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12 Graph Algorithms

12.1 Independent Set

Definition 12.1 (Independent Set) We are given a graph � � �����. An independent set is a subset
of nodes � � � , where no two nodes in � are adjacent. An independent set is maximal if no node
can be added without violating independence. An independent set of maximum cardinality is called
maximum.

Remarks:

� In this section we concentrate on the maximal independent set (MIS) problem.

� Computing a MIS sequentially is easy. Scan the nodes in arbitrary order. If a node � does not
violate independence, add � to the MIS. If the node � does violate independence, discard �.

� Computing a maximum independent set is hard. It is the same problem as maximum clique on
the complementary graph. Both problems are NP-hard, and in fact not approximable within
������.

Algorithm 12.2 (Slow MIS) Nodes have unique identifiers. A node with identifier � must join the
MIS if all neighbors with larger identifiers have decided not to join.

Remark:

� Not surprisingly the slow algorithm is not better than the sequential algorithm in the worst case,
because there might be one single point of activity at any time. Specifically:

Theorem 12.3 (Analysis) Algorithm 12.2 features time complexity ���� and message complexity
������.

Remarks:

� There is a relation between independent sets and node coloring (Chapter 1), since each color
class is an independent set, however not a MIS. Starting with a good coloring, one can easily
derive a MIS algorithm by first choosing all nodes of color 1, and then (for each color in parallel
since there is no conflict) adding as many nodes as possible. Thus the following corollary holds:

Corollary 12.4 Given a coloring algorithm that needs 	 colors and runs in time 
 , we can construct
a MIS in time 	 � 
 .

Remarks:

� Using Theorem 1.23 and Corollary 1.24 we get a distributed deterministic MIS algorithm for
trees and for bounded degree graphs with time complexity ������ ��.
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� With a lower bound argument one can show that the deterministic MIS algorithm for rings is
asymptotically optimal.

� Using the Remark of Corollary 1.24 we get a distributed deterministic MIS algorithm for ar-
bitrary graphs with time complexity ��� � �����. Is there a faster (if necessary: randomized)
algorithm? Yes! See below. (Note that this algorithm is not identical with the algorithm in
Peleg’s book.)

Algorithm 12.5 (Fast MIS) The algorithm operates in synchronous rounds, grouped into phases. A
single phase is as follows:

1) Node � marks itself with probability �
�����

, where ���� is the current degree of �.

2) If no higher degree neighbor of � is also marked, node � joins the MIS. If a higher degree
neighbor of � is marked, node � unmarks itself again. (If the neighbors have the same degree,
ties are broken arbitrarily, e.g. by identifier).

3) Delete all nodes that joined the MIS and their neighbors (that cannot anymore join the MIS).

Lemma 12.6 (Joining MIS) A node � joins the MIS in round 2 with probability �
�����

or more.

Proof. Let 
 be the set of marked nodes in round 1. Let ���� be the set of neighbors of � with
higher degree, or same degree and higher identifier. We have
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Lemma 12.7 (Good Nodes) We call a node � good if

�
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. A good node will be
removed in round 3 with probability at least ����.

Proof. Let node � be good. The probability that at least one neighbor of � joins the MIS in round 2 is
(using Lemma 12.6)
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If a neighbor � joins the MIS in round 2, node � will be removed in round 3. 		

Remark:
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� It would be nice if many nodes are good in each phase. Unfortunately this is not the case: In a
star-graph, for example, only the center node is good.

Lemma 12.8 (Good Edges) An edge is good if one of its endpoints is good; else the edge is bad. At
any time at least half of the edges are good.

Proof. Direct each edge towards the higher degree node (if both nodes have the same degree direct it
towards the higher identifier). We need a little helper Lemma before we can continue with the proof.

Lemma 12.9 A node is bad if it is not good. A bad node has outdegree at least twice its indegree.

Proof. Assume for the sake of contradiction, that a bad node � does not have outdegree at least twice
its indegree. In other words, at least one third of the neighbor nodes (set �) have degree at most ����.
But then

�

������

�

�����
� �

���

�

�����
� �

���

�

�����
� ����

�

�

�����
� ��


which is the definition for � being good – a contradiction. 		

With Lemma 12.9 the number of edges directed into bad nodes is at most half the number of edges
directed out of bad nodes. Thus, the number of edges directed into bad nodes is at most half number
of edges. Thus, at least half of the edges are directed into good nodes. Since these edges are not bad,
they must be good. 		

Theorem 12.10 (Analysis) Algorithm 12.5 terminates in ������� time.

Proof. With Lemma 12.7 a good node (and therefore a good edge!) will be deleted with constant
probability. Since a third of the edges is good (Lemma 12.8) a constant number of edges will be
deleted in each phase. After ����� ���� phases � ������� rounds, all edges are deleted. 		

Remark:

� This algorithm/proof is a mixture of an algorithm by Luby, an analysis method stolen from
Israeli and Itai (developed for the related matching problem), and everything put together by my
wife. Surprisingly there have been half a dozen papers published after the original work (1986),
with worse running times. In 2002, for example, there was a paper at PODC with linear running
time! In the PODC paper the authors write that they improve on a DISTCOMP 1994 journal
paper that does matching in ����� time, for trees only...

12.2 Matching

Definition 12.11 (Matching) We are given a graph � � �����. A matching is a subset of edges

 � �, such that no two edges in 
 are adjacent (or, alternatively: where no node is adjacent
to two edges in the matching). A matching is maximal if no edge can be added without violating
the constraints. A matching of maximum cardinality is called maximum (or minimum maximal). A
matching is perfect if each node is adjacent to an edge in the matching.

Remarks:
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� A maximum matching can be found in polynomial time (Blossom algorithm by Jack Edmonds),
and is also easy to approximate (in fact, already any maximal matching is a 2-approximation).

� An independent set algorithm is also a matching algorithm: Let graph � � ����� be the graph
for which we want to construct the matching. Graph �� is as follows: for every edge in � there
is a node in ��; two nodes in �� are connected if the respective edges in � are adjacent. A
(maximal) independent set in �� is a (maximal) matching in �, and vice versa.

� The Algorithm 12.5 directly gives a ������� algorithm for maximal matching.

12.3 Dominating Set

Unfortunately we don’t have time for this advanced topic this year. (There is a very nice algorithm by
Kuhn et al. that gives a ��



����

�
	 ����� approximation in only � time. We teach this algorithm for

sure next year!)

Have a nice summer!
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