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Introduction – ML on the Edge

Efficient ML:
• Mainly researched for inference

• Extract information from the data where they are collected
• Less communication
• Lower energy requirements
• Lower latency

Already commonly used:
• Face recognition
• Image enhancement
• Language translation
• Fitness algorithms
• Etc…
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Introduction – ML on the Edge

[1] Q8BERT: Quantized 8Bit BERT

Popular techniques:
• Quantization

• low-precision representation
• Pruning

• ”Cut” less impactful weights
• Distillation

• Student/teacher networks

Quantization:
• Extremely widespread
• Works well on complex networks (Bert[1])

• … On inference
• Up to binary networks (1bit weights)

Quadratic dependency throughput-precision

Does quantization work 
during training?

Can we use it only for inferece?
• Models growing in size and complexity
• Training ~2/3 of GEMM (General matrix multiply)
• Lower precision saves memory and training time
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Introduction – ML on the Edge

Answer:

• FP16 (floating point 16bit) widely used for training
• FP8 shown in previous research
• FP4 exposes a lot of challenges

It depends.

~20% acc. 
difference

Main issues:
• Quantization error
• Precision
• Dynamic range
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Banner et. Al: Scalable methods for 8-bit training of neural networks. 
Miyashita et. Al: Convolutional neural networks using logarithmic data representation
Wang et. Al: Training deep neural networks with 8-bit floating point numbers.
Sun et. Al: Hybrid 8-bit floating point (hfp8) training and inference for deep neural networks.
Micikevicius et. Al: Mixed precision training
Esser et. Al: Learned step size quantization.

Related work

• Banner et. Al: 8 bit fixed point training
• Limited dynamic range
• Only a subset of 8bit ops in backward

• Miyashita et. Al: Log. 5-bit representation
• Fixed precision, higher dynamic range
• Limited performance on larger models

• Wang et. Al, Sun et. Al: float 8 bit, <1% acc
• Hybrid fp8 for weights, acts and grads

• Selective precision

• Micikevicius et. Al, Esser et. Al: 
• Automatic Loss Scaling (APEX)
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Contributions

1. New radix-4 FP4 format: higher dynamic range for gradients

2. Per-layer trainable gradient scaling technique (GradScale)

3. Two phase quantisation technique to minimize quant. Error

4. A deeped understanding of quant. Bias and interplay with BN

5. Hybrid approach with fp4 and fp8

6. Extensive testing on a series of models and tasks
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Radix-4 FP4 Format

• Limited dynamic range major issue for low-precision 
training

• [sign,exponent,mantissa] = [1,3,0]

• logarithmic format (4n) that spans a range of ±43 (=±26)
• Higher range, lower precision

• Mid-point: ((4n + 4n−1 )/2 = 4n/1.6)

• Easy and fast algorithm for conversion:
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GradScale: Trainable Layer-wise Gradient Scaling

• FP16 and FP8 already use global gradient 
scaling

• Loss is scaled -> Applied to all 
gradients

• Authors provide per-layer gradient scaling
• Scaling as a learnable parameter
• Increase or decrease scaling based on 

unfl/ovfl
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Two-Phase Rounding

• Introduce FP4 with even and odd vaulus:
• 2even and 2odd

• Intuition: same gradient used twice:
• dL/dx = dL/dy.WT

• dL/dW = x.dL/dy
Ø Look at the same gradient from ”two sides”

Ø Different quantisation for dL/dy retain 
more information

• Errors from two phases should cancel each 
other
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Engine summary

• Requires a mixed-precision INT4-
FP4 GEMM engine!

• Authors claim MAC engines with 
INT4×FP4 capabilities are >7× more 
area and power efficient 
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Internal covariate shift

• Looking at expected value of the gradient:

• Input activations are usually non negative (ReLU)
• qerror tends to be non-zero
Ø Introduction of non-zero bias

• Propagated to weights and activation
• Leads to Internal Covariate Shift (ICS)

• Santurkar et. al. shows that batch normalisation 
adjusts mean and std dev to account for ICS
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Internal covariate shift

• Interpolated 1D space of all parameters 
(including µB & σB)

• Updating µB & σB at each iteration leads to a 
very smooth loss landscape

• TPR helps with smoothing out curve



13

Selective FP8

• Higher grads variance is of 1x1 conv
• When conv. removed from graph 

variance restored

• Selective use of FP8 for Conv. 1x1
• Accuracy increase

• Bottom (all) 1x1 layers to FP8 accuracy 
improves by 1.0% (1.5%)

• Still 5.2× (4.0×) training acceleration
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Results – CIFAR10

• Shallower models without 1x1 
convolutional layers achieve < ~0.5%, 
deeper models slightly > 1% accuracy 
losses

• With FP8 training accuracy loss ~0.5%
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Results - ImageNet

• ImageNet lower performance because of 
less parameter redundancy

• full TPR FP4 ~1% accuracy loss AlexNet
and ResNet18

• Larger models 2.5% accuracy loss on 
larger models (full FP4)

• Can be recovered to ~1% if FP8 used for 
1x1 conv



16

Results - NLP

• PTB dataset: negligible loss in perplexity
• ~2% loss in BLEU for transformer-based 

Machine Translation En-De task
• Word error rate on SWB300 < 0.5% 

*FP8 for weight gradients
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Performance on Hardware

• Derived from research on hardware 
accelerator design

• Consider 4-way INT4×FP4 MAC Unit
• Consumes 55% area wrt FP16
• Provides 4x the throughput
Ø Compute density improvement of 

7.3x
• Argue that FP8 computation would be 

small number
• But still would have to be 

accelerated…
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Conclusions

• Successful 4-bit training on various deep learning benchmarks with minimal accuracy losses.

• Introduced Radix-4 FP4 format for quantized training

• Introduced two-Phase rounding (TPR) to cope with ICS

• Introduced Gradient Scaling (GradScale) techniques maximizing range and representation for 

gradients per layer

• Analysis of key factors impacting accuracy in 4-bit training systems

• Provided figures of efficiency gains on specialised hardware

•
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Future work

• Bridge the accuracy gap even further (especially on big deep models)

• Evaluate the system on even more tasks and dataset

• Evaluate the system on a real FP4 platform
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Limitations

• Methodology still has to resort to FP8 training for non-negligible 

accuracies losses on more complex models

• Optimistic performance gains (often memory bottlenecks/data 

movement)

• Lack of hardware implementation and real world figures
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