Principles of Distributed Computing ETHZ, Summer 2003
Christian Cachinww.zurich.ibm.com/“cca)

8 Fault-Tolerant Distributed Systems

8.1 Introduction

Consider a completasynchronousetwork ofn serversP, . . ., P,. Up tot servers mayail by

silently crashing(and they do not recover). A server that never crashes is aaileelct Every

pair of servers is linked by a reliable point-to-point communication channel (i.e., if a correct

server sends a message to another correct server, éveilituallyreceive the message).
Coordination of all (correct) servers in this model has received considerable attention.

Many relevant practical problems, such as atomic broadcast or decentralized atomic commit-

ment of transactions, can be reduced to the problem of reaching consensus.

8.2 Consensus

Consensus is defined in terms of two evepi®poseand decide every serverP; executes
proposév), wherew is the value that®; “proposes,” and every servél executedleciddv),
wherev is the value for whichP; “decides.”

Definition 8.1 (Consensus).A consensuprotocol satisfies:
Validity: If a serverdecidesy, thenv wasproposedoy some server.
Agreement:No two servers decide differently.

Termination: Every correct server eventualiiecides

This actually definesiniform consensus, which means that the properties hold also for faulty
servers until they fail; imon-uniformconsensusagreements restricted to the correct servers,
which is sometimes easier to achieve.

It is not possible to implement Definitiod.1 in asynchronous systemBLP84, even if
t = 1. Possible solutions are (1) to use randomization (cf. Section on Asynchronous Byzantine
Agreement) or (2) to makaming assumptionsWe explore (2) here and discuss (1) in the
context of Byzantine agreement.

Example 8.2 (Non-Blocking Atomic Commitment using Consensus)At the end of a dis-
tributed computation, a group of processes (servers) enters a protocol to commit the changes
of their local state. Every process may proposedmmitor to abort the computation; if one
processborts then all others must alsbort, otherwise they mustommit On top, some pro-
cesses may fail (we assume here thaieiterrecovers) and if a process believes that another
process has failed (e.g., by using a “failure detector,” see below), it is also possitierto

This is a variation of consensus with domdcommitabort} and the following notion of
validity:

www.zurich.ibm.com/~cca

e If a process decidesommit then processes all have proposedimit

e If all processes propossommitand none of them is believed to have failed, then they
must decideeommit

The following algorithm implements distributed non-blocking atomic commitment using
consensus:

e First, every process sends its proposed actommitor abort, to all others.

e When a process receivesnessages indicatingpmmit it starts consensus and proposes
to commit otherwise, when at least one process sent a message that indicatesr
when a process believes that another process has failed, it starts consensus and proposes
to abort

e The output is set to the decision of the consensus protocol.

However, the database literature usually allows recoveries and hence most practical database
systems use a centralized controller (when the coordinator fails, the operation stalls until it
recovers).

8.3 Failure Detectors

Definition 8.3 (Failure Detector [CT96]). Every server’, has a locafailure detectomodule
D; that (periodically) outputs a list of servers that it suspects to have crashed. We say
suspects’; whenever; € D,

A failure detector (FD) represents an abstraction of a timing assumption; a FD is described by
its abstract properties rather than through an implementation. We usually speak of “the” failure
detectorD when every server has access to a local FD mo@ulaiith the properties oD;

note that the outputs of the modules at different servers may differ from each other.

Definition 8.4 (Completeness).

o A failure detector satisfiestrong completenesteventually every server that crashes is
permanently suspected yerycorrect server.

e A failure detector satisfieweak completeneskeventually every server that crashes is
permanently suspected Bpmecorrect server.

Completeness alone is trivial to satisfy and hence not useful.
Definition 8.5 (Accuracy).
¢ A failure detector satisfiestrong accuracyf no server is suspected before it crashes.

o A failure detector satisfiemeak accuracyf somecorrect server is never suspected.

Such failure detectors must never output false suspicions and are therefore rather difficult to
implement. Therefore one considers also:

Definition 8.6 (Eventual Accuracy).

o A failure detector satisfiesventual strong accuracy there is a time after whicmo
server is suspected before it crashes.

o A failure detector satisfiesventual weak accuraaythere is a time after whiclsome
correct server is never suspected.

A failure detector is characterized by a completeness and by an accuracy condition. Two no-
tions of completeness and four forms of accuracy define eight classes of FD:

accuracy
completeness eventually
strong weak strong weak
strong P S OP OS
weak Q) 4% 09 OW

P is also called the [class of] “perfect§ the [class of] “strong,” andV the [class of] “weak”
failure detectors; readl as “eventually.”

Definition 8.7 (Reducibility). If there exists an algorithm that emulates all properties of a FD
D’ using only the output from a FID, we say tha®’ is reducibleto D and thatD’ is weaker
thanD, writtenD’ < D.

Similarly for classes of FD: if every FD in a clag$is reducible to a FD in a clagg we
say that”’ is reducibleto C and writeC’ < C.

If D <& and€ < D, thenD and€ areequivalentwrittenD = €£.

Trivially, we haveQ < P, S < W, etc.
Theorem 8.8. Weak and strong completeness are equivalent,R.es, 9, S = W, etc.

Proof. There is a transformation that reduces a&With strong completeness to FD with
weak completeness: every periodically sends the output @; to all servers; wherP; re-
ceives such a message with the outpubgfit updatesS; to S; U D; \ {P;}. O

8.4 Consensus using Failure Detectors

Algorithm 8.9 (S-based Consensus)Every P; has access to a failure detecloy e S.

upon proposév):
forr=1,...,ndo
if » =i then
send the messageote ,r,v) to all
wait for a messagévote ,r,v')orr € D;

3

if a messagévote ,r,v’) has been receivetien
/
V<0

decidév)

Theorem 8.10. Algorithm 8.9 implements consensus with a strong failure detectornfor t.

Proof idea. Let P. be the correct server that is never suspected and ket its vote at begin of
roundc. At the end of round and ever after, all servers have= v.. O

Algorithm 8.11 (0S-based Consensus)Every P, has access to a failure detecoy € S
and executes the following algorithm.

upon proposéuv):
r <« 0 /I current round
T+ 0 /I last round in whichy was updated
while notdecideddo
¢+ (r modn)+1
send messageote ,r,v,7) to all
if i = cthen
wait for messagegvote ,r,v’,7’) from [21] servers
t < largestr’ received invote messages
v < somev’ received in aszote message with' = ¢
send messagg@ropose ,r,v) to all
wait for a messagépropose ,r,v') from P. orc € D;
if a(propose ,...) message was receivéten
ve—viT—71r
send messagack to P,
else
send messageack to P.
if i = cthen
wait for ack ornack messages from*] servers
if all areack messagethen
send messagelecide ,v) to all
r—r+1

upon receiving a messageecide ,v’):
if notdecidedthen

send the messagdecide ') to all
decid€v’)

The algorithm uses the “rotating coordinator” paradigm; the way in whicluédoéde mes-
sage is disseminated is a “reliable broadcast” that tolerates crash failures.

Theorem 8.12. Algorithm8.11implements consensus with an eventually strong failure detec-
tor for n > 2t.

Proof idea. Agreemenandterminationare based on these two facts:

e Suppose there is a roundn which the coordinatof. is not suspected by any server;
then the value. contained in th@ropose message of round will also be contained
in anypropose message of rounds > r becausef”THW servers form a quorum.

¢ If some server decides, then every other server eventually decides.
[

Combining Theorem8.10and8.12with Theorem8.8 shows that consensus can also be im-
plemented using the weak failure detectdvsand{)V. Moreover, it has been shown thay)
is the weakest failure detector that solves consensus in the sense of De8riitiGiHT94g|.

Corollary 8.13. Consensus can be implemented in asynchronous systems with a weak failure
detector forn > t and with an eventually weak failure detector for- 2t.

8.5 Broadcast Problems

Our system model includes only point-to-point links for communication. If a server wants to
broadcast a message to all others, the server may crash during the operation and it is possible
that some servers receive a message but others don’t. The purpedialdé broadcastand

its extensions is to prevent that. When additional ordering requirements are imposed (partial
orders such as FIFO and causal or total order), the problem becomes harder to solve. This
section is based orH[T93].

8.5.1 Reliable Broadcast

Reliable broadcast (RBC) requires that all correct servers deliver the same set of messages, and
that this set includes all messages broadcast by correct servers but no spurious messages. The
sender associated to a particular message is a distinguished server and its identity is assumed
to be known. Formally, RBC is characterized by two evertisoadcastm), executed by the

sender to “r-broadcast” the message andr-deliver(m), executed by all servers when they
“r-deliver” m.

When multiple messages are broadcast, one may imagine that the servers run multiple
instancesf a broadcast primitive. Every instance is associated with a unique identifier that is
also added to all messages generated by the protocol; since the sender is known, this identifier
may also include the identity of the sender.

Definition 8.14 (Reliable Broadcast).A protocol forreliable broadcast satisfies:
Validity: If a correct server-broadcastsa message:, then it eventually-deliversm.

Agreement:If a servemr-deliversa message:, then all correct servers eventuatigeliver m.

1This actually definesniformreliable broadcast; all other broadcasts in this section are also uniform.

Integrity: Every server delivers any particular messaget most once, and only if» was
previously broadcast by the associated sender.

Thus if the sender is faulty, either all servers deliver a message or none.

Algorithm 8.15 (Reliable Broadcast). We consider the implementation of a single instance

(a protocol for broadcasting multiple messages is obtained in a straightforward way by aggre-
gating as many instances as there are messages)P, ldgnote the sender of the broadcast
instance; serveP; executes the following steps:

upon r-broadcastm): /I senderP; only
send the messageend , m) to itself

upon receiving messaggsend , m):
if messagen has not beendeliveredyetthen

send the messageend , m) to all
r-deliver(m)

Although our network model assumes reliable point-to-point links between all servers, the
algorithm works even if every pair of correct servers is connected only via a path consisting
entirely of correct servers (in which case the statement “send to all” means “send to all directly
connected servers”). The following theorem is immediate.

Theorem 8.16. Algorithm8.15implements reliable broadcast far> t.

8.5.2 FIFO Broadcast

When multiple messages are reliably broadcast concurrently, RBC does not guarantee anything
about the order in which the messages are delivered. One of the simplest orderings is provided
by FIFO broadcast, which guarantees that messages from the same sender are delivered in
the same sequence as they were broadcast by the sender; this does not affect messages from
different senders.

A protocol for FIFO broadcastis a protocol for reliable broadcast defined in terms of two
events-broadcastandf-deliverthat also satisfies:

FIFO Order: If a serverf-broadcastsa message. before itr-broadcastsa message’, then
no server-deliversm’ unless it has previouslydeliveredm.

Algorithm 8.17 (FIFO Broadcast from Reliable Broadcast). Given an implementation of re-
liable broadcast, servé?; executes the following steps:

initialization :
M —] Il set of received but ndtdeliveredmessages
s+ 0 Il P;’s sequence number

n; < 0 (Vj € [1,n]) /I next sequence number to bdeliveredfrom P,

upon f-broadcastm,): Il senderP; only

r-broadcastthe messagés, m)
s+—s+1
upon r-delivering (s’, m’) with senderP;:
M — MUA{(j,s,m)}
while 3(j,¢,m) € M such that = n; do
f-deliver{m)

n; < nj+1

Theorem 8.18. Given a protocol for reliable broadcast, Algorith®17 implements FIFO
broadcast.

Proof omitted.

8.5.3 Causal Broadcast

The causal precedence relation is an important concept in distributed computing. Amr event
causally precedeg, writtene — f, whenever the same server executégfore f, or whene
is the event of sending a message drttie event of receiving it, or if there is an evensuch
thate — g andg — f. Causal order is a specialization of FIFO order.

A protocol forcausal broadcass a protocol for reliable broadcast defined in terms of two
eventsc-broadcasendc-deliverthat also satisfies:

Causal Order: The c-broadcastof a message: causally precedes thebroadcasiof a mes-
sagem/, then no servee-deliversm’ unless it has previously-deliveredm.

Algorithm 8.19 (Causal Broadcast from FIFO Broadcast). Given an implementation of FIFO
broadcast, server; executes the following steps:

initialization :
M« /I list of recentlyc-deliveredmessages
upon c-broadcastm): /I senderP; only

f-broadcastthe messagé\ |m), where|| means to append an elemento a list M/
M — L
upon f-delivering([my, ma, ..., my]):
fork=1,...,1do
if m;, has not been-deliveredyetthen
c-deliver(my)

Theorem 8.20. Given an implementation of FIFO broadcast, AlgoritBrii9implements causal
broadcast.

Proof omitted.

8.5.4 Atomic Broadcast

FIFO and causal orders are partial orders. In particular, causal order does not impose anything
for two causallyunrelatedmessages and it is possible that the servers deliver the messages in
different orders. Many applications do not allow such behavior because they must maintain a
consistent state at all servers; these applications require that the same state updates are executed
by all servers and that every server executes them in the same order. Such a total order is
provided by atomic broadcast.

A protocol foratomic broadcasis a protocol for reliable broadcast defined in terms of two
eventsa-broadcastinda-deliverthat also satisfies:

Total Order: If two serversP; and P; botha-delivermessages: andm/, thenP, a-deliversm
beforem’ if and only if P; a-deliversm beforem’'.

Note thattotal orderdoesnotimply FIFO or causal order hence, FIFO and causal broadcasts
are orthogonal to atomic broadcast, and it is possible to consider also FIFO atomic and causal
atomic broadcasts.

Implementing the total order property is considerably more difficult than the other orderings
considered before. In fact, atomic broadcast is as powerful as consensus and hence impossible
in asynchronous networks using deterministic protocols.

Theorem 8.21. Given a protocol for atomic broadcast, there is a protocol for consensus that
does not involve any additional messages.

Proof sketch.To proposea valuev, a server uses the atomic broadcast protocolaabtbad-
castsv; then every server waits for tleedeliveryof thefirst message’ anddecidedor v’. The
agreementndtotal order properties of atomic broadcast imggreementf consensus. [

A convenient way to implement atomic broadcast is to use a consensus primitive. The atomic
broadcast algorithm below proceeds in global rounds; it uses one instance of consensus in every
round to agree on a set of messages, which are then delivered in a fixed order at the end of the
round.

Algorithm 8.22 (Atomic Broadcast from Consensus and Reliable BroadcastJT96]). Given
an implementation of consensus and reliable broadcast, seregecutes the following steps:

initialization :
R—10 I set ofr-deliveredmessages
A—10 Il set ofa-deliveredmessages
r«0 // round number

upon a-broadcastm):
r-broadcastm)
upon r-deliver(m):
R — RU{m}
repeat forever. /I concurrently with the above statements

8

if R\ A #0then
proposéR \ A) in consensus
wait for decid€S) of consensus
a-deliverall messages i85 \ A in some deterministic order
A—AUS

rer+1

Theorem 8.23. Given protocols for consensus and for reliable broadcast, Algorh2im-
plements atomic broadcast.

Proof sketch.Validity follows from thevalidity of reliable broadcast and from thalidity and
agreemenbf consensus (if a correct servaibroadcastsa messagen, it is eventually con-
tained in the seR of every correct server) combined with thntegrity of consensus (eventu-
ally, every set proposed in consensus contaifs

Agreement and total ordeare based on the following two facts. LB8t(i) denote the set
S\ A of serverP; in roundr of the algorithm and suppoge and P; are correct. Then:

o If P, executeproposefor consensus, thenP; eventually executesroposefor consen-
susr.

e If P, a-deliversall messages iB3, (i), thenP; eventuallya-deliversall messages iB3,.(i);
moreover, (i) = B,(j) forall » > 0.

O

Corollary 8.24. Atomic broadcast and consensus are equivalent in asynchronous distributed
systems with reliable point-to-point links and crash failures.

8.5.5 Summary

reliable total ordei atomic
broadcast | broadcast
FIFO order
Y Y
FIFO _ [FIFO atomig
broadcast | broadcast
causal order
Y Y
causal _causal atomi
broadcast | broadcast

Relations among the broadcast primitivedpP3].

References

[CHT96] T. D. Chandra, V. Hadzilacos, and S. Tougbe weakest failure detector for solving
consensusJournal of the ACMA3(1996), no. 4, 685-722.

[CT96] T. D. Chandra and S. Toueg@ynreliable failure detectors for reliable distributed
systemsJournal of the ACMA3(1996), no. 2, 225-267.

[FLP85] M. J. Fischer, N. A. Lynch, and M. S. Patersémpossibility of distributed consen-
sus with one faulty proces3ournal of the ACMB2 (1985), no. 2, 374-382.

[HT93] V. Hadzilacos and S. Touegrault-tolerant broadcasts and related problent3is-
tributed Systems (New York) (S. J. Mullender, ed.), ACM Press & Addison-Wesley,
New York, 1993, Expanded version appears as Technical Report TR94-1425, De-
partment of Computer Science, Cornell University, Ithaca NY, 1994.

10

	Fault-Tolerant Distributed Systems
	Introduction
	Consensus
	Failure Detectors
	Consensus using Failure Detectors
	Broadcast Problems
	Reliable Broadcast
	FIFO Broadcast
	Causal Broadcast
	Atomic Broadcast
	Summary

