
Stefan Schmid @ T-Labs, 2011

Network Algorithms

Mutual Exclusion

in Networks

Shared Objects

Common variable or datastructure:

Needs to be accessed, but not concurrently! How?

Shared Objects

Idea: store at central location, e.g., root of spanning tree

Access: send message to root, root processes request,

result sent back down the tree.

Shared Objects

Idea: store at central location, e.g., root of spanning tree

Access: send message to root, root processes request,

result sent back down the tree.

 Analysis?

Shared Objects

Idea: store at central location, e.g., root of spanning tree

Access: send message to root, root processes request,

result sent back down the tree.

 Could improve many things:

- Don’t go via Spanning Tree, but route directly.

- If same node v needs object again and again, it

would be better if v can have the object!

Home-Based Solution

Idea that object has «home base»:

 - processes get lock from there

 - then retrieve object and process locally!

Similar to Mobile IP!

1. 2. 3.

Home-Based Solution

Idea that object has «home base»:

 - processes get lock from there

 - then retrieve object and process locally!

Similar to Mobile IP!

1. 2. 3.

Problem?

Home-Based Solution

Idea that object has «home base»:

 - processes get lock from there

 - then retrieve object and process locally!

Similar to Mobile IP!

1. 2. 3.

Problem?

Triangle Routing if accessing

nodes are close but root is far.

The Arrow Protocol

Idea: Make accessor responsible for object, i.e. the new «root».

How can this be achieved?

9 Stefan Schmid @ T-Labs Berlin, 2013/4

The Arrow Protocol

Idea: Make accessor responsible for object, i.e. the new «root».

(1) Make tree directed

now

I want

access!

10 Stefan Schmid @ T-Labs Berlin, 2013/4

The Arrow Protocol

Idea: Make accessor responsible for object, i.e. the new «root».

(1) Make tree directed

now

I want

access!

find()

11 Stefan Schmid @ T-Labs Berlin, 2013/4

The Arrow Protocol

Idea: Make accessor responsible for object, i.e. the new «root».

(1) Make tree directed

(2) Give object to accessor, new root!

now

12 Stefan Schmid @ T-Labs Berlin, 2013/4

The Arrow Protocol

Idea: Make accessor responsible for object, i.e. the new «root».

(1) Make tree directed

(2) Give object to accessor, new root!

(3) Invert pointers along the find path in spanning tree!

now

13 Stefan Schmid @ T-Labs Berlin, 2013/4

Arrow: What about concurrency?

14 Stefan Schmid @ T-Labs Berlin, 2013/4

Arrow: What about concurrency?

now

I want

access!

15 Stefan Schmid @ T-Labs Berlin, 2013/4

Arrow: What about concurrency?

now

wait()

still in use!

16 Stefan Schmid @ T-Labs Berlin, 2013/4

Arrow: What about concurrency?

now

wait()
I want

access!

still in use!

17 Stefan Schmid @ T-Labs Berlin, 2013/4

Arrow: What about concurrency?

now

wait()

succ=v wait()

still in use!

u v

Perfect: tree automatically rooted at node v now! Distributed queue.

Node u can just send it directly to v («out-of-band») when done.

19

Arrow

invert edge!

wait myself?

Analysis

20

Arrow is correct: find() terminates with message and time

complexity D, where D is the diameter of the spanning tree.

Completely asynchronous and concurrent environments!

20 Stefan Schmid @ T-Labs Berlin, 2013/4

Proof.

Arrow

- Each edge {u,v} in the spanning tree is in one of four states:
(A) u points to v, no message on the edge, v does not point to u

(B) Message on the move from u to v (no pointer along edge)

(C) v points to u, no message on edge, u does not point to v

(D) Message on the move from v to u (no pointer along edge)

- So message will only travel on static tree!

- And can never traverse an edge twice (in opposite direction).

QED

End of Lecture

Stefan Schmid @ T-Labs Berlin, 2013/4 21

