
Distributed
 Computing

FS 2022 Prof. Dr. Roger Wattenhofer,
Dr. Michal Dory,
Dr. Goran Zuzic

Exam
Principles of Distributed Computing

Thursday, August 25, 2022
8:30 – 11:30

Do not open or turn until told to by the supervisor!

The exam lasts 180 minutes, and there is a total of 180 points. The maximal number of points
for each question is indicated in parentheses. Your answers must be in English. Be sure to always
justify (prove) your answers. Algorithms can be specified in high-level pseudocode or as a verbal
description. You do not need to give every last detail, but the main aspects need to be there.
Big-O notation is acceptable when giving algorithmic complexities. Some questions will ask you
to fill in answers in a template. If you decide to start over you will find fill-in replacements at the
end of the examination booklet. Please write legibly, illegible answers will not be graded.

Please write down your name and Legi number (your student ID) in the following fields.

Name Legi-Nr.

Exercise Achieved Points Maximal Points

1 - Multiple Choice 6

2 - Maximal Independent Set 27

3 - High-Capacity CONGEST 30

4 - Improved Network Decomposition 27

5 - Maximum Edge Labeling on Paths 18

6 - Shared Objects 18

7 - Bipartite Graphs 24

8 - Distributed Sorting 18

9 - Graph Neural Networks 12

Total 180

1 Multiple Choice (6 points)

Evaluate each of the following statements in terms of correctness. Indicate whether a statement
is true or false by ticking the corresponding box. Each correct answer gives one point. Each wrong
answer and each unanswered question gives 0 points.

A) [3] For this question, consider an n-node network in the synchronous model, where nodes have
identifiers in {1, 2, . . . , n10}, and where per round each node can send one unbounded-size message
to its neighbors. Every node of the network has at least one neighbor.

At the beginning, every node of the input network is either red or blue. We want to mark every
node with a letter A or B such that every node has either:

• a neighbor with the same starting color and the same output letter,

• or a neighbor with the other starting color and the other output letter.

For example, if a node that is initially blue is marked with a letter A, we require that at least one
of its neighbors is a blue node marked with A or a red node marked with B.

true false

The problem is solvable in o(n) rounds. 2 2

The problem is solvable in O(log∗ n) rounds. 2 2

The problem is solvable in o(log∗ n) rounds. 2 2

B) [3] Consider an n-node path network in the synchronous model, where nodes have identifiers
in {1, 2, . . . , n10}, and where per round each node can send one unbounded-size message to its
neighbors.

true false

Remember that a C-edge coloring is an assignment of colors {1, 2, . . . , C}
to edges such that no two edges with a common endpoint share a color.
On a path graph, does there exist an O(log n)-round algorithm which
finds a 2-edge coloring?

2 2

On a path graph, does there exist an O(log∗ n)-round algorithm which
finds a 10-edge coloring?

2 2

Suppose that the IDs are not necessarily unique. On a path graph, is
there an algorithm which checks if there are two equal IDs in O(log∗ n)
rounds?

2 2

2

This page intentionally left (almost) blank.

3

Solutions

A) [3] For this question, consider an n-node network in the synchronous model, where nodes have
identifiers in {1, 2, . . . , n10}, and where per round each node can send one unbounded-size message
to its neighbors. Every node of the network has at least one neighbor.

At the beginning, every node of the input network is either red or blue. We want to mark every
node with a letter A or B such that every node has either:

• a neighbor with the same starting color and the same output letter,

• or a neighbor with the other starting color and the other output letter.

For example, if a node that is initially blue is marked with a letter A, we require that at least one
of its neighbors is a blue node marked with A or a red node marked with B.

true false
The problem is solvable in o(n) rounds. ✓
Reason: Implied by the next question.
The problem is solvable in O(log∗ n) rounds. ✓
Reason: Implied by the next question.
The problem is solvable in o(log∗ n) rounds. ✓
Reason: Indeed, it is solvable in 0 rounds by red nodes marking them-
selves with A and blue nodes with B.

B) [3] Consider an n-node path network in the synchronous model, where nodes have identifiers
in {1, 2, . . . , n10}, and where per round each node can send one unbounded-size message to its
neighbors.

true false
Remember that a C-edge coloring is an assignment of colors {1, 2, . . . , C}
to edges such that no two edges with a common endpoint share a color.
On a path graph, does there exist an O(log n)-round algorithm which
finds a 2-edge coloring?

✓

Reason: No, this is a global problem: there is a linear lower bound
similar to the vertex 2-coloring.
On a path graph, does there exist an O(log∗ n)-round algorithm which
finds a 10-edge coloring?

✓

Reason: Yes; the problem corresponds to a vertex coloring of the line
graph, which can be efficiently simulated in LOCAL. The line graph is
also a path graph.
Suppose that the IDs are not necessarily unique. On a path graph, is
there an algorithm which checks if there are two equal IDs in O(log∗ n)
rounds?

✓

Reason: No; checking if the IDs are the same is a global problem that
requires Ω(D), which is Ω(n) rounds on a path graph.

4

2 Maximal Independent Set (27 points)

For this problem, we use the LOCAL model of distributed algorithms: the network is abstracted
as an n-node undirected graph G = (V,E), where nodes have unique identifiers in {1, 2, ..., n}.
Per round each node can send an unbounded-size message to each neighbor.

The objective is to compute a maximal independent set (MIS), that is, a set of nodes S such
that no two nodes of S are neighbors and each node v ∈ V has at least one neighbor in S.

A) [15] Prove or disprove: for graphs with maximum degree ∆ = O(log log n), there is a deter-
ministic distributed algorithm that solves the MIS problem in O((log log n)2) rounds. You
can assume that all the nodes in the graph know the values of ∆ and n at the beginning of
the algorithm.

5

B) [12] Prove or disprove: for graphs with maximum degree ∆ = O(1), there is a deterministic
distributed algorithm that solves the MIS problem in O(1) rounds. You can assume that all
the nodes in the graph know the values of ∆ and n at the beginning of the algorithm.

6

Solutions

A) The statement is correct. To see this, we compute MIS using coloring, as follows. First, we
compute a (∆+1)-coloring in O(∆ log∆+log∗ n) rounds, which is bounded by O((log log n)2)
since ∆ = O(log log n). Then, we go over the O(log log n) color classes one by one, such that
when we are in color class i we add to the MIS all the nodes in color i that don’t already
have a neighbor in the MIS. By the end of the algorithm, each node that is not in MIS, has
a neighbor in the MIS. Additionally, nodes in the MIS are not adjacent because nodes in
the same color class are not adjacent, and we cannot add to the MIS two neighbors from
different color classes by the structure of the algorithm.

B) The statement is incorrect, and contradicts the Ω(log∗ n) lower bound for 3-coloring paths
we saw in the lectures. To see this, assume to the contrarty that there is an algorithm for
computing MIS in O(1) rounds when ∆ = O(1), and we will get an O(1) round algorithm
for 3-coloring paths. Recall that in the lectures we saw that in order to compute a (∆+ 1)-
coloring in the graph G, we can compute an MIS in a related graph H, that is obtained from
G by taking (∆ + 1) copies of G, and connecting all the copies of a node in a clique. Note
that if G is a path, the maximum degree in H is constant, hence by our assumption we can
compute an MIS in the graph H in O(1) rounds. As we saw in the lectures, this translates
to an O(1)-round algorithm for computing a 3-coloring of the path G, a contradiction.

7

3 High-Capacity CONGEST (30 points)

We define a variant of the CONGEST model called CONGEST(B) in which one is allowed to
send, larger, O(B log n)-bit messages. Formally, we are given an n-node graph G = (V,E), where
nodes have unique identifiers in {1, . . . , n}, and in each round every pair of neighboring nodes
exchanges a O(B log n)-bit message, where B ≥ 1 is the parameter of the model.

A) [15] Suppose we are given a designated “leader” node r ∈ V and there are k O(log n)-bit
messages distributed among the nodes (some nodes can have multiple or zero messages).
Design an algorithm to deliver all k messages to r within O(D + k/B) rounds, where D is
the diameter of G. Prove that the algorithm completes in the stated number of rounds.

8

B) [15] Design a minimum spanning tree (MST) algorithm in the CONGEST(B) model that
utilizes the higher capacity B of the model. The algorithm should be a natural generalization
of the standard (D +

√
n)poly(log n)-round MST algorithm learned in class, but should be

significantly faster whenever B ≫ 1 and D ≪
√
n. Describe the algorithm. What is the

round complexity of the algorithm (you can ignore polylogarithmic factors)?

9

Solutions

A) We say a “block” is a set of exactly B messages residing in the same node. Note that in
each round each node can send one block of messages to its parent. Our algorithm consists
of two phases: (1) in O(D) rounds, each message is either delivered to the root r or joins a
block, then (2) in O(D + k/B) rounds, all blocks are delivered to the root. Therefore, the
total runtime is O(D +D + k/B) = O(D + k/B) rounds.

First phase. At any time, if a node v has at least B messages outside of a block, it repeatedly
takes B of them and makes a new block out of them. The messages left outside of a block (at
most B − 1 of them) are sent to v’s parent. Note that this algorithm, by definition, suffers
no congestion issues, hence it completes O(D) rounds.

Second phase. Once all messages are in blocks, it is sufficient to deliver all the blocks to
the root by sending a single block on an edge per round. This is equivalent to the standard
CONGEST model in which we want to deliver at most k/B messages along a tree of depth
D. As explained in the lecture, this can be done in O(D + k/B) rounds.

B) We follow the general outline of the MST algorithm from class and textbook in which we are
given (disjoint and connected) components of nodes S1, . . . , S· and the goal is to compute,
simultaneously, what is the minimum outgoing edge from each component. Following the
textbook, if this can be implemented in X rounds, then the entire MST algorithm can be
implemented in Õ(X) rounds where Õ hides polylogarithmic factors (hence, also constants).

To solve this, we will say a component is “small” if it has less than Q > 0 nodes (to be
determined later) and “large” otherwise. Note that, computing the minimum outgoing edge
requires O(Q) rounds in small components (build a BFS tree internally in each component).
Furthermore, if there are k large components, then computing the minimum outgoing edge
takes O(D + k/B) time by computing a global BFS tree, and using the BFS tree to deliver
the minimum outgoing weight of each large component to the root. In more detail, any node
v that receives two different messages about the minimum outgoing edge that came from the
same component are aggregated into a single message that only contains the smaller weight,
hence effectively there are at most k different messages (we can directly generalize the proof
from part A to this setting). Moreover, there are at most n/Q many large components.
Therefore, our algorithm requires O(Q+D+(n/Q)/B) rounds. Setting Q :=

√
n/B, we get

a runtime of Õ(D +
√
n/B). Note that D +

√
n/B ≪ D +

√
n when D ≪

√
n and B ≫ 1.

10

4 Improved Network Decomposition (27 points)

For this question, consider an n-node network G = (V,E) in the synchronous LOCAL model,
where nodes have unique identifiers in {1, 2, . . . , n10}, and where per round each node can send
one unbounded-size message to its neighbors. Every node of the network has at least one neighbor.

In the lecture notes, you saw that there is a deterministic distributed O(log6 n)-round algorithm
A, which solves the following problem: Given a set of living vertices S ⊆ V , it finds a subset
S′ ⊆ S of living vertices, where |S′| ≥ |S|/2, such that the subgraph G[S′] induced by the set S′

is partitioned into non-adjacent disjoint clusters, each of weak-diameter O(log3 n) in the graph G.
In the exercises, you also saw that there is a deterministic sequential algorithm B, which given

a graph H = (V ′, E′) finds a subset of vertices T ⊆ V ′, where |T | ≥ |V ′|/2 such that the subgraph
H[T] induced by the set T is partitioned into non-adjacent clusters, each of strong-diameter
O(log n) in the graph H.

A) [12] Show how to combine these two algorithms to get a deterministic distributed O(log6 n)-
round algorithm, which given a set of living vertices S ⊆ V , finds a subset S′ ⊆ S of living
vertices, where |S′| ≥ |S|/4, such that the subgraph G[S′] induced by the set S′ is partitioned
into non-adjacent clusters, each of strong-diameter O(log n) in the graph G.

11

B) [15] Show how the algorithm from part A) can be used to get an O(log7 n)-round determin-
istic distributed algorithm that computes an (O(log n), O(log n)) strong-diameter network
decomposition of any n-node graph G.

Note: If you did not solve part A), you can assume that such an algorithm exists.

12

Solutions

A) As a first step, we execute algorithm A with the same inputs as given by the exercise. Then,
by broadcasting in each cluster separately for O(log6 n) rounds, every node v ∈ S′ learns
the topology of its cluster. Now, every node in S′ can execute or simulate the algorithm B
on its local cluster to achieve a clustering with diameter O(log n) and at least half of the
nodes executing the algorithm will be clustered. Finally, we remove all nodes that were not
clustered in the previous step from S′ to find a set that satisfies the conditions. We have
that S′ ≥ |S|/4, as we remove at most half of the nodes in each of the steps.

B) We can use the algorithm from A) once to get a clustering that clusters at least 1/4 of all
vertices. This will be the first graph G1 of our network decomposition. Then, we recursively
cluster the remaining 3/4 vertices in the same way, obtainingG2. We repeat this process until
all vertices are clustered, which is done after O(log n) recursions. Thus, we have O(log n)
color classes in our network decomposition and each cluster has diameter O(log n), by part
A).

13

5 Maximum Edge Labeling on Paths (18 points)

In this exercise we study undirected weighted paths. Every edge e has a positive integer weight
we. We want to answer the following type of query: Given two vertices u, v of the path, compute
the maximum edge weight on the sub-path between u and v. We want to design a labeling scheme
that answers such queries using only the labels of u and v. Throughout this exercise you can
assume that u ̸= v.

Figure 1: A path with 6 nodes. To get from vertex c to vertex e, the edges with
weights 2 and 4 need to be traversed. Therefore, the maximum edge weight on the
sub-path is 4. Similarly, from e to a the maximum edge weight is 5.

A) [7] Assume that the path has n vertices and each edge weight is in {0, 1, ..., k}, where k ≪ n.
Design a labeling scheme that, given the labels of two distinct vertices u and v, determines
the maximum edge weight on the path between the vertices u and v. Full points are awarded
for any labeling scheme using at most O(k log n) bits per label.

14

B) [4] Let s be a segment given by two integer points sa, sb ∈ {1, 2, ..., n}, with sa < sb, where
the sa is the start and sb the end of the segment. Segment s has length sb− sa. We say that
two segments c, c′ match a segment s if and only if the union of c and c′ is equal to s.

Show that for every segment s with 1 ≤ sa < sb ≤ n there exist two integers l and l′, where
0 ≤ l, l′ ≤ log2 n, such that c has length 2l, c′ has length 2l

′
, and c, c′ match s.

Figure 2: In this example, the segment s has length 5. It can be matched by the
two dashed segments of length 20 and 22 shown on the left. Another possible way
would be to use two segments of lengths 22 and 21, as shown on the right.

For the following part, you may assume part B) without proof.

C) [7] We want to consider larger edge weights. Each edge weight is now in {0, 1, ..., n}, where
n is the number of nodes of the path. Design a labeling scheme that, given the labels of two
distinct vertices u, v determines the maximum edge weight on the path between the vertices
u and v. Full points awarded for any labeling scheme with at most O(log2 n) bits per label.

15

Solutions

A) First, we enumerate the vertices on the path from left to right with 1 to n to assign them
ID’s. This can be done with O(log n) bits per label. Let u be the vertex with ID i. For each
possible edge weight w ∈ {0, ..., k} we store the largest ID j (j ≥ i) that we can reach using
edges of weight at most w in Ri,w. This can be done using O(k log n) bits per label as we
store one ID for each possible weight.

Given the labels of arbitrary vertices u, v we can calculate the maximum weight on the sub-
path as follows: Let u be the vertex with the smaller ID i and v have ID j. Our answer
is the smallest w that satisfies Ri,w ≥ j. This corresponds to the maximum weight on the
sub-path as w − 1 does not cover the whole path, but w does.

B) Let s be an arbitrary segment with 1 ≤ sa < sb ≤ n. Furthermore, let ls = sb − sa. Choose
k to be the largest integer so that 2k ≤ ls. Note that ls ≤ n, meaning that 2k ≤ n and, as
a consequence, that k ≤ log2 n. Let c1 be a segment with ca = sa, cb = sa + 2k and c′ be a
segment with c′b = sb, c

′
a = sb − 2k. Segments c and c′ have length 2k, c starts at the same

place as s and c′ ends at the same place as s. Moreover, they fulfill the length requirements.
We now show that they also match s. It is sufficient to show that c′a ≤ cb as neither c1 nor
c2 cover any parts outside s and are aligned with the endpoints of s. Recall that we choose k
to fulfill ls = sb−sa < 2k+1, which we can rewrite as sb−2k < sa+2k which is by definition
the same as c′a < cb, giving the conclusion.

C) First, we enumerate the vertices on the path from left to right with 1 to n to assign them ID’s.
This can be done with O(log n) bits. For each node of ID i and each k ∈ {0, 1, ..., log2 n}
we calculate Li,k and Ri,k. We define Ri,k as the maximum weight on the path between
the vertex with ID i and min{n, i+2k}. Similarly, Li,k is the maximum weight on the path
between the vertex with ID i and max{1, i− 2k}. This can be done using O(log2 n) bits as
we store one ID for R and L of size O(log n) for each possible k (which there are O(log n)).

To answer a query we can reuse part B). Let u, v be arbitrary vertices with ID’s i, j (i < j).
To each segment we associate the maximum edge weight contained within the segment as
the maximum of the segment. The answer to the query is then the maximum of the segment
s with sa = i and sb = j. Note that the maximum of s is the same as the maximum of
two segments c, c′ that match s. We can then chose an appropriate k so that the segments
corresponding toRi,k and Lj,k match s. Therefore, the answer to the query is max{Ri,k, Lj,k}
with k the largest power of 2 that is less than or equal to j − i.

16

6 Shared Objects (18 points)

We consider a sequential execution of the Arrow protocol on the graph shown in Figure 3.
Initially, the token is located at node 0 in the center of the graph. The initial Arrow tree is
depicted by bold edges. The other edges of the graph are represented by thin dotted lines. For
example, the edge {9, 10} is an Arrow tree edge and the edge {2, 3} is in the graph but is not part
of the Arrow tree.

0

1
2

3

4

5

6
78

9

10

11

12

13 14

15

16

17

18

19

20212223

24

25

26

27

28

29 30

Figure 3: Graph used in parts A) and B).

A) [5] Give a sequence of length at least 10 requests consisting of entirely different nodes such
that if the sequence is executed sequentially by the Arrow protocol, then the cost is optimal.

B) [5] What is the worst-case competitive ratio the displayed tree can have when using the
Arrow protocol sequentially? Give an example of a sequence that has this competitive ratio.
Argue why it is the worst competitive ratio.

17

C) [8] Suppose now that the underlying graph is a complete 13-node graph and that we are
executing the Ivy protocol. What does the graph look like if the sequence 1, 2, 3, 4, 5, 6, 7, 8 is
executed sequentially by the Ivy protocol, assuming that the starting tree is the one depicted
in Figure 4. Show the graph after each request. You may use the skeleton graphs below to
present your work. Clearly indicate which graph represents which step of the algorithm. If
needed, there are additional skeleton graphs at the end of the exam.

0

1
2

3

4

5

6
78

9

10

11

12

Figure 4: Graph used in part C).

0

1
2

3

4

5

6
78

9

10

11

12

0

1
2

3

4

5

6
78

9

10

11

12

0

1
2

3

4

5

6
78

9

10

11

12

0

1
2

3

4

5

6
78

9

10

11

12

18

0

1
2

3

4

5

6
78

9

10

11

12

0

1
2

3

4

5

6
78

9

10

11

12

0

1
2

3

4

5

6
78

9

10

11

12

0

1
2

3

4

5

6
78

9

10

11

12

19

This page intentionally left (almost) blank.

20

Solutions

A) Any sequence of length at least 10 consisting of entirely different nodes, where any path in the
graph connecting consecutive nodes in the sequence is at least as long as the path connecting
the nodes in the Arrow tree will be accepted. For example, sequence 1,2,14,15,0,17,19,18,4,3,6
would satisfy the requirements.

B) The competitive ratio is cost of Arrow
optimal cost . The ratio is maximized if the sequence consists of nodes

whose distance in the tree compared to the distance in the underlying graph is maximal.
In the given graph, the maximal competitive ratio is 6. One sequence which achieves this
competitive ratio is to alternate between nodes 20 and 19. For no two nodes which are
neighbors in G is the path connecting them in the Arrow tree longer than 6. The diameter
of the Arrow tree is 8, hence we do not need to consider nodes of distance two or greater,
because for two nodes we would have cost of Arrow ≤ 8 and optimal cost ≥ 2. This would
give a competitive ratio of less than 8.

C) The intermediate steps and final solution looks as follows. Reading from left to right top to
bottom.

0

1
2

3

4

5

6
78

9

10

11

12

0

1
2

3

4

5

6
78

9

10

11

12

0

1
2

3

4

5

6
78

9

10

11

12

0

1
2

3

4

5

6
78

9

10

11

12

0

1
2

3

4

5

6
78

9

10

11

12

0

1
2

3

4

5

6
78

9

10

11

12

0

1
2

3

4

5

6
78

9

10

11

12

0

1
2

3

4

5

6
78

9

10

11

12

21

7 Bipartite Graphs (24 points)

Alice and Bob share the knowledge of a simple graph G = (V,E) with n ≥ 3 vertices; i.e. an
undirected graph without self-loops and/or parallel edges. Alice and Bob both know all the vertices
of G, and the unique vertex IDs in {0, 1, . . . , n − 1}. Alice knows a subset of the edges A ⊆ E
and Bob knows a subset of the edges B ⊆ E, such that A ∪ B = E. Additionally, A and B are
disjoint, that is A ∩ B = ∅. Alice and Bob need to figure out whether the graph G is bipartite
with as little communication as possible.

Definition (Bipartite Graph). A graph is bipartite iff a 2-coloring exits.

A) [4] Show how Alice and Bob can decide whether graph G is bipartite with O(n2 log n)
communication complexity.

B) [6] Prove that if G is connected and bipartite, then exactly one valid 2-coloring (up to
interchanging the two colors) exists for G and all its connected subgraphs.

22

For the following parts, you may assume part B) without proof.

C) [6] Assume that the graph that Alice sees, i.e., GA = (V,A), is connected. Show how Alice
and Bob can decide whether the graph G is bipartite with O(n) communication complexity.

D) [8] Let the number of connected components in graph GA be denoted by kA and let the
number of connected components in graph GB = (V,B) be denoted by kB . Show how Alice
and Bob can decide whether the graph G is bipartite with O(n(1 + log k)) communication
complexity, where k = min{kA, kB}.

23

Solutions

A) Alice/Bob exchange all their edges, by sending the IDs of both endpoints (each edge can be
encoded in O(log n) bits). There are at most n2 edges in graph G. Thus, the communication
complexity is O(n2 log n). Upon, exchanging all edges, Alice/Bob can check locally whether
G is a bipartite graph.

B) We use c0 = 0 and c1 = 1 for the two colors. Since G is connected, let T be a spanning tree
of G. WLOG, assume T is rooted at a node r ∈ V , which we call the root of T . WLOG,
start with r colored with color 0. Now, proceed in a top-down manner: whenever a vertex
is colored and has an uncolored children in the tree, color that children with the opposite
color. After n− 1 steps, the whole tree will be colored. Observe that the produced coloring
is a valid 2-coloring of G, and that at no point we had a choice of what color to assign to a
vertex, so the coloring is unique up to the original choice of coloring r with 0. If, instead, we
colored r with 1, we would get the opposite coloring. The argument can easily be extended
to all connected subgraphs of G.

C) Alice locally tries to compute a 2-coloring for GA with colors c0 = 0 and c1 = 1. If Alice
does not find a valid 2-coloring, she informs Bob that the graph is not bipartite. Otherwise,
she sends a string s ∈ {0, 1}n to Bob, where si is is the color of vertex i. Bob locally checks
whether the 2-coloring sent by Alice is also valid for the graph he sees; i.e. GB . By B), the
2-coloring is unique, so the graph is bipartite iff the received 2-coloring is also valid for Bob.
Thus, if the coloring is also valid for GB , Bob informs Alice that the graph is bipartite.

D) Alice & Bob locally compute kA & kB respectively and inform each other. As kA ≤ n &
kB ≤ n, they can be encoded in O(log n) bits. If kA ≤ kB , Alice (Bob otherwise) locally
tries to compute a 2-coloring of their graph with colors c0 = 0 & c1 = 1.

Without loss of generality, assume kA ≤ kB . If Alice finds no 2-coloring, she informs Bob
and stops. Else, she numbers all connected components with 0, 1, . . . , k − 1 and sends Bob
a string s ∈ {0, 1}n(⌈log k⌉+1). For i = j · (⌈log k⌉ + 1), si encodes node j’s color and
si+1 . . . si+⌈log k⌉ its connected component. Bob then locally checks if the graph is 2-colorable.
Within components, Bob cannot change the color of the vertices with respect to each other
by B). However, Bob can choose to interchange the two colors in any subset of connected
components. If Bob finds a 2-coloring with these restrictions, the graph is bipartite & he
informs Alice.

24

8 Distributed Sorting (18 points)

In this task we look at transposition sorting networks, a special case of sorting networks in
which each comparator connects only adjacent wires. Prove or disprove each of the following
statements:

A) [6] For every n there exists a correct transposition sorting network with depth O(n).

B) [6] For every n there exists a correct transposition sorting network with depth O(
√
n).

25

C) [6] Every correct transposition sorting network with n inputs uses Ω(n2) comparators.

26

Solutions

A) The statement is true. Take the even-odd sorting algorithm from the lecture as a sorting
network of depth 2n, where n is the number of inputs. The sorting network has comparators
between i and i+1 for even (odd) values of i at each even (odd) depth. This sorting network
is a transposition sorting network and has depth O(n). We showed in the lecture that the
even-odd sorting algorithm is correct and terminates within n rounds.

B) The statement is false. Consider the worst-case input (1, 0, 0, 0, . . .) for an arbitrary number
of inputs n. This needs n sequential transpositions to move the 1 to the end. Therefore, for
every n there is an input such that a transposition sorting network needs to have depth at
least O(n) to sort it.

C) The statement is true. Consider the input (1, 1, . . . , 1, 0, . . . , 0, 0) with equal number of ones
and zeroes for an arbitrary even number of inputs n (for odd n the argument is similar).
Because we are only allowed to swap adjacent wires, moving all the ones by one spot takes n

2

swaps. We need to move all the ones by n
2 spots, thus requiring n2

4 ∈ Ω(n2) swaps in total.

27

9 Graph Neural Networks (12 points)

In this exercise we investigate the abilities of GNNs to detect if a given connected graph is a
clique (fully connected graph). For this task, you are given a connected graph G = (V,E) such

that |V | > 2 with unlabeled nodes (you can assume that all initial states are 0: h
(0)
v = 0 for all

v ∈ V). After the execution of the GNN every node has to output whether it thinks that the given
graph is a clique or not.
More precisely, if the graph is a clique, all nodes have to output 1. If it is not, at least one node
has to output 0. The size of the clique or graph is not known beforehand.

A) [4] Prove that it is not possible to solve the clique problem with a GNN on connected graphs.
To do this, first draw a pair of connected graphs as a counterexample and then argue why
the clique problem cannot be solved by a GNN.

28

B) [8] We now adapt the input slightly: Instead of all nodes being initially labeled 0, we use

two-dimensional states h
(i)
v ∈ R2 (for any round i) and mark exactly one (arbitrary) node

vm in the initial states. We do so by setting h
(0)
vm = (1, 1) and h

(0)
w = (1, 0) for w ∈ V \ {vm}.

In this case we say that we have a one-marking. The graph G is still guaranteed to be
connected.

The GNN has to finish in 2 rounds and the output h
(2)
v has to be either (0, 1) if the node

thinks it is in a clique or (0, 0) in case that it thinks it is not. Similarly to the previous part,
if the graph is not a clique at least one node has to output (0, 0), otherwise all nodes have to
output (0, 1). The GNN has to work with any initial one-marking. Complete the following
functions for a GNN that solves the problem with a one-marking. The functions used in the
two rounds can be different.

Round 1:

a
(1)
v = aggregate(1)({{h(0)

u | u ∈ N(v)}}) =

h
(1)
v = update(1)(h

(0)
v , a

(1)
v) =

Round 2:

a
(2)
v = aggregate(2)({{h(1)

u | u ∈ N(v)}}) =

h
(2)
v = update(2)(h

(1)
v , a

(2)
v) =

29

Solutions

A) We know that k-regular graphs cannot be distinguished by the WL algorithm and thus not
by a GNN. Consequently, a k-regular graph cannot be distinguished from a clique of size
k+1 as node embeddings will always be the same, making it impossible to solve the problem
for a GNN.

For example, take a triangle and a 4-cycle. The labels for all nodes will always be the same
but one graph is a clique while the other is not.

B) Round 1:

a
(1)
v = aggregate(1)({{h(0)

u | u ∈ N(v)}}) =
∑

u∈N(v) h
(0)
u (element-wise sum)

h
(1)
v = update(1)(h

(0)
v , a

(1)
v) = h

(0)
v + a

(1)
v

Round 2:

a
(2)
v =

{
h
(1)
u , if all h

(1)
u are the same

(0, 0), else

h
(2)
v =

{
(0, 0), if h

(1)
v ̸= a

(2)
v

(0, 1), else

30

Replacements for Question 6, Part C)

Here you can find replacement templates in case your original solution becomes too messy. If
you use these, please clearly indicate which one represents which step of the algorithm.

0

1
2

3

4

5

6
78

9

10

11

12

0

1
2

3

4

5

6
78

9

10

11

12

0

1
2

3

4

5

6
78

9

10

11

12

0

1
2

3

4

5

6
78

9

10

11

12

0

1
2

3

4

5

6
78

9

10

11

12

0

1
2

3

4

5

6
78

9

10

11

12

31

0

1
2

3

4

5

6
78

9

10

11

12

0

1
2

3

4

5

6
78

9

10

11

12

0

1
2

3

4

5

6
78

9

10

11

12

0

1
2

3

4

5

6
78

9

10

11

12

0

1
2

3

4

5

6
78

9

10

11

12

0

1
2

3

4

5

6
78

9

10

11

12

32

