Distributed Algorithms: A Simple Example

How Many Nodes in Network?

How Many Nodes in Network?

With a simple flooding/echo process, a network can find the number of nodes in time $O(D)$, where D is the diameter (size) of the network.

Diameter (Size) of Network?

- Distance between two nodes $=$ Number of hops of shortest path

Diameter (Size) of Network?

- Distance between two nodes $=$ Number of hops of shortest path

Diameter (Size) of Network?

- Distance between two nodes = Number of hops of shortest path
- Diameter of network = Maximum distance, between any two nodes

Networks Cannot Compute Their Diameter in Sublinear Time!

(even if diameter is just a small constant)

Networks Cannot Compute Their Diameter in Sublinear Time!

(even if diameter is just a small constant)

Networks Cannot Compute Their Diameter in Sublinear Time!

(even if diameter is just a small constant)

Networks Cannot Compute Their Diameter in Sublinear Time!

(even if diameter is just a small constant)

Networks Cannot Compute Their Diameter in Sublinear Time!

(even if diameter is just a small constant)

Networks Cannot Compute Their Diameter in Sublinear Time!

(even if diameter is just a small constant)

Networks Cannot Compute Their Diameter in Sublinear Time!

(even if diameter is just a small constant)

Networks Cannot Compute Their Diameter in Sublinear Time!

(even if diameter is just a small constant)

Networks Cannot Compute Their Diameter in Sublinear Time!

(even if diameter is just a small constant)

Pair of nodes not connected on both sides? We have $\Theta\left(n^{2}\right)$ information that has to be transmitted over $O(n)$ edges, which takes $\Omega(n)$ time!
[Frischknecht, Holzer, W, 2012]

