
Distributed
 Computing

FS 2025 Prof. R. Wattenhofer

Principles of Distributed Computing

Sample Solution to Exercise 8

1 Sorting Networks

We will assume that a comparator outputs the smaller value on the top and the larger value on
the bottom wire.

a) Wrong. Consider the following input, from top to bottom: I = (0, 0, 1, 0, 0, 0) which produces
the output O = (0, 0, 0, 1, 0, 0). This is obviously not sorted.

b) Correct. A comparator leaves a sorted sequence intact.

c) Correct. A correct sorting network needs to be able to sort any input sequence, and a
comparator added to the front merely changes the input for the sorting network.

d) Correct. Assume otherwise: There is a correct sorting network S such that there is no
comparator between horizontal lines i and i + 1. Consider the input sequence I consisting
of 0’s, then a 1 at the ith spot, a 0 at spot i+1, and the rest 1s. Now every comparator will
leave I intact, because I is already sorted except for the horizontal lines i and i + 1. But
since there is no horizontal line, the output to S is the same as the input, O = I, which is
not sorted. Thus, no such S exists.

e) Wrong. Consider the following network with three horizontal lines depicted in Figure 1. It
does not sort I = (1, 1, 0) because the 0 does not have a chance to get to the top horizontal
line, so O = (1, 0, 1).

Figure 1: A network with a comparator between each pair of horizontal lines.

f) Wrong. This can be seen in two ways. The first is by a simple counter example as in Figure 2.
If we leave out the marked comparator, then we have a correct sorting network (easy to see
or otherwise check all 0-1 sequences). Adding it gives us the same problem as the network
in Figure 1 above.

Figure 2: A network with an additional comparator added inside.

Another indication for why this statement is wrong comes from considering Batcher’s Sorting
Network from the lecture. It relies on creating and sorting bitonic sequences. A comparator
can easily destroy a bitonic sequence, such as (0, 1, 1, 0) into (0, 1, 0, 1).

g) Wrong. Consider the sorting network in Figure 3. We can verify that it sorts any input
correctly. If we use the network backwards, then the input (1,0,0) is not sorted correctly.

Figure 3: A network that does not sort correctly when fed backwards.

2 Alternative 0-1 Sorting Lemma proof

a) Consider x ≤ y and suppose we apply f(x) and f(y) to the inputs of the comparator (the
exact order does not matter). Since f is monotonically increasing, x ≤ y implies f(x) ≤ f(y).
The operation of the comparator thus yields the value min(f(x), f(y)) = f(x) = f(min(x, y))
on the upper output and the value max(f(x), f(y)) = f(y) = f(max(x, y)) on the lower
output. The argument is similar for y ≤ x.

b) We use induction on the depth of each wire in a general comparison network to prove the
following statement: if a wire has the value ai when the input sequence a is applied to the
network, then it has the value f(ai) when the input sequence F (a) is applied. This holds
also for the output wires thus it proves the statement. For the basis, consider a wire at depth
0, that is, an input wire ai. Obviously, when F is applied before the network, the input wire
has the value f(ai). For the inductive step, consider a wire at depth d, where d ≥ 1. The
wire is the output of a comparator at depth d, and the input wires to this comparator are at
a depth strictly less than d. By the inductive hypothesis, if the input wires to the comparator
have values ai and aj when the input sequence a is applied, then they have f(ai) and f(aj)
when the input sequence F (a) is applied. From the first question, we know that the output
wires of this comparator then have f(min(ai, aj)) and f(max(ai, aj)), which concludes the
proof.

c) We provide a slightly different proof of the 0-1 Sorting Lemma than the one given in the
lecture notes. By contradiction, suppose the comparison network sorts all 0-1 sequences,
but there exists a sequence of arbitrary numbers that the network does not sort correctly.
Let this sequence be a = (a1, a2, · · · , an), containing ai and aj such that ai < aj while
the network’s output sequence places aj before ai. We define the following monotonically
increasing function:

f(x) =

{
0, x ≤ aj
1, x > aj

Since the network’s output sequence places aj before ai when a = (a1, a2, · · · , an) is the
input, it follows from the previous question that it places also f(ai) before f(aj) in the output
sequence when (f(a1), f(a2), · · · , f(an)) is input. However, f(aj) = 1 and f(ai) = 0, and
thus the comparison network fails to sort the 0-1 sequence (f(a1), f(a2), ..., f(an)) correctly.
Contradiction.

2

3 Recursive Sorting Networks

a) Figure 4 displays a solution with n− 1 comparators.

Wire index

0

1

n− 3

n− 2

n− 1

Sorting
network of
width n − 1

Figure 4: Recursive sorting network.

To prove the correctness of the solution, it is easy to see that the last wire’s input will move
up incrementally in the sorted list of size n − 1 (output of the black-box sorting network)
until it is compared to a value that is strictly smaller. All the values that are strictly larger
will move down one wire and keep their relative order. All the value that are strictly lower
will not be affected by the remaining comparators (as they are already sorted). The resulting
list is therefore sorted correctly. This solution is not unique. Indeed, the network in Figure
5 is another possible solution.

Wire index

0

1

n− 3

n− 2

n− 1

Sorting
network of
width n − 1

Figure 5: Another valid solution.

b) By contradiction, assume that there exists a solution with k < n− 1 comparators. Consider
the graph where each of the n output wires is a vertex and each of the k comparators is an
edge. We know from a previous lecture that this graph has at least 2 connected components
(since any connected graph of n vertices has at least n − 1 > k edges). Because there are
at least two connected components, there exists a wire j that is disconnected from the last
wire. Consider any input sequence where the j-th smallest value is unique and enters the
network on the last wire (i.e., bypasses the black-box sorting network). This value will be
misplaced as it will never reach the j-th output wire, and thus the network cannot sort
all input sequences. A contradiction. Note that a similar argument holds if the black-box
sorting network is placed on the bottom n − 1 wires, or if the comparators are inverted
(sorting in descending order).

c) It can be shown that Figure 4 is the only possible extension of a sorting network of width
n − 1 that only uses n − 1 comparators of width 1 (if you have a different solution, please
check carefully). Assuming that the black-box sorting network of width n − 1 in Figure 4
is built recursively, starting with a single comparator linking wires 0 and 1, the resulting

3

algorithm is non-other than a distributed version of insertion sort ! Indeed, starting with a
single value, the algorithm maintains a sorted sub-list, inserting each new value at its correct
(temporary) position before processing the value on the next wire.

d) Figure 6 displays a solution with n − 1 comparators. It is also not unique (the mirror of
Figure 5 is another valid solution). To see that it’s correct, note that the maximum value of

Wire index

0

1

n− 3

n− 2

n− 1

Sorting
network of
width n − 1

Figure 6: Recursive sorting network (inverted).

the input wires (or one of them if not unique) will be redirected to the last wire, regardless
of where it enters the network. The black-box sorting network will output a sorted list
with all the remaining values, which concludes the proof. With an argument similar to the
one above, we prove that we need at least n − 1 comparators by contradiction. Assuming
that there exists a solution with strictly fewer comparators, we build a similar disconnected
graph, and we construct an input sequence where the maximum value is unique and enters
the networks on a wire that is disconnected to the last wire. This value will therefore never
be sorted correctly. A contradiction. Finally, if the sorting network is build recursively,
starting with a single comparator of width 1, the resulting algorithm is a distributed version
of bubble sort ! Indeed, the algorithm iteratively sends the maximum value to the bottom
wire, and then leaves that wire untouched while processing the remaining wires.

4

