Distributed Algorithms: A Simple Example

With a simple flooding/echo process, a network can find the number of nodes in time O(D), where D is the diameter (size) of the network.

Diameter (Size) of Network?

• **Distance** between two nodes = Number of hops of shortest path

Diameter (Size) of Network?

• **Distance** between two nodes = Number of hops of shortest path

Diameter (Size) of Network?

- **Distance** between two nodes = Number of hops of shortest path
- **Diameter** of network = Maximum distance, between any two nodes

(even if diameter is just a small constant)

Pair of nodes not connected on both sides? We have $\Theta(n^2)$ information that has to be transmitted over O(n) edges, which takes $\Omega(n)$ time!

[Frischknecht, Holzer, W, 2012]