hypercube H3 of dimension 3 in Figure 1 and you are
asked to construct a correct sorting network with eight wires that uses comparators
only between wires whose corresponding vertices in H3 are connected by an edge. (For
example, you may compare wire 0 and 2 but not wire 1 and 2). Explain why this is not
possible.

0
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Figure 1: Hypercube H of dimension 3

2) [5] Now you may change the labelling of the vertices in H3. Prove that this allows
you to construct a correct sorting network only using comparators between wires whose
corresponding vertices in H3 are connected.

3) [5] Argue how can to assign labels to a hypercube Hd of dimension d to allow the
construction of a correct sorting network.

4) Now, instead of normal comparators, you may use directed comparators that move the
larger element up or down, depending on their orientation.

Figure 2: Hypercube H of dimension 3

B) [10] Let Tn be a complete balanced binary tree with n nodes, n = 2h − 1, h ∈ N, every
node holding exactly one value. The values are to be sorted such that for every node v the
following holds: All nodes in its left subtree are smaller and all nodes in its right subtree are
larger than v’s value. Every node can send/receive O(1) messages per round. Messages can
only contain O(1) values. However, nodes may store an unlimited number of values.

• Give a lower bound on the time complexity of any algorithm that sorts the values in
Tn.

• Devise a fast algorithm that sorts the values in Tn, show its correctness, and give its
time complexity.

C) [10] We still consider complete balanced binary trees as before, but now we want the nodes
to satisfy another sorting property: For any node v it must hold that v’s value is not larger
than the value of either of its children.

• Give a lower bound on the time complexity of any algorithm that sorts the values in
Tn according to this sorting property.

• Devise an algorithm that sorts all values correctly in as little time as possible. Show
that your algorithm is correct, and give its time complexity.
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5 Radius Algorithm (32 points)

Consider the following randomized algorithm, executed by the nodes of an undirected graph G =
(V,E) with |V | = n in the synchronous message-passing model. For simplicity, assume that n = 2l

for l ∈ N. Each node v ∈ V has a unique ID, where v may refer to both the node and its ID.
Further, let d(u, v) denote the distance between two nodes u and v.

Radius Algorithm

1: Each node v executes the following code
2: Select a radius rv ∈ N as follows:

rv =

{
k with probability

(
1
2

)k+1
, for 0 ≤ k < log n

log n with probability 1
n

.

3: Broadcast the pair (v, rv) to all neighbors within hop distance rv
4: Wait log n rounds to collect all pairs of the form (u, ru) (including the own pair (v, rv))
5: Among all received pairs, select the node with the highest ID as center C(v)
6: if d(v, C(v)) = rC(v) then
7: remain uncolored
8: else if d(v, C(v)) < rC(v) then
9: adopt color C(v)

Informally, after v has chosen a center C(v), if v is exactly on the border of the set of nodes
reached by the chosen center’s radius then v remains uncolored. If it is inside it colors itself with
the ID of its center.

In the following exercises, we consider the graph G after an execution of the Radius algorithm.

A) [4] Show that if two adjacent nodes are both colored then they must have the same color.

B) [4] Prove or disprove: It is possible for two adjacent nodes u and w to have the same color
while v, a common neighbor of u and w, is uncolored.

C) [4] Prove or disprove: Let Rc be the set of all the nodes with color c. For any two nodes
r, s ∈ Rc, there exists a path from r to s that consists only of nodes from Rc.

D) [4] Let Rc again be the set of all the nodes with color c. What is the maximum distance
between two nodes in Rc?

E) [4] Prove the following statement for nodes u, v with d(u, v) < log n.

Pr [v is colored | C(v) = u] =
1

2

F) [4] Use the result from E) to show that for a random node v, we have

Pr [v is colored] ≥ 1

2

(
1− 1

n

)n
≈ 1

2e
.

Now we execute the Radius Algorithm repeatedly on the remaining uncolored nodes. If a node v
gets colored with color C(v) in iteration i, we say it joins cohort (i, C(v)).

G) [2] How many iterations do we need in expectation until all nodes are colored? Justify your
claim briefly!

H) [6] The cohorts established by the iterated Radius Algorithm can be used to color the graph
G efficiently so that no two neighbors have the same color. Explain what properties of the
cohorts could be exploited for this purpose. How would such an algorithm proceed? And
how many colors would the resulting coloring have?
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6 Reading Assignment (15 points)

A) [5] Draw the cluster tree CT0 used in the lower bound proof of the MVC problem in the
reading assignment, and give a distributed algorithm that solves MVC on the corresponding
graph G0 with message complexity 0.

B) [5] For the graph G1 corresponding to the cluster tree CT1, give a fast distributed algorithm
that determines for a node in which cluster Ci it is located.

C) [2] What is meant by “locality-preserving reduction”?

D) [3] What is the girth of a graph? Why does the lower bound proof of the reading assignment
use a construction of a graph Gk with girth at least 2k + 1?

7 Anonymous Coloring (13 points)

anonymous, non-uniform, synchronous

Algorithm 1 Randomized Anonymous Coloring

1: pick a color cv u.a.r. from {1,2,. . . ,k}
2: send cv to all neighbors
3: receive neighbors’ colors
4: if there is a neighbor colored cv then
5: go to step 1

A) (2 points) How large must k be to guarantee termination?

B) (2 points) Prove that if Algorithm 1 terminates, the produced coloring is valid!

C) (2 points) What is the expected time complexity of Algorithm 1 on a d-regular graph? You
may assume that k = αd, where α is a constant larger than 1.
Hint: Split the cases where d is constant, and where d is monotonically growing in n.
Hint: limn→∞ (1 + x/n)

n
= ex.

Let us look at the following variant of Algorithm 1:

Algorithm 2 Randomized Anonymous Coloring Alternative

1: pick a color cv u.a.r. from {1,2,. . . ,k}
2: repeat
3: exchange messages to learn neighbors colors
4: if there is a neighbor colored cv then
5: pick a new color cv u.a.r. from {1,2,. . . ,k}
6: until coloring is valid

Note that the termination condition in Line 6 is a global property. Assume for simplicity that
there is an oracle telling each node at the end of each round whether the established coloring is
valid or not.

A) Explain the difference of the two algorithms with an example.

B) (2 points) How large must k be to guarantee termination?

C) (2 points) What is the expected time complexity of Algorithm 2 on a line/star graph with
k = 2?

D) (2 points) How could we get rid of the oracle assumption, and turn Algorithm 2 into a truly
distributed algorithm that produces a valid coloring w.h.p.? (2–3 sentences)
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