
Stefan Schmid @ T-Labs, 2011

Network Algorithms

Tree Algorithms

Stefan Schmid @ T-Labs, 2011

Broadcast

Why (spanning) trees?

E.g., efficient

broadcast,

aggregation, routing,

algebraic gossip...

Important trees?

E.g., breadth-first trees (BFS), minimal

spanning trees (MST), ...

Stefan Schmid @ T-Labs Berlin, 2013/4 2

Shortest path spanning tree (unweighted)

from given source.

BFS and MST

3 Stefan Schmid @ T-Labs Berlin, 2013/4

In this lecture:

BFS

Spanning tree of minimal weight.

MST

Cycle-free subgraph spanning all nodes.

Spanning Tree

Stefan Schmid @ T-Labs, 2011

Broadcast

Stefan Schmid @ T-Labs Berlin, 2013/4 4

Definitions

Tree?

Spanning tree?

Stefan Schmid @ T-Labs, 2011

Broadcast

Stefan Schmid @ T-Labs Berlin, 2013/4 5

Definitions

Tree? Yes

Spanning tree? No

Stefan Schmid @ T-Labs, 2011

Broadcast

Stefan Schmid @ T-Labs Berlin, 2013/4 6

Definitions

Tree?

Spanning tree?

Stefan Schmid @ T-Labs, 2011

Broadcast

Stefan Schmid @ T-Labs Berlin, 2013/4 7

Definitions

Tree? No

Spanning tree?

No, but spanning subgraph!

Stefan Schmid @ T-Labs, 2011

Broadcast

Stefan Schmid @ T-Labs Berlin, 2013/4 8

Definitions

BFS from v?

v

Stefan Schmid @ T-Labs, 2011

Broadcast

Stefan Schmid @ T-Labs Berlin, 2013/4 9

Definitions

BFS from v? No.

v

Stefan Schmid @ T-Labs, 2011

Broadcast

Stefan Schmid @ T-Labs Berlin, 2013/4 10

Definitions

BFS from v?

v v

Stefan Schmid @ T-Labs, 2011

Broadcast

Stefan Schmid @ T-Labs Berlin, 2013/4 11

Definitions

BFS from v? Yes.

v v

Stefan Schmid @ T-Labs, 2011

Broadcast

Stefan Schmid @ T-Labs Berlin, 2013/4 12

Definitions

MST?

v

1
1

2

5

1
3

1

2
2

1

5
1

1

Stefan Schmid @ T-Labs, 2011

Broadcast

Stefan Schmid @ T-Labs Berlin, 2013/4 13

Definitions

MST? No.

Note: BFS can also be defined

wrt weights (shortest path

spanning tree)!

v

1
1

2

5

1
3

1

2
2

1

5
1

1

Broadcast

Lower bound for

time and messages?

14 Stefan Schmid @ T-Labs Berlin, 2013/4

Task: Send one

message to all nodes.

Recall: Local Algorithm

... compute.

... receive...

Send...

15 Stefan Schmid @ T-Labs Berlin, 2013/4

Broadcast

Broadcast
Message from one source to all other nodes.

Relationship

between R and D?

Distance, Radius, Diameter

Distance between two nodes is # hops.

Radius of a node is max distance to any other node.

Radius of graph is minimum radius of any node.

Diameter of graph is max distance between any two nodes.

16 Stefan Schmid @ T-Labs Berlin, 2013/4

Examples....

Lemma (R, D)
R · D · 2R

Where R=D?

Where 2R=D? Complete graph:

17 Stefan Schmid @ T-Labs Berlin, 2013/4

Kevin Bacon, Paul Erdös,

People like to find nodes of small radius in a graph! E.g., movie

collaboration (link = act in same movie) or science (link = have

paper together)!

18

Lower Bound for Broadcast?

Each node must receive message: so at least n-1.

Message complexity?

The radius of the source: each node needs to receive message.

Time complexity?

How to achieve broadcast with n-1

messages and radius time?

Pre-computed breadth-first spanning tree...

19 Stefan Schmid @ T-Labs Berlin, 2013/4

Stefan Schmid @ T-Labs, 2011

Broadcast in Clean Networks?

Clean Graph
Nodes do not know topology.

Lower bound for clean networks?

Number of edges: if not every edge is tried, one

might miss an entire subgraph!

How to do broadcast in clean network?

1. Source sends message to all neighbors.

2. Each other node u when receiving the message for the first

time from node v (called u‘s parent), sends it to all

(other) neighbors.

3. Later receptions are discarded.

Note that parent relationship defines a tree!

In synchronous system, the tree is a breadth-first search spanning tree!

Flooding

Convergecast

Convergecast

Opposite of broadcast: all nodes send

message to a given node!

Purpose?

How to compute

minimum efficiently?

E.g., for aggregation!

E.g., find maxID!

E.g., compute average!

E.g., aggregate ACKs!

21 Stefan Schmid @ T-Labs Berlin, 2013/4

Aggregation

22 Stefan Schmid @ T-Labs Berlin, 2013/4

Echo Algorithm

0. Initiated by the leaves (e.g., of tree computed by

flooding algo)

1. Leave sends message to its parent

2. If inner node has received a message from each

child, it forwards message to parent

Echo Algorithm

Application: convergecast to determine

termination. How?

Have sub-trees completed?

Complexities?

Echo on tree, but complexity of flooding to build tree...

23 Stefan Schmid @ T-Labs Berlin, 2013/4

BFS Tree Construction

How to compute a breadth-first tree?

Flooding gives parent-relationship, but...

... breadth-first only if synchronous.

How to do it in asynchronous distributed system?

Dijkstra (`link state’) or Bellman-Ford (`distance vector’) style

 Remember the ideas?

 Bellman-Ford: BGP in the Internet!

Dijkstra: grow on the „border“

Bellman-Ford: distances (distance vector)...

24 Stefan Schmid @ T-Labs Berlin, 2013/4

Asynchronous BFS Tree

Divide execution into phases. In phase p, nodes with distance p to the root

are detected. Let Tp be the tree of phase p. T1 is the root plus all direct

neighbors.

Repeat (until no new nodes discovered):

1. Root starts phase p by broadcasting „start p“ within Tp

2. A leaf u of Tp (= node discovered only in last phase) sends „join p+1“ to

all quiet neighbors v (u has not talked to v yet)

3. Node v hearing „join“ for first time sends back „ACK“: it becomes leave

of tree Tp+1; otherwise v replied „NACK“ (needed since async!)

4. The leaves of Tp collect all answers and start Echo Algorithm to the root

5. Root initates next phase

Dijkstra Style

 Dijkstra: find next closest node („on border“) to the root

25 Stefan Schmid @ T-Labs Berlin, 2013/4

Asynchronous BFS Tree: Idea

Phase 1 Phase 2

...

Wait until all

next hops explored...

Wait until all

next hops explored...

26 Stefan Schmid @ T-Labs Berlin, 2013/4

join 3!

start 2!
root root

Phase 3

Wait until all

next hops explored...

join 4!

start 3!
root

Asynchronous BFS Tree

root

join

join

27 Stefan Schmid @ T-Labs Berlin, 2013/4

Asynchronous BFS Tree

root

NAK

ACK

28 Stefan Schmid @ T-Labs Berlin, 2013/4

Asynchronous BFS Tree

root

29 Stefan Schmid @ T-Labs Berlin, 2013/4

Analysis

Time Complexity?

Message Complexity?

30 Stefan Schmid @ T-Labs Berlin, 2013/4

Asynchronous BFS Tree: Idea

...

Reuse shortest path

infrastructure here!

Time O(D) per phase,

O(D)=O(n) messages.

31 Stefan Schmid @ T-Labs Berlin, 2013/4

join 3!

start 2! root

At most two messages

per edge overall: one «join»

and one «ACK/NAK»: O(m)

Analysis

Time Complexity?

O(D2) where D is diameter of graph...

... as convergecast costs O(D), and we have D phases.

Message Complexity?

O(m+nD) where m is number of edges, n is number of

nodes.

Because: Convergecast has cost O(n), one per link in

tree, so over all phases O(nD). On each edge, there are

at most two join messages (both directions), and there is

at most an ACK/NAK answer, so +m...
Alternative algo?

32 Stefan Schmid @ T-Labs Berlin, 2013/4

Dijkstra Algorithm

Time Complexity?

O(D2) where D is diameter of graph...

... as convergecast costs O(D), and we have D phases.

33 Stefan Schmid @ T-Labs Berlin, 2013/4

Can we do it faster?! Without «back and forth»?

Asynchronous BFS Tree

Each node u stores du, the distance from u to the root.

Initially, droot=0 and all other distances are 1. Root

starts algo by sending „1“ to all neighbors.

1. If a node u receives message „y“ with y<du

 du := y

 send „y+1“ to all other neighbors

Bellman-Ford Style

 Bellman-Ford: compute shortest distances by flooding an all paths;

 best predecessor = parent in tree

34 Stefan Schmid @ T-Labs Berlin, 2013/4

Asynchronous BFS Tree

root

35 Stefan Schmid @ T-Labs Berlin, 2013/4

Initially:

d=

d=

d=

d=

d=

1 1

1

1

1

Asynchronous BFS Tree

root

„3“

36 Stefan Schmid @ T-Labs Berlin, 2013/4

„1“

„2“

„4“

Fast transmission:

„4“

d=2

d=1

d=3

d=4

d=4

Asynchronous BFS Tree

root

„2“

37 Stefan Schmid @ T-Labs Berlin, 2013/4

„1“

Slow transmission:

d=2

d=1

d=2

d=3

d=1

„3“ „3“

Analysis

Time Complexity?

O(D) where D is diameter of graph. 

By induction: By time d, node at distance d got „d“.

Clearly true for d=0 and d=1.

A node at distance d has neighbor at distance d-1 that got „d-1“ on time by

induction hypothesis. It will send „d“ in next time slot...

Message Complexity?

O(mn) where m is number of

edges, n is number of nodes. 

Because: A node can reduce its distance at most n-1 times

(recall: asynchronous!). Each of these times it sends a message

to all its neighbors. Example?

38 Stefan Schmid @ T-Labs Berlin, 2013/4

Bellman-Ford with Many Messages

39 Stefan Schmid @ T-Labs Berlin, 2013/4

„1“

root

„2“

„3“

„4“ „5“

d=1

d=3

d=2

d=4

d=5

Bellman-Ford with Many Messages

40 Stefan Schmid @ T-Labs Berlin, 2013/4

„1“
root

„2“

„3“ „4“

d=1

d=2

d=1

d=3

d=4

Bellman-Ford with Many Messages

41 Stefan Schmid @ T-Labs Berlin, 2013/4

„1“

root

„2“ „3“

d=1

d=1

d=1

d=2

d=3

Discussion

Dijkstra has better message complexity, Bellman-Ford

better time complexity.

Can we do better?

Yes, but not in this course... 

Which algorithm is better?

Remark: Asynchronous algorithms can be made

sychronous... (e.g., by central controller or better:

local synchronizers)

42 Stefan Schmid @ T-Labs Berlin, 2013/4

Stefan Schmid @ T-Labs, 2011

MST Construction

Another spanning tree? Why?

For weighted graphs: tree of minimal costs...

useful building block (approximation algorithms etc.)!

MST

Tree with edges of minimal total weight.

Assume all links have different weights. So...

MST is unique.

How to compute in a distributed manner

(synchronously...)?! How to do it classically?

Kruskal (lightest non-cycle edge), Prim (lightest outward edge), ...

Guess: Faster or slower than BFS tree?

Idea

Blue Edge

Let T be a MST and T‘ a subgraph of T.
Edge e=(u,v) is outgoing edge if u 2 T‘ but v is not.

The outgoing edge of minimal weight is called

blue edge.

root

10

not part of

spanning tree T

2

blue edge of T‘

definitely belongs to MST

T‘

This is like

Dijkstra....

44

7

3

Idea

Lemma
If T is the MST and T‘ a subgraph, then the blue

edge of T‘ is also part of T.

Proof idea?

By contradiction! Suppose there is an other edge

e‘ connecting T‘ to the rest of T. If we add the

blue edge e and remove e‘ from the resulting

cycle, we still have a spanning tree, but with

lower cost...

T‘

T:
e

e‘

So what?!

45

Gallager-Humblet-Spira

Ideas:

 - Grow MST component by learning blue edge!

 - But do many fragments in parallel!

 - Each component managed by its root (the «leader»)

46

Distributed Kruskal

Idea: Grow components by learning blue edge!

But do many fragments in parallel!

Initially, each node is root of its own fragment.

Repeat (until all nodes in same fragment)

 1. nodes learn fragment IDs of neighbors

 2. root of fragment finds blue edge (u,v) by convergecast

 3. root sends message to u (inverting parent-child)

 4. if v also sent a merge request over (u,v), u or v becomes new

root depending on smaller ID (make trees directed)

 5. new root informs fragment about new root (convergecast on

 „MST“ of fragment): new fragment ID

Gallager-Humblet-Spira

47

Idea: Merge Components

blue for T1

T1

T2

T3

blue for T2 and T3

1

3

6

5 8

The blue edge of each fragment can

be taken for sure: cycles not possible!

(Blue edge lemma!)

So we can do it in parallel!

48 Stefan Schmid @ T-Labs Berlin, 2013/4

Idea: Components Grow Quickly

Phase 1

Phase 2

Phase 3

Minimal fragment size

in round i?

~ 2i...

49 Stefan Schmid @ T-Labs Berlin, 2013/4

Total number

of phases?

Idea: Components Grow Quickly

Phase 1

Phase 2

Phase 3

Minimal fragment size

in round i?

~ 2i...

50 Stefan Schmid @ T-Labs Berlin, 2013/4

Total number

of phases?

O(log n) phases: The size of the

smallest fragment at least

doubles in each phase, so it‘s

logarithmic.

Idea: Agree on a New Root («Leader»)

blue edge of T‘ T‘

7
10

3

u

v

root

1

T‘‘

root

root
T‘‘‘

blue edge

of T‘‘

and T‘‘‘

51 Stefan Schmid @ T-Labs Berlin, 2013/4

Who becomes overall leader of T and T‘?

Make trees directed...

Idea: Agree on a New Root («Leader»)

blue edge of T‘ T‘

7
10

3

u

v

root

1

T‘‘

All trees rooted! How to merge on blue edge (u,v)?

1. Invert path from root to u (u is temporary root)

2. If u sent merge request over blue edge, v becomes root; if u and v sent

message over blue edge: point blue edge to smaller ID

root

root
T‘‘‘

blue edge

of T‘‘

and T‘‘‘

52 Stefan Schmid @ T-Labs Berlin, 2013/4

Idea: Agree on a New Root («Leader»)

blue edge of T‘:

direct to T‘‘
T‘

7
10

3

u

v

1

T‘‘

New directed tree with new root! 

T‘‘‘‘ connects somewhere else...

root

blue edge

of T‘‘

and T‘‘‘:

tie

break

53 Stefan Schmid @ T-Labs Berlin, 2013/4

Idea: Agree on a New Root («Leader»)

blue edge of T‘:

direct to T‘‘
T‘

7
10

3

u

v

1

T‘‘

Merged fragments!

root

blue edge

of T‘‘

and T‘‘‘:

tie

break

...

54 Stefan Schmid @ T-Labs Berlin, 2013/4

Analysis

Time Complexity?

Each phase mainly consists of two convergecasts, so O(D) time and O(n)

messages per phase?

Message Complexity?

55 Stefan Schmid @ T-Labs Berlin, 2013/4

Analysis

Careful:

- Convergecast on MST, not on BFS tree

- MST may be larger than diameter of graph!

O(n) time for convergecast, and not O(1)...

56 Stefan Schmid @ T-Labs Berlin, 2013/4

Stefan Schmid @ T-Labs, 2011

Analysis

Time Complexity?

O(n log n) where n is graph size.

Message Complexity?

O(m log n) where m is number of edges: at most O(1)

messages on each edge in a phase.

Yes, we can do better. 

57 Stefan Schmid @ T-Labs Berlin, 2013/4

Really needed? Each phase mainly consists of two convergecasts, so O(n)

time and O(n) messages. In order to learn fragment IDs of neighbors, O(m)

messages are needed (in beginning of each phase: constant time).

The size of the smallest fragment at least doubles in each phase, so it‘s

logarithmic.

Discussion

58 Stefan Schmid @ T-Labs Berlin, 2013/4

- GHS solves leader election in general graphs! How?

 Last surviving root...

- Some details left out, e.g.:

 if fragment larger than other, may need to wait to find

 out whether neighbor also wants to merge over this

 edge: could do in phases (like Dijkstra BFS)

End of lecture

Literature for further reading:

- Peleg‘s book

Stefan Schmid @ T-Labs Berlin, 2013/4

