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1 Tree Algorithms MC (8 points)

For each of the following statements, indicate whether they are TRUE or FALSE. Ticking the
correct box is worth 1 point. A correct justification of the correct answer is worth 1 additional
point.

[8] In the synchronous setting, consider a graph with n nodes where the diameter D = O(1)
is constant. We want to construct a spanning tree T , rooted at a node s that is marked as the
source.

TRUE FALSE

There exists an algorithm that computes a spanning tree rooted at s and
has time complexity O(1).
Justification:

2 2

There exists an algorithm that computes a spanning tree rooted at s and
has message complexity O(1).
Justification:

2 2

Given a precomputed spanning tree T rooted at s. We can do a broadcast
from s using only edges of T and reach every node in the graph in O(1)
rounds.
Justification:

2 2

Given a precomputed BFS spanning tree T rooted at s. We can do a
broadcast from s using only edges of T and reach every node in the graph
in O(1) rounds.
Justification:

2 2
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Solutions

A) [8] In the synchronous setting, consider a graph with n nodes where the diameter D = O(1)
is constant. We want to construct a spanning tree T , rooted at a node s that is marked as the
source.

TRUE FALSE

There exists an algorithm that computes a spanning tree rooted at s and
has time complexity O(1).
Justification:

✓

Reason: We can use the Dijkstra BFS construction that gives us the
spanning tree in O(D2) = O(1) rounds.

There exists an algorithm that computes a spanning tree rooted at s and
has message complexity O(1).
Justification:

✓

Reason: No, every node must at least know its parent. Therefore, every
node has to receive at least one message.

Given a precomputed spanning tree T rooted at s. We can do a broadcast
from s using only edges of T and reach every node in the graph in O(1)
rounds.
Justification:

✓

Reason: No, the tree T can have very large diameter, even if the original
graph has constant diameter.

Given a precomputed BFS spanning tree T rooted at s. We can do a
broadcast from s using only edges of T and reach every node in the graph
in O(1) rounds.
Justification:

✓

Reason: Yes, the tree T also has constant diameter.
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2 Ivy MC (9 points)

A) [9] Consider a 9-node complete graph on which we are executing the Ivy protocol. The
initial configuration of the graph is shown in Figure 1.

1 2 3

4 5 6

7 8 9

Figure 1: Initial state of the network

Suppose the nodes 2, 3, 5 and 7 each request the token. The nodes can request the token
simultaneously or sequentially in any order. For each of the following three configurations,
decide whether it could be the final state of the network (select yes if it could be the final
state, and no otherwise). Briefly explain why.

1 2 3

4 5 6

7 8 9

(a) yes no
Reason:

1 2 3

4 5 6

7 8 9

(b) yes no
Reason:

1 2 3

4 5 6

7 8 9

(c) yes no
Reason:

1 2 3

4 5 6

7 8 9
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Solutions

A) The only correct answer is c) which corresponds to executing the sequence 5,7,2,3 sequen-
tially. Answer a) is incorrect, since the final tree has 2 sinks. Answer b) is incorrect because
if 5 is the final owner of the token, then there must be an edge connecting 7 with either 2
or 3, as these requests were served before 5 was served and thus their requests cannot go
through node 5 given the initial configuration.
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3 Ivy (13 points)

Tree topologies

In the exercise class, we saw that when n is a power of 2, there exists a tree consisting of n
nodes and a sequence of requests such that the tree topology remains the same after each request
in the Ivy protocol. In this exercise, we are interested in finding a sequence for a tree with 5 nodes
for which the tree topology of the underlying undirected graph remains the same.

Given a directed graph, the underlying undirected graph is the graph we obtain when replacing
every arc with an undirected edge. If there are arcs in both directions between two nodes, we only
add one undirected edge. For example, Figure 3 shows four directed tree topologies at the bottom
which all have the same underlying undirected graph which is displayed at the top.

Figure 3: Four valid Ivy-tree topologies at the bottom that all have the same
undirected underlying tree displayed at the top.

B) [3] Draw all non-isomorphic undirected trees with n = 5 nodes.
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C) [10] Find an initial configuration of a tree consisting of 5 nodes, and a sequence of requests
in which the topology of the underlying undirected tree does not change at any step. In
your sequence, every node in the system must request the token at least once, and a node
can only request the token if it is not already holding the token. To get full points, your
sequence must have a length of exactly 5. That is, every node requests the token exactly
once.
Draw the initial graph, and the state of the network after each request.
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Solutions

Figure 4: There are three non-isomorphic undirected trees on 5 nodes.

A)

B) There are many solutions that involve sequences of length longer than 5 because in the Ivy
protocol, the topology of the underlying undirected graph does not change when a neighbor
of the token holder requests the token. A possible solution of a sequence of length 5 that
involves all 5 nodes is displayed in Figure 5.

5

1

3 4

2

5

1

3 4

1

3

4

5 2

request by 5 request by 2

request by 4 request by 3 request by 1

3 4

1

2

5 2

5 2

4

1

3

3

4

5 2

1

Figure 5: A possible solution to task C), that scores full points.
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4 Wireless (16 points)

We consider the wireless network model. However, in this question nodes are arranged on a
graph, and their transmissions only reach and conflict with their 1-hop neighborhood. We assume
collision detection (CD) is available to all nodes, accordingly, nodes observe a collision when two
or more of their neighbors transmit simultaneously.

Consider the example where three nodes are connected on a line: u1 ↔ u2 ↔ u3. If u1 and
u3 transmit simultaneously, u2 will observe a collision, while u1 and u3 cannot detect anything
wrong with their transmission.

A) [6] Consider the extension of the example above, where n nodes lie on a path graph. The
initiating node ur wants to find out the number of nodes in the graph, while all other nodes
have no information. ur is situated at one end of the path, and aware of being at the end.
Design an algorithm that runs in as few time slots as possible and succeeds deterministically.
For full points, your algorithm should run in 2n time slots.

B) [10] Consider nodes connected on an arbitrary tree. The initiating node ur wants to find
the height of the tree, i.e., the radius of ur. All other nodes have no information. Design an
algorithm that runs in as few time slots as possible and succeeds deterministically. For full
points, your algorithm should run in 2r + c time slots, where r is the radius of ur, and c is
a constant.
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Solutions

A) Nodes other than ur: When receiving a transmission they transmit themselves in the next
time slot. They then check if they receive a transmission in the following time slot.

• If they don’t, they transmit again and terminate.

• If they do, they wait for another transmission. Upon reception, they transmit in the
following time slot and terminate.

Node ur: Transmits during the first slot. If no message is received in the following slot,
output 1. If a transmission is received, wait for another transmission. Upon reception thereof
at time slot j, j−1

2 is the number of nodes on the path.

In essence, the idea is that a wave traverses the path, and by exploiting the synchronization
of nodes the length of the path can be measured. The algorithm terminates after 2n time
slots.

B) Nodes other than ur: When receiving a transmission, nodes transmit themselves in the
next time slot. They keep transmitting every second time slot until only one transmission
is received during the time slot after its own transmission (this transmission stems from the
parent, and the lack of collision indicates that all children terminated).

Node ur: Transmits during the first slot and every second subsequent slot. If no transmis-
sion is received in the in-between slot i+ 1, output i

2 .

The algorithm requires exactly 2(h+ 1) time slots.
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5 Graph Neural Networks (19 points)

0 0

0 0

1

1 0

0 0

0

You are given the graph above with initial node labels 0 and 1.

A) [3] Run one round of WL and draw color classes into the template (for example by assigning
numbers to colors).

B) [2] How many rounds does WL need to finish on this graph?

C) [3] Consider a tree with a 2-coloring. Show that this does not suffice to distinguish all nodes
in the graph with WL.
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D) [5] A k-hop-coloring is an assignment of colors to nodes such that all nodes with distance k
or less from each other have different colors. Is there a constant k such that in all graphs
(not just trees), given an initial k-hop-coloring, all nodes can be distinguished from each
other with WL?

E) [6] Now assume the tree is labeled with a 2-hop-coloring. Show that this suffices to distin-
guish all nodes in the tree with WL.

Hint: You may assume that you are given an initial marking on the tree that marks exactly
one node.
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Solutions

A) The color classes can be assigned as follows.

0 1

0 3

4

2 1

3 0

0

B) 3

C) Consider a star graph: the coloring will assign one color to the center and the other to the
leaves. The leaves will get the same WL-labels here.

D) No. For fixed k, consider the 2(k+1)-cycle with color classes assigned 1, 2, . . . k+1, 1, 2, . . . k+
1 around the cycle. This is a valid k-hop-coloring, but WL will not be able to distinguish
nodes with the same initial color.

E) We first show that given the coloring we are able to compute a “leader”, a node that we
can distinguish from the rest. This can be done by computing the center of the tree and
breaking a possible tie between two center nodes by using the coloring. Next, we can think
of assigning every node a unique identifier sequence (or “address”) by listing the colors on
the path from the root to the node. This will always be unique when a 2-hop-coloring is
used.

14



6 Labeling (16 points)

Given an undirected graph G on n nodes. We want a labeling scheme l to find the length of
the shortest cycle that contains two given nodes in the graph. More precisely: Given only the
labels l(u), l(v) of two vertices u, v you have to compute the length of the shortest cycle in G that
contains both u and v. Cycles may not repeat nodes. If there is no such cycle that contains both
u and v, you should report the length as ∞.

C

F

D

B

E

G

A

Figure 6: In this example graph, the shortest cycle that contains both C and G is
the cycle of length 4 (C-D-G-F-C). Whereas the shortest cycle that contains both B
and C is of length 6 (C-D-B-E-G-F-C). Note that A cannot form a cycle with any
other node in the graph.

Note: You have to prove your statements, including correctness and length of the labeling scheme.

A) [6] Assume that k nodes in the graph are golden. Give a labeling scheme for the length of
the shortest cycle with O(k log n) bits when at least one of the two queried nodes is golden.
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B) [10] Assume n ≥ 10, design a labeling scheme that uses at most n
2 − 1 bits or prove that no

such scheme exists. You may use existing results from the script.
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Solutions

A) For each possible query node precompute the solution for each case when the other queried
node is one of the k golden nodes. The length of each cycle is at most n (fits in O(log n)
bits) and we can use the special value 0 to denote the nonexistence of a cycle. Hence, we
can store all answers for a node in O(k log n) bits. We also need to store node ids to identify
the queried (golden) nodes. This can be done with O(log k) = O(log n) extra bits per node.

B) No such scheme exists.
Assume there is a labeling scheme l∗ for the shortest cycle between two vertices that uses at
most n

2 − 1 bits. We can use l∗ to get a labeling scheme l′ for adjacency on graphs. Given
a graph G on n vertices, we construct a graph G′ by adding a vertex s to G and connecting
all other vertices of G′ to s. Now, observe that u, v are adjacent if and only if u and v lie on
a 3-cycle in G′. Therefore, l′ can use the labels of l∗ applied to G′ and output u, v adjacent
iff l∗ outputs a 3-cycle. Moreover, the length of l′ will be at most n+1

2 − 1 = n−1
2 , but we

know from the script that for adjacency l′ > n−1
2 has to hold, a contradiction.
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7 Self-Stabilization (23 points)

Given an undirected simple graph G = (V,E), a matching is a set of edges M ⊆ E such that
no two edges in M are incident (i.e., have any common endpoints). A matching M is maximal if
there is no edge e ∈ E \M such that M ∪ {e} is a matching.

This question concerns a self-stabilizing distributed algorithm for computing a maximal match-
ing of the communication network, which is the undirected graph G = (V,E). Given a node v ∈ V,
write N(v) = {u | (v, u) ∈ E} for the neighborhood of v. The state of node v ∈ V throughout the
algorithm is denoted by Sv ∈ N(v) ∪ {⊥}, where Sv = ⊥ signifies that node v is unmatched, and
Sv = u means that v is matched to u ∈ N(v). In order for the state of the whole system (Sv)v∈V

to represent a matching, we require:

(Consistency) If Sv = u, then Su = v. This implies that M = {(v, Sv) | Sv ̸= ⊥} is a matching.

If Consistency holds, we further want that the matching is maximal:

(Maximality) There is no edge (u, v) ∈ E such that Su = Sv = ⊥.

When Consistency and Maximality hold, we say that the system is in a legitimate state.

A) [2] Consider the path graphG with vertices V = {1, 2, 3, 4} and edges E = {(1, 2), (2, 3), (3, 4)}.
There are two legitimate states for the system, write them down.

S1 S2 S3 S4

We make the following simplifying assumptions. First, the state Sv of each node v can be written
to by v and read by v ∪ N(v). Communication between adjacent nodes is implicit, by reading
the state of neighbors and updating one’s own state. Moreover, we assume that the system is
controlled by a scheduler that, in each round, chooses a node v ∈ V and executes one “step”
of v. For our algorithm, the exact step logic is exhibited in Algorithm 1 below. The scheduler
guarantees that every node v ∈ V is picked to perform a step infinitely often.

Algorithm 1 One Step of the Self-Stabilizing Maximal Matching Algorithm

Whenever chosen by the scheduler, node v executes the following code.

1: if Sv = ⊥ then
2: if ∃u ∈ N(v) such that Su = v then
3: Sv := u for an arbitrary such u. (Line 3)
4: else if ∃u ∈ N(v) such that Su = ⊥ then
5: Sv := u for an arbitrary such u. (Line 5)
6: else if SSv

̸= ⊥ and SSv
̸= v then

7: Sv := ⊥ (Line 7)

The goal of a self-stabilizing distributed algorithm is to converge back to a legitimate state
within finitely many rounds whenever a transient fault occurs (i.e., nodes having their state Sv

corrupted to arbitrary values). Convergence means that a legitimate state is eventually reached,
and afterward (Sv)v∈V no longer changes. Equivalently, one can think that the algorithm is started
from an arbitrary state and no transient faults occur, which we will assume for this question. We
will now show that our algorithm is self-stabilizing. For all parts, assume that no transient faults
occur, but the initial system state is arbitrary.

Consider a node v ∈ V with Sv ̸= ⊥. Call v finished if SSv = v. Call v good if SSv = ⊥. Call v
bad if SSv

= u for u ∈ N(Sv) \ {v}. Note that any node v with Sv ̸= ⊥ is exactly one of finished,
good or bad. Moreover, note that nodes v with Sv = ⊥ are neither finished, good, nor bad. Now,
define the quantity Q = (n+1)f + g− b, where f is the number of finished nodes, g is the number
of good nodes, and b is the number of bad nodes. As is customary, n = |V | denotes the number
of nodes in graph G.
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B) [12] The following table specifies how the quantities f, g, b and Q change whenever one of
the lines Line 3, Line 5 and Line 7 execute. Complete the entries in the empty cells by
writing in each either +c, −c (where c can be any positive constant), 0, < 0, > 0, ≤ 0, ≥ 0,
or ?, depending on how the respective quantities change.

f g b Q

Line 3

Line 5

Line 7

For instance, “+5” means “increases by 5”, while “−4” means “decreases by 4”, and ≤ 0
means “does not increase”, while “?” means “other”. Be as precise as possible in your
answer! E.g., if the most precise correct answer is −4 and you write < 0, partial marks will
be awarded, but if −3 and −4 are both possible, then < 0 earns full marks (≤ 0 does not).

C) [3] Argue why (Sv)v∈V can only change finitely many times.
Hint: use your answer to part B).

D) [6] Assume part C) and consider the state after which (Sv)v∈V no longer changes, show
that it is legitimate.
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Solutions

A) The completed table is below:

S1 S2 S3 S4

2 1 4 3

⊥ 3 2 ⊥

B) The completed table is below:

f g b Q

Line 3 2 > 0

Line 5 0 1 0 1

Line 7 0 ≥ 0 < 0 > 0

C) By part B), whenever a node changes its state, Q increases by at least one. Since Q is
bounded by (n + 1)n + n − 0 = (n + 2)n, it follows that (Sv)v∈V can only change finitely
many times.

D) Assume for a contradiction that (Sv)v∈V is not legitimate. If Consistency is violated, this
can happen in two ways: (i) Sv = u and Su = ⊥, then waking up node u would perform
Su := v (or equivalent for some v′ with the same properties) contradicting that (Sv)v∈V no
longer changes (the scheduler guarantees that waking up u would eventually happen); (ii)
Sv = u and Su = x with x ̸= v, then waking up v would similarly perform Sv := ⊥ and
give a contradiction. Finally, if (Sv)v∈V represents a matching, but Maximality is violated,
say for edge (u, v) ∈ E satisfying Su = Sv = ⊥, then waking up either of them would make
them change their state, again giving a contradiction.
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8 Stone Age (16 points)

You are given a star graph with n nodes which has an odd number of leaves. In the beginning,
every leaf-node is assigned either the color black or white.

Assume you are in the Stone Age model of the following type:

• Communication is done in synchronous rounds.

• Every node has a state and can broadcast the same message to all its neighbors or decide to
not send anything. Nodes do not have IDs.

• We use the one-two-many model. This means a node can only distinguish between receiving
0, 1 or more than 1 message of a given type .

• Each node can use randomization (but does not know n, the size of the graph).

• Initially, each leaf-node starts in either a black or white state, while the center starts in the
special center state.

• Overall, there can only be O(1) different node states and O(1) different message types.
Therefore, you cannot store non-constant numbers.

center

Figure 7: A star graph with 7 leaves (3 black and 4 white) and a center node. In
this case, the majority color would be white.

For the following tasks it is sufficient to outline the protocols, rather than explicitly defining all
state transitions. However, it should be argued why the protocol complies with the Stone Age
model.

A) [3] Design a protocol so that the center node can decide if there is at least one black and
one white node in the graph.
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B) [5] Design a protocol so that with non-zero probability exactly one black and one white node
send a message. After the protocol, both nodes should know that they were the only ones
to send a message.

C) [8] Design a protocol so that each node in the star graph knows whether there are more
black or white nodes in the graph. Moreover, all nodes should terminate at the same time.
Your protocol must be correct, but you do not have to optimize your protocol to minimize
the number of rounds (the time complexity could even be exponential).
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Solutions

A) All leafs just send their initial state as the message. If there are at least one black and
at least one white node in the graph the center node will receive either 1 or 1+ (by the
one-two-many principle) for each message type.

B) Each node sends his own initial state with probability 1
2 . With probability 1

2

n−3 1
4 · black ·

white > 0 exactly one white and one black node will send their message. The center node
knows if this was successful if he receives exactly 1 message of each type (1+ is a failure
as at least two sent a message). The center node can then acknowledge if the protocol was
successful in the next round of communication.

C) We can reuse part A) and B) as building blocks. The idea is to cancel out white and black
nodes and make them grey until one of the colors is gone and we know the majority color.
So at the beginning of each phase the center node checks if there is at least one black and
one white node in the graph. If that is not the case it announces the surviving color to all
nodes and the protocol terminates. Otherwise, we make use of part B) and repeat it until
exactly one white and one black node transmits a message. If successful, the center node
will announce that they should become gray now (from now on they will no longer actively
participate in the protocol) and a new phase starts, otherwise repeat (which might take
exponentially many rounds).
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