
Principles of Distributed Computing ETHZ, Summer 2003
Christian Cachin (www.zurich.ibm.com/˜cca )

8 Fault-Tolerant Distributed Systems

8.1 Introduction

Consider a completeasynchronousnetwork ofn serversP1, . . . , Pn. Up tot servers mayfail by
silentlycrashing(and they do not recover). A server that never crashes is calledcorrect. Every
pair of servers is linked by a reliable point-to-point communication channel (i.e., if a correct
server sends a message to another correct server, it willeventuallyreceive the message).

Coordination of all (correct) servers in this model has received considerable attention.
Many relevant practical problems, such as atomic broadcast or decentralized atomic commit-
ment of transactions, can be reduced to the problem of reaching consensus.

8.2 Consensus

Consensus is defined in terms of two events,proposeand decide; every serverPi executes
propose(v), wherev is the value thatPi “proposes,” and every serverPi executesdecide(v),
wherev is the value for whichPi “decides.”

Definition 8.1 (Consensus).A consensusprotocol satisfies:

Validity: If a serverdecidesv, thenv wasproposedby some server.

Agreement:No two servers decide differently.

Termination: Every correct server eventuallydecides.

This actually definesuniformconsensus, which means that the properties hold also for faulty
servers until they fail; innon-uniformconsensus,agreementis restricted to the correct servers,
which is sometimes easier to achieve.

It is not possible to implement Definition8.1 in asynchronous systems [FLP85], even if
t = 1. Possible solutions are (1) to use randomization (cf. Section on Asynchronous Byzantine
Agreement) or (2) to maketiming assumptions. We explore (2) here and discuss (1) in the
context of Byzantine agreement.

Example 8.2 (Non-Blocking Atomic Commitment using Consensus).At the end of a dis-
tributed computation, a group of processes (servers) enters a protocol to commit the changes
of their local state. Every process may propose tocommitor to abort the computation; if one
processaborts, then all others must alsoabort, otherwise they mustcommit. On top, some pro-
cesses may fail (we assume here that itneverrecovers) and if a process believes that another
process has failed (e.g., by using a “failure detector,” see below), it is also possible toabort.

This is a variation of consensus with domain{commit,abort} and the following notion of
validity:

1

www.zurich.ibm.com/~cca


• If a process decidescommit, then processes all have proposedcommit.

• If all processes proposecommitand none of them is believed to have failed, then they
must decidecommit.

The following algorithm implements distributed non-blocking atomic commitment using
consensus:

• First, every process sends its proposed action,commitor abort, to all others.

• When a process receivesn messages indicatingcommit, it starts consensus and proposes
to commit; otherwise, when at least one process sent a message that indicatesabort or
when a process believes that another process has failed, it starts consensus and proposes
to abort.

• The output is set to the decision of the consensus protocol.

However, the database literature usually allows recoveries and hence most practical database
systems use a centralized controller (when the coordinator fails, the operation stalls until it
recovers).

8.3 Failure Detectors

Definition 8.3 (Failure Detector [CT96]). Every serverPi has a localfailure detectormodule
Di that (periodically) outputs a list of servers that it suspects to have crashed. We sayPi
suspectsPj wheneverj ∈ Di

A failure detector (FD) represents an abstraction of a timing assumption; a FD is described by
its abstract properties rather than through an implementation. We usually speak of “the” failure
detectorD when every server has access to a local FD moduleDi with the properties ofD;
note that the outputs of the modules at different servers may differ from each other.

Definition 8.4 (Completeness).

• A failure detector satisfiesstrong completenessif eventually every server that crashes is
permanently suspected byeverycorrect server.

• A failure detector satisfiesweak completenessif eventually every server that crashes is
permanently suspected bysomecorrect server.

Completeness alone is trivial to satisfy and hence not useful.

Definition 8.5 (Accuracy).

• A failure detector satisfiesstrong accuracyif noserver is suspected before it crashes.

• A failure detector satisfiesweak accuracyif somecorrect server is never suspected.

2



Such failure detectors must never output false suspicions and are therefore rather difficult to
implement. Therefore one considers also:

Definition 8.6 (Eventual Accuracy).

• A failure detector satisfieseventual strong accuracyif there is a time after whichno
server is suspected before it crashes.

• A failure detector satisfieseventual weak accuracyif there is a time after whichsome
correct server is never suspected.

A failure detector is characterized by a completeness and by an accuracy condition. Two no-
tions of completeness and four forms of accuracy define eight classes of FD:

accuracy
completeness eventually

strong weak strong weak
strong P S ♦P ♦S
weak Q W ♦Q ♦W

P is also called the [class of] “perfect,”S the [class of] “strong,” andW the [class of] “weak”
failure detectors; read♦ as “eventually.”

Definition 8.7 (Reducibility). If there exists an algorithm that emulates all properties of a FD
D′ using only the output from a FDD, we say thatD′ is reducibletoD and thatD′ is weaker
thanD, writtenD′ ≤ D.

Similarly for classes of FD: if every FD in a classC ′ is reducible to a FD in a classC, we
say thatC ′ is reducibleto C and writeC ′ ≤ C.

If D ≤ E andE ≤ D, thenD andE areequivalent, writtenD ≡ E .

Trivially, we haveQ ≤ P, S ≤ W, etc.

Theorem 8.8. Weak and strong completeness are equivalent, i.e.,P ≡ Q, S ≡ W, etc.

Proof. There is a transformation that reduces a FDS with strong completeness to FDD with
weak completeness: everyPi periodically sends the output ofDi to all servers; whenPi re-
ceives such a message with the output ofDj, it updatesSi to Si ∪ Dj \ {Pj}.

8.4 Consensus using Failure Detectors

Algorithm 8.9 (S-based Consensus).EveryPi has access to a failure detectorDi ∈ S.

upon propose(v):

for r = 1, . . . , n do
if r = i then

send the message(vote , r, v) to all
wait for a message(vote , r, v′) or r ∈ Di

3



if a message(vote , r, v′) has been receivedthen
v ← v′

decide(v)

Theorem 8.10. Algorithm8.9 implements consensus with a strong failure detector forn > t.

Proof idea. LetPc be the correct server that is never suspected and letvc be its vote at begin of
roundc. At the end of roundc and ever after, all servers havev = vc.

Algorithm 8.11 (♦S-based Consensus).EveryPi has access to a failure detectorDi ∈ ♦S
and executes the following algorithm.

upon propose(v):

r ← 0 // current round
τ ← 0 // last round in whichv was updated
while notdecideddo
c← (r mod n) + 1
send message(vote , r, v, τ) to all
if i = c then

wait for messages(vote , r, v′, τ ′) from dn+1
2
e servers

t← largestτ ′ received invote messages
v ← somev′ received in avote message withτ ′ = t
send message(propose , r, v) to all

wait for a message(propose , r, v′) from Pc or c ∈ Di

if a (propose , . . . ) message was receivedthen
v ← v′; τ ← r
send messageack to Pc

else
send messagenack to Pc

if i = c then
wait for ack or nack messages fromdn+1

2
e servers

if all areack messagesthen
send message(decide , v) to all

r ← r + 1

upon receiving a message(decide , v′):

if notdecidedthen
send the message(decide , v′) to all
decide(v′)

The algorithm uses the “rotating coordinator” paradigm; the way in which thedecide mes-
sage is disseminated is a “reliable broadcast” that tolerates crash failures.

Theorem 8.12. Algorithm8.11implements consensus with an eventually strong failure detec-
tor for n > 2t.

4



Proof idea. Agreementandterminationare based on these two facts:

• Suppose there is a roundr in which the coordinatorPc is not suspected by any server;
then the valuevc contained in thepropose message of roundr will also be contained
in anypropose message of roundsr′ > r becausedn+1

2
e servers form a quorum.

• If some server decides, then every other server eventually decides.

Combining Theorems8.10and8.12with Theorem8.8 shows that consensus can also be im-
plemented using the weak failure detectorsW and♦W. Moreover, it has been shown that♦W
is the weakest failure detector that solves consensus in the sense of Definition8.7[CHT96].

Corollary 8.13. Consensus can be implemented in asynchronous systems with a weak failure
detector forn > t and with an eventually weak failure detector forn > 2t.

8.5 Broadcast Problems

Our system model includes only point-to-point links for communication. If a server wants to
broadcast a message to all others, the server may crash during the operation and it is possible
that some servers receive a message but others don’t. The purpose ofreliable broadcastand
its extensions is to prevent that. When additional ordering requirements are imposed (partial
orders such as FIFO and causal or total order), the problem becomes harder to solve. This
section is based on [HT93].

8.5.1 Reliable Broadcast

Reliable broadcast (RBC) requires that all correct servers deliver the same set of messages, and
that this set includes all messages broadcast by correct servers but no spurious messages. The
sender associated to a particular message is a distinguished server and its identity is assumed
to be known. Formally, RBC is characterized by two eventsr-broadcast(m), executed by the
sender to “r-broadcast” the messagem, andr-deliver(m), executed by all servers when they
“r-deliver” m.

When multiple messages are broadcast, one may imagine that the servers run multiple
instancesof a broadcast primitive. Every instance is associated with a unique identifier that is
also added to all messages generated by the protocol; since the sender is known, this identifier
may also include the identity of the sender.

Definition 8.14 (Reliable Broadcast).A protocol forreliable broadcast1 satisfies:

Validity: If a correct serverr-broadcastsa messagem, then it eventuallyr-deliversm.

Agreement:If a serverr-deliversa messagem, then all correct servers eventuallyr-deliverm.
1This actually definesuniformreliable broadcast; all other broadcasts in this section are also uniform.

5



Integrity: Every server delivers any particular messagem at most once, and only ifm was
previously broadcast by the associated sender.

Thus if the sender is faulty, either all servers deliver a message or none.

Algorithm 8.15 (Reliable Broadcast). We consider the implementation of a single instance
(a protocol for broadcasting multiple messages is obtained in a straightforward way by aggre-
gating as many instances as there are messages). LetPs denote the sender of the broadcast
instance; serverPi executes the following steps:

upon r-broadcast(m): // senderPs only

send the message(send ,m) to itself

upon receiving message(send ,m):

if messagem has not beenr-deliveredyet then
send the message(send ,m) to all
r-deliver(m)

Although our network model assumes reliable point-to-point links between all servers, the
algorithm works even if every pair of correct servers is connected only via a path consisting
entirely of correct servers (in which case the statement “send to all” means “send to all directly
connected servers”). The following theorem is immediate.

Theorem 8.16. Algorithm8.15implements reliable broadcast forn > t.

8.5.2 FIFO Broadcast

When multiple messages are reliably broadcast concurrently, RBC does not guarantee anything
about the order in which the messages are delivered. One of the simplest orderings is provided
by FIFO broadcast, which guarantees that messages from the same sender are delivered in
the same sequence as they were broadcast by the sender; this does not affect messages from
different senders.

A protocol forFIFO broadcastis a protocol for reliable broadcast defined in terms of two
eventsf-broadcastandf-deliver that also satisfies:

FIFO Order: If a serverf-broadcastsa messagem before itr-broadcastsa messagem′, then
no serverf-deliversm′ unless it has previouslyf-deliveredm.

Algorithm 8.17 (FIFO Broadcast from Reliable Broadcast). Given an implementation of re-
liable broadcast, serverPi executes the following steps:

initialization :

M← [] // set of received but notf-deliveredmessages
s← 0 // Pi’s sequence number
nj ← 0 (∀j ∈ [1, n]) // next sequence number to bef-deliveredfrom Pj

6



upon f-broadcast(m): // senderPs only

r-broadcastthe message(s,m)
s← s+ 1

upon r-delivering(s′,m′) with senderPj:

M←M∪ {(j, s′,m′)}
while ∃(j, t,m) ∈M such thatt = nj do

f-deliver(m)
nj ← nj + 1

Theorem 8.18. Given a protocol for reliable broadcast, Algorithm8.17 implements FIFO
broadcast.

Proof omitted.

8.5.3 Causal Broadcast

The causal precedence relation is an important concept in distributed computing. An evente
causally precedesf , writtene → f , whenever the same server executese beforef , or whene
is the event of sending a message andf the event of receiving it, or if there is an eventg such
thate→ g andg → f . Causal order is a specialization of FIFO order.

A protocol forcausal broadcastis a protocol for reliable broadcast defined in terms of two
eventsc-broadcastandc-deliverthat also satisfies:

Causal Order: Thec-broadcastof a messagem causally precedes thec-broadcastof a mes-
sagem′, then no serverc-deliversm′ unless it has previouslyc-deliveredm.

Algorithm 8.19 (Causal Broadcast from FIFO Broadcast). Given an implementation of FIFO
broadcast, serverPi executes the following steps:

initialization :

M ← ∅ // list of recentlyc-deliveredmessages

upon c-broadcast(m): // senderPs only

f-broadcastthe message(M‖m), where‖ means to append an elementm to a listM
M ← ⊥

upon f-delivering([m1,m2, . . . ,ml]):

for k = 1, . . . , l do
if mk has not beenc-deliveredyet then

c-deliver(mk)
M ←M‖mk

Theorem 8.20. Given an implementation of FIFO broadcast, Algorithm8.19implements causal
broadcast.

Proof omitted.

7



8.5.4 Atomic Broadcast

FIFO and causal orders are partial orders. In particular, causal order does not impose anything
for two causallyunrelatedmessages and it is possible that the servers deliver the messages in
different orders. Many applications do not allow such behavior because they must maintain a
consistent state at all servers; these applications require that the same state updates are executed
by all servers and that every server executes them in the same order. Such a total order is
provided by atomic broadcast.

A protocol foratomic broadcastis a protocol for reliable broadcast defined in terms of two
eventsa-broadcastanda-deliverthat also satisfies:

Total Order: If two serversPi andPj botha-delivermessagesm andm′, thenPi a-deliversm
beforem′ if and only if Pj a-deliversm beforem′.

Note thattotal orderdoesnot imply FIFO or causal order; hence, FIFO and causal broadcasts
are orthogonal to atomic broadcast, and it is possible to consider also FIFO atomic and causal
atomic broadcasts.

Implementing the total order property is considerably more difficult than the other orderings
considered before. In fact, atomic broadcast is as powerful as consensus and hence impossible
in asynchronous networks using deterministic protocols.

Theorem 8.21. Given a protocol for atomic broadcast, there is a protocol for consensus that
does not involve any additional messages.

Proof sketch.To proposea valuev, a server uses the atomic broadcast protocol anda-broad-
castsv; then every server waits for thea-deliveryof thefirst messagev′ anddecidesfor v′. The
agreementandtotal orderproperties of atomic broadcast implyagreementof consensus.

A convenient way to implement atomic broadcast is to use a consensus primitive. The atomic
broadcast algorithm below proceeds in global rounds; it uses one instance of consensus in every
round to agree on a set of messages, which are then delivered in a fixed order at the end of the
round.

Algorithm 8.22 (Atomic Broadcast from Consensus and Reliable Broadcast [CT96]). Given
an implementation of consensus and reliable broadcast, serverPi executes the following steps:

initialization :

R← ∅ // set ofr-deliveredmessages
A ← ∅ // set ofa-deliveredmessages
r ← 0 // round number

upon a-broadcast(m):

r-broadcast(m)

upon r-deliver(m):

R← R∪ {m}
repeat forever: // concurrently with the above statements

8



if R \ A 6= ∅ then
propose(R \ A) in consensusr
wait for decide(S) of consensusr
a-deliverall messages inS \ A in some deterministic order
A ← A∪ S
r ← r + 1

Theorem 8.23. Given protocols for consensus and for reliable broadcast, Algorithm8.22im-
plements atomic broadcast.

Proof sketch.Validity follows from thevalidity of reliable broadcast and from thevalidity and
agreementof consensus (if a correct servera-broadcastsa messagem, it is eventually con-
tained in the setR of every correct server) combined with theintegrity of consensus (eventu-
ally, every set proposed in consensus containsm).

Agreement and total orderare based on the following two facts. LetBr(i) denote the set
S \ A of serverPi in roundr of the algorithm and supposePi andPj are correct. Then:

• If Pi executesproposefor consensusr, thenPj eventually executesproposefor consen-
susr.

• If Pi a-deliversall messages inBr(i), thenPi eventuallya-deliversall messages inBr(i);
moreover,Br(i) = Br(j) for all r ≥ 0.

Corollary 8.24. Atomic broadcast and consensus are equivalent in asynchronous distributed
systems with reliable point-to-point links and crash failures.

8.5.5 Summary

reliable
broadcast

atomic
broadcast

broadcastbroadcast

broadcast broadcast

FIFO atomic

causal atomic

FIFO

causal

causal order

FIFO order

total order

Relations among the broadcast primitives [HT93].

9



References

[CHT96] T. D. Chandra, V. Hadzilacos, and S. Toueg,The weakest failure detector for solving
consensus, Journal of the ACM43 (1996), no. 4, 685–722.

[CT96] T. D. Chandra and S. Toueg,Unreliable failure detectors for reliable distributed
systems, Journal of the ACM43 (1996), no. 2, 225–267.

[FLP85] M. J. Fischer, N. A. Lynch, and M. S. Paterson,Impossibility of distributed consen-
sus with one faulty process, Journal of the ACM32 (1985), no. 2, 374–382.

[HT93] V. Hadzilacos and S. Toueg,Fault-tolerant broadcasts and related problems, Dis-
tributed Systems (New York) (S. J. Mullender, ed.), ACM Press & Addison-Wesley,
New York, 1993, Expanded version appears as Technical Report TR94-1425, De-
partment of Computer Science, Cornell University, Ithaca NY, 1994.

10


	Fault-Tolerant Distributed Systems
	Introduction
	Consensus
	Failure Detectors
	Consensus using Failure Detectors
	Broadcast Problems
	Reliable Broadcast
	FIFO Broadcast
	Causal Broadcast
	Atomic Broadcast
	Summary



