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Summary.  Three  self-stabi l izing p ro toco l s  for  d i s t r ibu ted  
systems in the shared  m e m o r y  m o d e l  are presented.  The  
first p r o t o c o l  is a mutua l -exc lus ion  p ro toco l  for  tree 
s t ruc tured  systems. The  second p ro toco l  is a spanning  
tree p ro toco l  for  systems wi th  any  connec ted  communi -  

* Part of this research was supported in part by Technion V.P.R. 
Funds - Wellner Research Fund, and by the Foundation for Re- 
search in Electronics, Computers and Communications, adminis- 
trated by the Israel Academy of Sciences and Humanities 

Correspondence to: A. Israeli 

Shlomo M o r a n  received his B.Sc. 
and D.Sc. degrees in mathematics 
from Technion, Israel Institute of 
Technology, Haifa, in 1975 and 
1979, respectively. From 1979 to 
1981 he was assistant professor and 
a visiting research specialist at the 
University of Minnesota, Minnea- 
polis. From 1981 to 1985 he was a 
senior lecturer at the Department of 
Computer Science, Technion, and 
from 1985 to 1986 he visited at IBM 
Thomas J. Watson Research Cen- 
ter, Yorktown Heights. From 1986 
to 1993 he was an associate profes- 
sor at the Department of Com- 

puter Science, Technion. In 1992-3 he visited at AT&T Bell Labs 
at Murray Hill and at Centrum voor Wiskunde en Informatica, 
Amsterdam. From 1993 he is a full professor at the Department of 
Computer Science, Technion. His research interests include dis- 
tributed algorithms, computational complexity, combinatorics and 
graph theory. 

ca t ion  graph.  The  th i rd  p ro toco l  is ob ta ined  by  use o f  
fair protocol combination, a simple technique which en- 
ables the  combina t i on  o f  two self-stabil izing dynamic  
protocols .  The  resul t  p ro toco l  is a self-stabil izing, mutua l -  

e x c l u s i o n  p ro toco l  for  dynamic  systems with  a general  
(connec ted)  commun ica t i on  graph.  The  presented  p ro -  
tocols  improve  u p o n  previous  p ro toco l s  in two ways:  
Fi rs t ,  it  is assumed tha t  the only a tomic  opera t ions  are 
ei ther read  or  wri te  to the shared memory .  Second,  our  
p ro toco l s  w o r k  for  any  connec ted  ne twork  and  even for  
dynamic  ne tworks ,  in which the t opo logy  o f  the ne twork  
m a y  change dur ing  the execution.  

Key words: Self-stabil ization - R e a d / w r i t e  a tomic i ty  - 
Pro toco l  c o m b i n a t i o n  

1 Introduction 

A self-stabilizing system which is s ta r ted  f rom an  arbi -  
t r a ry  ini t ial  conf igura t ion ,  regains its consis tency and  



demonstrates legal behavior by itself, without any outside 
intervention. Consequently, a self-stabilizing system need 
not be initialized to any particular configuration, and can 
recover from transient bugs, bugs which change the state 
of one or more components of the system but keep those 
components in working order. In this paper we present 
self-stabilizing protocols for mutual-exclusion and for 
constructing a spanning tree. The presented protocols 
work on connected networks of arbitrary topology which 
can change dynamically during execution. Communica- 
tion among neighboring processors is carried out by use 
of communication registers (called registers throughout 
this paper). The atomic operations that these registers 
support are read and write. 

We model distributed self-stabilizing systems as a set 
of state machines called processors. Each processor can 
communicate with some subset of the processors called 
its neighbors. The system's communication graph is the 
graph formed by representing each processor as a node 
an by drawing an edge between every two neighbors. A 
protocol is a parameterized family of systems where the 
parameters can vary over the number of different state 
machines used by the protocol, the various families of 
communication graphs, the set of atomic operations sup- 
ported by the communications registers, etc. A proces- 
sor's degree is equal to the number of its neighbors. A 
protocol is uniform if all processors of the same degree 
are identical. If all processors of the same degree are 
identical except a single processor in the entire system, 
then the protocol is semi-uniform. An atomic step is the 
"largest" step that is guaranteed to be executed uninter- 
ruptedly. A protocol uses composite atomicity if some 
atomic step contains (at least) a read operation and a 
write operation. A processor uses read~write atomicity if 
each atomic step contains either a single read operation 
or a single write operation but not both. The behavior 
of the system is modeled by the interleaving model in 
which processors are activiated by a scheduler. Whenever 
an enabled processor is activated, it executes a single 
atomic step. To ensure the correctness of a protocol, the 
scheduler is regarded as an adversary and the protocol is 
required to be correct in all possible executions. The com- 
mon schedulers are the central demon which activates 
processors one by one and the distributed demon which 
activates subsets of processors. 

The class of self-stabilizing protocols was defined by 
Dijkstra in his pioneering paper [4]. In that paper Dijk- 
stra presents three semi-uniform, self-stabilizing, mutual- 
exclusion protocols for rings. Protocols in the same setup 
but under the distributed demon are presented by Brown 
et al. in [1], and by Burns in [3]. Burns and Pachl in [2] 
present a uniform, self-stabilizing, mutual-exclusion pro- 
tocol for rings with a prime numer of processors. A semi- 
uniform, self-stabilizing protocol for some variant of the 
mutual-exclusion problem which runs on tree systems is 
presented by Kruijer in [11]. A self-stabilizing, mutual- 
exclusion protocol for systems with arbitrary communi- 
cation graphs is presented by Tchuente in [16]. Unlike 
the aforementioned protocols the protocol presented in 
[16] is not semi-uniform, in fact the program of each 
processor depends on the system's communication graph, 

and for many communication graphs all processors are 
distinct. Furthermore, obtaining the protocol for each 
individual system requires extensive programming work. 
All these papers use the shared-memory model. The work 
of Katz and Perry in [10] deals with the message-passing 
model which is different in some respects from the shared 
memory model. In [10], Katz and Perry present a general 
method for converting arbitrary programs in the message- 
passing model to equivalent self-stabilizing programs in 
the same model. 

All previous self-stabilizing protocols use composite 
atomicity. In the work of Loui and Abu-Amara in [12], 
it was shown that while there exists no consensus protocol 
for systems that use read/write atomicity, the consensus 
task is solvable for systems that use composite atomicity. 
Since any system under composite atomicity can trivially 
emulate an equivalent system that uses read/write 
atomicity, composite atomicity is strictly stronger than 
read/write atomicity. 

A protocol is dynamic if it tolerates changes in the 
communication graph during execution as long as the 
communication graph remains connected. The changes 
we allow are processor addition or removal and link ad- 
dition or removal. Every self-stabilizing, uniform pro- 
tocol that works on every communication graph is dy- 
namic, since it stabilizes after any topology change. A 
semi-uniform protocol that works on any communication 
graph is dynamic as long as the (single) special processor 
is not removed from the system. In [4], Dijkstra used 
symmetry considerations and showed that for rings of 
composite size, there exists no uniform, self-stabilizing, 
mutual-exclusion protocol. Thus, if one opts for dynamic, 
self-stabilizing, mutual-exclusion protocols then the best 
that can be achieved are semi-uniform protocols. 

Most previous works assumed that one-way commu- 
nication from P1 to P2 is carried out by/'1 changing its 
state which is observable by/~ This mode of commu- 
nication is equivalent to the use of a single communica- 
tion register in which P~ writes and from which all pro- 
cessor to which it can communicate read. It is not hard 
to show that under this communication mode, there exists 
no semi-uniform, self-stabilizing, mutual-exclusion pro- 
tocol in many systems, including systems with very simple 
communication graphs. There are two possible ways to 
remedy this problem: The first one, which was chosen by 
Tchuente in [16], is to give up uniformly altogether and 
program each processor individually. Since in this method 
each processor is programmed individually, it cannot yield 
dynamic protocols. The alternative way, which we choose 
in this work, is to allow each processor to break the 
symmetry among its neighbors locally. This is done by 
introducing a link between every pair of neighbors. Each 
link is composed of two registers and supports two-way 
communication. One neighbor writes in the first register 
and reads from the second, the other neighbor reads from 
the second register and writes in the first. Each register 
is serializable (atomic) with respect to read and write 
actions. 

We present two semi-uniform, self-stabilizing proto- 
cols: The first protocol is a mutual-exclusion protocol for 
tree structured systems. The second protocol constructs 



a spanning tree of  the system's communication graph; 
both protocols are correct under read/write atomicity. 
We then present fair protocol combination as a technique 
for combining self-stabilizing protocols into another self- 
stabilizing protocol. The presentation is completed by 
combining the two aforementioned protocols into a semi- 
uniform, self-stabilizing, mutual-exclusion protocol for 
systems with any connected communication graph using 
fair protocol combination. The combined protocol, like 
both its building blocks, is correct under read/write at- 
omicity. Using this final protocol we show that any pro- 
tocol which is self-stabilizing under composite atomicity 
can be executed in a self-stabilizing fashion in the pre- 
sence of read/write atomicity. 

Our protocols improve upon all previous protocols in 
two important aspects: 

- Atomieity: All previous self-stabilizing protocols use 
composite atomicity. Our protocols use read/write ato- 
micity, hence they subsume all aforementioned self-sta- 
bilizing protocols. 
- T o p o l o g y :  Almost all previous self-stabilizing proto- 
cols work only on restricted families of  communication 
graphs. In this respect our protocols improve upon all 
previous protocols except the protocol of [ 16], since they 
work in systems with arbitrary connected communication 
graphs. Furthermore, our protocols are semi-uniform 
hence, they are also dynamic and superior to the protocol 
of [16]. 

The rest of this paper is organized as follows: in Sect. 2 
the computational model and the requirements for self- 
stabilization are discussed and formally defined. In Sect. 3 
we present a simple self-stabilizing protocol called the 
balance-unbalance protocol for mutual-exclusion in a two 
processor system and show how to adapt it to read/write 
atomicity. In Sect. 4 we present a self-stabilizing, mutual- 
exclusion protocol for tree-structured systems which uses 
the balance-unbalance protocol as a building block. In 
Sect. 5 we present a self-stabilizing protocol for finding 
a spanning tree of the system's communication graph. 
We proceed by presenting fair protocol combination. 
Combining the spanning tree protocol with the mutual- 
exclusion protocol yields the final protocol. Section 6 
contains some concluding remarks. 

2 M o d e l  a n d  r e q u i r e m e n t s  

2.1 The model 

A distributed system consists of n processors, denoted by 
P1, P2 . . . . .  Pn. Each processor is a (possibly infinite) state 
machine. Processor P~ is distinguished as a special pro- 
cessor. All other processors are called normal. Normal 
processors have no distinct identities, the subscripts 
2 . . . . .  n are used for notation only. Neighbors Pi and Pj 
communicate with each other by using two shared 
registers, r;j in which P; writes and from which Ps reads, 
and ri, ~ in which Pj writes and from which P; reads. All 
links incident to each processor Pi are ordered by some 

arbitrary ordering e~ which induces in a natural way an 
ordering of the neighbors of  Pi. The collection of all these 
orderings is denoted by e = (c~ 1 . . . . .  an). 

Every register r is associated with the set 2; r of per- 
mitted values which can be stored in r (the set 27 r is not 
necessarily finite). Each register r has a writer - a pro- 
cessor that can write in r, and a reader - a processor that 
can read from r. A write operation to r stores a value 
from ~r in r. A read operation retrieves the value (from 
Xr) stored in r. Each register is serializable with respect 
to read and write operations. The registers in which pro- 
cessor P can write are called the registers of P. We choose 
to look at a processor and its registers as a single entity, 
thus the state of a processor fully describes the values 
stored in its registers. Denote by S i the set of states of 
P~. A configuration of  the system is the vector of states 
of all processors. Denote by G =  ($1 • $2 x . . .  • Sn) the 
set of all possible configurations of the system. 

An atomic step of a processor consists of an internal 
computation followed by either a read or a write oper- 
ation, but not both. Processor activity is managed by a 
scheduler, which is also called the central demon. In any 
given configuration the demon activates a single proces- 
sor which executes a single atomic step. An execution E, 
of the system, is an infinite sequence of configurations 
E =  C1, C2,- �9 �9 where for every i > 0, C~+ ~ is reached 
from C~ by a single atomic step of a single processor. An 
infinite execution is fair if every processor executes steps 
infinitely often. 

2.2 Task specification and self-stabilizing protocols 

A self-stabilizing system demonstrates legitimate behavior 
some time after it is started from an arbitrary configu- 
ration. A natural way to specify a behavior in an abstract 
way is by a set of sequences of configurations. We define 
tasks as sets of legitimate-sequences. The semantics of any 
specific task is expressed by requirements on its se- 
quences. Intuitively each legitimate sequence can be 
thought of as an execution of a protocol but we do not 
require it formally. For  instance, the mutual-exclusion 
task is defined as the set of sequences of configurations 
which satisfy: Each processor has a subset of its states 
called the critical section; in each configuration, at most 
one processor is in its critical section, and every processor 
is in its critical section in infinitely many configurations. 

To formally define a task T, one should specify for 
each possible system ST, a set of legitimate sequences for 
ST. The task T is defined as the union of the legitimate 
sequence sets over all possible systems. A configuration 
C of  a system is safe with respect to a task T and a 
protocol Pr if any fair execution of Pr starting from C 
belongs to T. A protocol and a scheduler determine the 
set of all possible executions of the protocol under this 
scheduler. In the non-self-stabilizing model, a protocol 
implements a task if all its executions belong to the set 
of sequences which constitutes the task. In the self-sta- 
bilizing model this requirement is relaxed, and a protocol 
is defined to be self-stabilizing with respect to a task T 
if the following definition holds: 



[Self-stabilization ] 

A protocol is self-stabilizing if starting from any system 
configuration, it eventually reaches a safe configuration. 

This definition separates the specific task which the 
protocol implements from the general requirements for 
self-stabilization and allows self-stabilizing protocols for 
any task. It is natural (though not necessary) to require 
that a task is closed under the suffix operation. When 
this requirement is adopted, any configuration which is 
reachable from a safe configuration is also safe, therefore 
the set of safe configurations for task T with respect to 
protocol Pr is closed under executions of Pr. 

2.3 Protocol description 

A semi-uniform protocol is specified by describing two 
types of processors: A special processor and a normal 
processor. A processor is entirely determined by its type 
and by the number of its neighbors. For convenience we 
choose to represent each of our processors as a R A M  
executing a program. Since the system is dynamic the 
number of neighbors of each processor may change dur- 
ing execution. This is modeled by assuming that each 
processor has access to a local constant called nu~neigh- 
bors in which the number of the processor's neighbors is 
stored. This constant is assumed to be updated by the 
hardware whenever the number of neighbors is changed. 
(Later we discuss the technique of protocol combination. 
In a combined protocol nu~eighbors can be updated by 
a lower level protocol). 

The program of each processor is partioned to distinct 
atomic steps. It is assumed that each program is executed 
step by step where each step is executed uninterruptedly. 
Each processor is assumed to be equipped with aprogram 
counter (pc) whose value indicates the next atomic step 
to be executed. The partition of the program into atomic 
steps is straightforward: Each atomic step consists of a 
sequence of internal operations which ends either with a 
write operation or with a read operation. The state of a 
processor is determined by the internal state of the R A M  
and the contents of its registers. The internal state of the 
R A M  is fully described by the values stored in its internal 
variables and by its next step (the pc). Each internal 
variable has a set of permitted values, a permitted state 
of a processor is any assignment of permitted values to 
its internal variables and to its registers. 

3 The balance-unbalance protocol 

3.1 The basic protocol 

A processor is enabled if it can execute a state-transition. 
A mutual-exclusion protocol under composite atomicity 
is designed so that in each legitimate configuration there 
exists a single enabled processor. The enabled processor 
is privileged, it has the right to enter its critical section. 
Presumably the enabled processor finds out that is is 
enabled by reading its neighbors' registers, executes its 

critical section, and then passes the privilege to one of its 
neighbors by executing a state transition which includes 
writing new values in some of its registers. The composite 
atomicity ensures that this extended atomic step is exe- 
cuted uninterruptedly. The balance-unbalance protocoll is 
probably the simplest protocol for mutual-exclusion un- 
der composite atomicity. It is designed for a system of 
two processors, which are connected by a link. The two 
processors are the unbalancing processor UB and the 
balancing processor BA. Each processor has two states, 
denoted by 0 and 1. The configuration of a system is 
defined by the states (sl, s2) of UB and BA respectively. 
Thus, the system has four possible configurations: (0, 0), 
(1, 0), (1, 1), and (0, 1). Processor UB is enabled when 
the link is balanced. Its transition function unbalances the 
link by transfering (0, 0) to (1, 0) and (1, 1) to (0, 1). Anal- 
ogously, BA is enabled when the link is unbalanced. Its 
transition function balances the link by transfering (0, 1) 
to (0, 0) and (1, 0) to (1, 1). 

Consider an execution of the protocol under compos- 
ite atomicity. In any possible configuration, exactly one 
processor is enabled (and privileged); the enabled pro- 
cessor passes the privilege to the other processor by 
changing its state. Thus, starting with any configuration 
of the system, and regardless of the specific behavior of 
the demon, the system configuration is changed repeat- 
edly according to the following cycle: ((0, 0), [ UB writes], 
(1, 0), [BA writes], (1, 1), [UB writes], (0, 1), [BA writes], 
(0, 0)). Therefore, this protocol is a self-stabilizing, mu- 
tual-exclusion protocol in the strongest possible sense: 
There is a unique legitimate sequence of configurations, 
which is a suffix of every possible execution of the pro- 
tocol. In a way, this protocol is well known and is a 
simplified version of protocols presented in [3, 4, 11, 13]. 

Under read/write atomicity an atomic step includes 
either a read action or a write action. When an atomic 
step ends by a read action, the read value may affect the 
next transition. Therefore the state of each processor 
should reflect the last value it read from the (register of 
the) other processor. We use here the term state to denote 
the full information describing the processor behavior, 
while the balance-unbalance bits are called colors. The 
state of UB is described by the following components: 
{the color of UB, the last color of BA read by UB, the 
next action to be executed by UB}. The state of BA is 
described analogously as follows: {the last color of UB 
read by BA, the color of BA, the next action to be exe- 
cuted by BA }. A configuration of the systems is a pair 
of the processor states. 

Lemma 3.1. Under read/write atomicity the balance-un- 
balance protocol is not a self-stabilizing, mutual-exclusion 
protocol 

Proof Consider configuration C =  ({0, 0, write}, 
{ 1, 0, write}), in which the colors of UB and BA are both 
0, but as a result of a transient bug, BA "thinks" that 
the color of UB is 1. In C both processors are enabled 
(and hence privileged). 

In Fig. 3.1 we depict a prefix of an execution, starting 
and ending with configuration C. In this prefix each pro- 



({0, 0, write} { 1, 0, write}) [BA writesl, 
({0, 0, write} { 1, 1, read})[BA readsl, 
({0, 0, write} {0, 1, write}) [UB writes], 
({ 1, 0, read} {0, 1, write})[ UB readsl, 
({ 1, 1, write} {0, 1, write}) [BA writes], 
({ 1, 1, write} {0, 0, read})[BA reads], 
({ 1, 1, write} { 1, 0, write}) [ UB writes], 
({0, 1, read}{ 1, 0, write}) [ UB reads], 
({0, 0, write}{ 1, 0, write}) [BA writes], 

Fig. 3.1. A prefix of a non-stabilizing execution 

cessor is activated and both processor are simultaneously 
privileged. Since this prefix starts and terminates with the 
same configuration it can be duplicated infinitely often 
to obtain an infinite fair execution. In half of the config- 
urations of this infinite execution UB and BA are both 
privileged, hence the system does not stabilize. [] 

3.2 Adaption for read~write atomicity 

In this section we modify the balance-unbalance protocol 
to be correct under read/write atomicity. The registers 
of UB and BA are called r,b and rba respectively. Pro- 
cessor UB has two internal variables called my_color and 
ba_color. These variables constitute the view of UB, the 
values it "thinks" rub and rba have. In case the colors of  
rub and rba are equal to the values of variables my color 
and ba_eolor respectively, we say that ub has a correct 
view. Analogously, processor BA has two internal vari- 
ables called my_color and ub_color which constitute BA's 
view. In case the colors of rba and rub are equal to the 
values of my_color and ub_color respectively, we say that 
BA has a correct view. 

The problem depicted in Fig. 3.1 is caused by the na- 
ture of read/write atomicity. A processor may read the 
color of the other processor, then the second processor 
may write and change its color. After that, the first pro- 
cessor may use the color it read, which is already outdated 
at this point, and enter its critical section. Consequently 
mutual-exclusion might be violated. In order to overcome 
this problem, some additional synchronization between 
the processors is required. For  this purpose UB is allowed 
to close the link for BA using the binary close field with 
which r,b is augmented. Whenever BA reads UB's register 
it considers the value it reads only if the link is open, that 
is if ub. close = 0. In this way UB controls the number of 
times BA executes its loop between every consecutive 
executions of UB's loop. 

The code for the modified protocol appears in Fig. 3.2. 
The program for each processor in the modified protocol 
consists of a loop which is executed repeatedly. The loops 
for both processors have a similar structure. Each loop 
consists of two blocks: a refresh block and a main block. 
In the refresh block each processor unconditionally 
copies its internal variable my_color to its register. In this 
way the processor ensures that the color of its register is 
equal to the processor's "belief". The unconditional write 
is called the refreshing write. Following the first refreshing 

1 UB: repeat forever 
rub := write(my color, 0) refresh 

2 ba_color:= read(rba ) 
f f  my_color = ba_color link seems balanced 
then begin main loop 

CRITICAL SECTION 
3 rub := write(my_color, 1) close link 
4 ba_color:= read(rb. ) reread ba_color 

my_color := 1 - ba_color complement your color 
5 rub:= write(my_color, 0) unbalanced and open link 

end 

BA: repeat forever 
6 rba := write(my_color) refresh 

repeat 
7 (ub_color, close) 

:= read(r.b ) 
until close = 0 
if ub~color :/: my_color 

then begin 
CRITICAL SECTION 
my color := ub_color 

8 rba := write(my_color) 
end 

Fig. 3.2. The modified balance-unbalance protocol 

link seems open and un- 
balanced 

main loop 

complement b~color  
balance link 

write the value of the register can always be inferred from 
the values of the proeessor's internal variables. Hence, 
the only refreshing write which may change the value of 
a register is the first write in an execution. After refreshing 
its register each processor proceeds to its main block 
which includes the processor's critical section. Unlike the 
refresh block, execution of the main block is conditional. 
The first atomic step in the main block is a read action. 
The value read in this action is used as a guard for the 
rest of  the main block in which the critical section is 
executed. 

A system configuration is specified by the values of 
the varaibles my_color (of  both processors), the values 
of ba_color and ub_color, the values of the registers and 
the next step each processor is about to execute (the pc 
of both processors). After both registers are refreshed the 
values of the my_color variables are the same as the values 
of the correesponding registers. In this situation and when 
the values of the pc-s are implied by the context, we 
describe a configuration by a 5-tuple (ba_color, r,b.color , 
rub.close---,rba, ub_color) which is called the link descrip- 
tor. The arrow in the link descriptor stands for the link 
that separates the variables and register values of UB (at 
the tail) from those of BA. 

Under composite atomicity a non enabled processor 
which is activated by the demon does not execute any 
state transition. The situation is different under read/  
write atomicity where a processor can always execute 
some action. This action may be a read action after which 
the processor may find that it cannot execute any write 
action. Another possibility is that the processor finds out 
that it can execute a write action, but the written value 
is equal to the value which is stored in the register before 
the write action is executed. In order t o  accommodate 
these situations we define some segment of a processor's 



(0,0,0 ,0 ,0)  
[ UB writes], (0, 0, 1 ,0, 0), 
[ UB reads], (0, 0, 1 ,0, 0), 
[ UB writes], (0, 1,0 ,0, 0), 
[BA reads], (0, 1, 0 - - - ,0 ,  1), 
[BA writes], (0, 1, 0 ,1, 1), 
[ UB reads], (1, 1, 0 ,1, 1), 
[ UB writes], (1, 1, 1 ,1, 1), 
[UB reads], (1, 1, 1 ,1, 1), 
[ UB writes ], (1, 0, 0 ,1, 1), 
[BA reads], (1, 0, 0----* 1, 0), 
[BA writes], (1, 0, 0----* 0, 0), 
,[UB reads], (0, 0, 0 ,0,0),  

Fig. 3.3. The legitimate cycle 

execution as a stuttering section if the only changes in the 
processor's state are in its pc. A stuttering section that 
starts and ends with the same system configuration is 
called a cyclic stuttering section. A cyclic stuttering sec- 
tion might be removed from an execution, except the first 
(or last) configuration, and the resulting sequence is also 
an execution. We say that two executions are equivalent 
up to stuttering if when all cyclic stuttering sections are 
removed the resulting system executions are equal. 

Consider a configuration C in which the registers are 
refreshed, the value of rub is (0, 0) and the value of rba is 
0. The link descriptor of C is (0, 0, 0 ~ 0 ,  0). In such a 
configuration, the only possible subsequent changes in 
the value of the link descriptor are given by the legitimate 
cycle which appears in Fig. 3.3: (In the legitimate cycle 
the refreshing writes are omitted). 

Define B UB' to be the set containing the sequence l 
obtained by a repeated execution of the legitimate cycle 
and all suffixes of 1. The task B UB is now defined as the 
set of all sequences which are equivalent to some task in 
B UB" up to stuttering. Note that B UB is a subtask of 
the mutual-exclusion task. By this definition, each con- 
figuration in the legitimate cycle is safe for the set B UB. 
Observe that when the system is in the legitimate cycle 
the processors access their critical section in a mutually 
exclusive (and fair) fashion. In the following lemmas we 
prove that the protocol is self-stabilizing by showing that 
in every fair execution some configuration in the legiti- 
mate cycle is reached. 

L e m m a  3.2. In every fair execution E of the protocol in 
which the color of  no register is changed, there is a con- 
figuration C t after which the link is always open. 

Proof Execution E is fair, therefore UB is activated in- 
finitely often, in particular rub is refreshed infinitely often. 
Consider configuration C t right after rub is refreshed for 
the first time. In C t the link is open since it was opened 
in the refreshing write of UB. In its next activation UB 
reads %a; since during E the color of no register changes, 
after this read action UB has a correct view which is 
constant throughout E. In case the link is unbalanced in 
this constant view, UB does not enter its loop and there- 
fore never closes the link. In case the link is balanced in 
the constant view, UB executes the loop and unbalances 

the link, in contradiction to the assumption that no color 
is changed during E. [] 

Lemina  3.3. In every fair execution of the protocol both 
registers are refreshed infinitely often. 

Proof The Lemma holds trivially for rub. Assume that E 
is a fair execution in which rba is never refreshed. This is 
possible only if whenever BA executes step 7, it finds that 
the link is closed. By Lemma 3.2 this implies that the 
content of some register is changed infinitely often. If  
register rba is changed infinitely often then we are done, 
so it must be the case that only the content of register 
r,b is changed infinitely often. In particular, it implies 
that there is a suffix E '  of E in which the content of rub 
is changed infinitely often, but the content of rba is never 
changed. We complete the proof by showing that this 
latter scenario is impossible. 

Consider two successive changes of rub in E ' ,  which 
are done after r,b is refreshed. The first change is done 
after UB executes step 4, and learns that the link is bal- 
anced. Since BA never writes in E ' ,  after UB writes (in 
step 5), the link becomes unbalanced. The next time UB 
executes step 2 it finds that the link is unbalanced, and 
hence it does not change the value of rub anymore - a 
contradiction. [] 

Corol lary 3.4. In every fair execution E, UB closes the 
link, by executing step 3, infinitely often. 

Proof let E '  be a suffix of E in which both registers are 
refreshed, as guaranteed by Lemma 3.3. Assume that the 
link is never closed during E ' .  In particular this implies 
that UB never changes the color of rub during E ' ,  and 
also that infinitely often during E ' ,  the color of rba is not 
equal to the (constant) color of rub. This implies that 
eventually, BA balances the link by changing the color 
of rba. Once BA have done this, it does not change the 
color again, unless the link becomes unbalanced. This 
means that the next time UB executes step 2, it will find 
out that the link is balanced, and hence it executes step 3 
and closes the link - a contradiction. [] 

L e m m a  3.5. In every fair execution E of the protocol, the 
system reaches a configuration in the legitimate cycle. 

Proof By Lemmas 3.3 and 3.4, there is a suffix E" of E 
during which both processors are refreshed, and during 
E" UB closes the link. After closing the link, UB reads 
the value of rba , changes the color of rub (if necessary), 
and opens rub for reading. Call the sequence of config- 
urations during which UB executes these operations the 
closed period of r,b. Consider the behavior of the link 
during the closed period of rub. Whenever BA reads r,b 
during the closed period, it repeats executing line 7 until 
rub is opened. Therefore BA can change the color of rba 
(by executing step 8) at most once, during the closed pe- 
riod, since after any such change, BA reads rub. During 
the closed period UB reads rba once. The following three 
cases sum up the possible ways in which the link descrip- 
tor might be changed by BA, during the closed period of 
rub : 

Case 1. BA does not change rba during the closed period. 



Case 2. B A  changes rba before U B  reads from it. 

Case 3. B A  changes rba after U B  reads from it. 

In the first two cases U B  reads the updated value of 
rba and unbalances the link (if it is not already unbal- 
anced) hence the link descriptor in the configuration that 
immediately follows the closed period is equal to either 
(1 ,0 ,0---*1,?)  or (0,1,0 ,0 ,? )  (the question mark  
stands for either 0 or 1), which are all in the legitimate 
cycle. The third case starts as follows: U B  reads rba, then 
B A  changes the color of  r b ~ to be equal to ub_color. At 
this stage the link descriptor is either (0, ?, 1 ,1, 1) or 
(1, ?, 1 ---* 0, 0). At the end of the closed period, U B  tries 
to unbalance the link using the last (not updated) color 
it read from rba. Thus the value of the link descriptor in 
the configuration that immediately follows the closed pe- 
riod is either (0, 1,0 ~ 1, 1) or (1, 0, 0---* 0, 0) which are 
both in the legitimate cycle. [] 

4 M u t u a l - e x c l u s i o n  p r o t o c o l  f o r  d y n a m i c  t r e e  s y s t e m s  

In this section we present a self-stabilizing, mutual-ex- 
clusion protocol for systems whose communication graph 
is a tree directed from the (special) root processor to the 
leaves. The protocol is dynamic as long as the topology 
changes preserve the tree structure. The tool by which 
the privilege is passed along links is the balance-un- 
balance protocol. Each link e, is regarded as directed from 
U B  to B A .  The registers of  e are called the unbalance 
register of  e and the balance register of  e, respectively. 
Thus in the tree protocol a processor with n u ~ o n s  sons 
plays the role of  U B  n u ~ o n s  times, and each normal 
processor plays the role of  B A  once. A processor is priv- 
ileged in the tree protocol if it is privileged in all the 
balance-unbalance protocols in which it participates, that 
is when all its outgoing links are balanced and its incom- 
ing link (for a non-root  processor) is unbalanced. A pic- 
ture of  a node and the registers on its links appears in 
Fig. 4.1. The code of  the protocol, for the root and for 
a normal processor appears in Fig. 4.2. 
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Fig. 4.1. A pictorial description of a node in the system 

After stabilizing, an execution of the protocol pro- 
ceeds in phases. Execution of a phase corresponds to a 
D F S  tour of  the whole tree, where the D F S ' s  "center of  
activity" is at the node of the privileged processor. The 
first privileged processor in each phase is the root. Fol- 
lowing its first activation the root (recursively) passes the 
privilege to (the subtrees rooted at) its sons in a left to 
right order. Processor P that becomes privileged for the 
first time in some phase, passes the privilege to its leftmost 

Root: repeat forever 
1 R E F R E S H  
2 for m:= 1 to nu~ons 

do ba_color [m]:= read (sba [m]) 
3 if (all out_links_balanced) {you are privileged} 

then 
CRITICAL SECTION 
if  (border = O) 
then 

new_color: = 1 - new_color 
border: = 1 

end 
4 unbalance~order_link 

end 

Other:repeat forever 
R E F R E S H  
repeat 

(ub color, close) := read (qub) 
{read unbalance register} 

until close = 0 
for m := 1 to nu~ons 
do ba_color [m] := read (sb~ [m]) 
if (all out_links_balanced) 
and (in_link_unbalanced) {you are privileged} 
then 

CRITICAL SECTION 
if  (border = O) 
then 

rba := write (ne~color)  
new_color: = 1 - new_color 
if  (not_leaf) then border:= 1 

else 
unbalance_border_link 

end 
end 

Procedure unbalance border_link 
{pass privilege to your border son} 

10 rub [border] := write ((1 - new_color, 1)) 
11 ba_color [border] := read (sba [border]) 

if  (border_link_balanced) 
then 

12 rub [border] := write ( @ew_color, 0))  
border:= border + 1 rood (nu~ons + 1) 

else 
13 rub [border]:= write ((1 - new_color, 0))  

end 

Procedure R E F R E S H  {refresh register values} 
if  not_leaf 
then 

14 for m:= 1 to border - 1 do rub [m] := write ((new_color, 0))  
15 for m : = border to nu~ons 

do rub [ m ] :  = write ((1 - new_color, 0))  
end 

16 if  not_root then rba := write (1 -- new_color) 

Fig. 4.2. The mutual-exclusion protocol for dynamic tree systems 
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son. Once the privilege is passed to all processors in the 
subtree rooted at this son it is returned to P. Subsequently 
the privilege is passed to P's second son from the left, 
and so on. The phase ends when the rightmost son of the 
root returns the privilege to the root itself. In each phase 
the privilege is passed twice along each edge, once in each 
direction. Consequently, each processor becomes privi- 
leged d times where d is the processor's degree. 

At the beginning of each phase all registers in the tree 
are colored by one color (say 0), during the phase the 
tree is recolored by the complementing color (in this 
case 1). For each edge e, its unbalance register is recolored 
whenever the privilege is passed through e, and its balance 
register is recolored when the privilege is returned back 
through e. Thus in every intermediate configuration the 
tree is partitioned by a path of unbalanced edges that 
goes from the root to the DFS's  "center of activity", 
which is the node of the privileged processor. Every un- 
balance register on this path is colored with the new color 
(1), while all balance registers on this path are colored 
with the old color (0). All edges left of this path are 
colored with the new color (1) while all edges right of 
the path are colored by the old color (0). 

Each processor P has two internal variables called 
new_color and border. Variable new_color is binary, its 
value indicates the color in which the tree is recolored. 
The value of border indicates the index of the next son 
of P to whom the privilege should be passed. This is also 
the index of the next outgoing link of P to be recolored 
by new_color. When the value of border is 0 the privilege 
should be returned to P's father in the next pass. There- 
fore the value of border ranges between 0 and nu~ons. 
In addition to new_color and border, each processor has 
the internal variables needed for all instances of the bal- 
ance-unbalance protocol in which it participates. The state 
set of Pg, S~, contains every possible assignment of per- 
mitted values to the variables of Pi. 

The protocol for the root and for a normal processor 
is written for processor P with nu~ons sons. The un- 
balance register of P's incoming link (which is written by 
P's father and which is read by P)  is denoted by q,b, the 
balance register of P's incoming link (which is written by 
P and which is read by P's father) is denoted by rba. The 
registers of P's outgoing links are denoted as follows: for 
each outgoing edge e m, 1 <_ m <_ nu~ons, the unbalance 
register of em, (which is written by P and which are read 
by P's son) is denoted by rub [m] and the balance register 
of e m (which is written by P's son and which is read by 
P)  is denoted by sba [m]. 

The program for a processor is a loop which is exe- 
cuted forever. Analogous to the balance-unbalance pro- 
tocol the loop is divided to a refresh block and a main 
block. The refresh block consists of a subroutine called 
R E F R E S H  in which all the processor's registers are re- 
freshed. Similar to the individual balance-unbalance pro- 
tocol it can be proved formally (though we do not bother 
to do it) that R E F R E S H  may change a color of a register 
only until the end of its first complete execution. After 
R E F R E S H  is executed once from its beginning to its end 
the processor is refreshed and the colors in all its registers 
can be deduced by the values of border and new_color. 

After a processor is refreshed it proceeds to execute 
its main block. Processor P starts its main block by read- 
ing all the balance registers of its sons. In addition a non- 
root processor repeatedly reads the unbalance register of 
its father until its incoming link is open. Analogous to 
the balance-unbalance protocol a processor proceeds to 
execute its main block only if it is privileged. A processor 
checks that it is privileged by use of two predicates called 
al lout l inks_balanced and in_link_unbalanced (the root 
only checks predicate allout_Iinks_balanced). Both predi- 
cates are checked using local values only, no additional 
read actions are required. Predicate allout_l inks bal- 
anced holds if the processor's internal variables indicate 
that all its outgoing links are balanced, for leaf nodes 
that have no outgoing links this predicate always 
holds. Predicate in_link_unbalanced holds if ub_color= 
1 - new_color. Since the processor only checks its internal 
variables it may get an erroneous indication. In the cor- 
rectness proof below we show that this situation may 
happen only finitely many times. 

In order to prove that the protocol is self-stabilizing 
we first define the set M E  of legitimate sequences of 
system configurations. Any sequences s ~ M E  satisfies 
the following: 

[Exclusion]: In each configuration C of s at most one 
processor is privileged. 
[Fairness]: During s each processor is privileged infinitely 
often. 

A subtree T is uniformly colored in some configuration 
C, if in C, all the processors of Tare refreshed, all registers 
of T have the same color and all links of T are open. To 
get some intuition on how the protocol stabilizes note 
that after a processor is refreshed, it is privilegd only if 
all its outgoing links are balanced. When the processor 
is privileged it "assumes" that all its subtrees left of the 
border link are colored with new_color and that the bor- 
der subtree itself and all the subtrees right of the border 
link are colored with the complementing color. When any 
of its outgoing links is not balanced the processor "waits" 
until its son balances the link. As the execution proceeds 
larger subtrees become uniformly colored until the entire 
tree is uniformly colored. In the sequel we prove that any 
configuration in which the entire tree is uniformly colored 
is a safe configuration for the protocol. 

Lemma 4.1. Let E be an arbitrary fair execution. I f  during 
E the colors of  all registers in the system are constant then 
there exists a configuration C t in E such that for every 
subsequent configuration C= (u >> t) all the system links are 
open. 

Proof We prove the lemma by showing that for every 
processor Pi in the system there is an index t (i) (t (i) 
depends on E) such that starting in Ct( o and subsequently 
throughout E all the outgoing links of P~ are open. The 
proof proceeds by induction on d, the distance of P; from 
the root. 

Base Case. d= O. In this case Pi is the root processor. 
Since E is fair the root refreshes its registers infinitely 
often. Let Ct(i) be the configuration reached by the system 



after the root executes R E F R E S H  entirely for the first 
time. (A processor may start in the middle of REFRESH,  
in this case we only consider the second time in which 
R E F R E S H  is executed.) In Ct(~ all the root's outgoing 
links are open. Following C~( o the root reads all the 
balance registers of its sons. Since in E all colors are 
constant, by the time this read step is over the root has 
a correct view. The proof proceeds now by assuming that 
the root closes a link and by applying Lemma 3.2 to show 
that whenever the root closes a link it subsequently 
changes the color of the link's unbalance register, a con- 
tradiction. 

Induction Step. We assume correctness of the lemma for 
all processors at distance d from the root. Let Pi be an 
arbitrary processor at distance d +  1 from the root. We 
show the existence of a configuration Ct( o after which all 
Pg's outgoing links are open. Let Pf be the "father" of P~. 
The distance of PT from the root is d. By the induction 
hypothesis there exists a configuration C,(T~ after which 
P~'s incoming link is open throughout E. Therefore fol- 
lowing C~)P~'s behavior is similar to the root's behavior 
and the same proof applies. [] 

Lemma 4.2. Eventually, the color o f  at least one register 
in the system is changed. 

Proof  Assume towards a contradiction that E is a fair 
execution during which no processor changes the color 
of any of its registers. By Lemma 4.1 there exists a con- 
figuration C~ (t >_ 0) in E such that for every configuration 
C u (u >_ t) all the system links are open. 

Case 1. In C~ all the links of the root are balanced. 
Following C~ and after the root is refreshed, it reads the 
balance registers of all its sons, discovers that it is priv- 
ileged and subsequently changes the color of its border 
link, a contradiction. 

Case 2. In C~ at least one of the root's outgoing links is 
not balanced. 

By the assumption no color field is changed. Hence 
any unbalanced (balanced) link in C t remains unbalanced 
(balanced) during E. Consider an unbalanced link 
(PT---~P~) of maximal distance from the root. The in- 
coming link of P, is unbalanced and all the outgoing links 
of P~ are balanced in any configuration of E. Following 
C~ and after P~ is refreshed it reads the unbalance register 
of its incoming link and the balance registers of its out- 
going links (if it has any) and discovers that it is privi- 
leged. Subsequently P~ unbalances its border link or, if 
border = O, P, rebalances its incoming link, a contradic- 
tion. [] 

Corollary 4.3. In every fair execution the color of  at least 
one register is changed infinitely often. 

Proof  The proof is immediate by a repeated application 
of Lemma4.2. [] 

Lemma 4.4. I f  a processor P changes the color of  one o f  
its registers infinitely often, then P executes its loop infi- 
nitely often. 
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Proof By the observation that during one execution of 
its loop, P may change the color of each of its registers 
at most twice (at most once after the first time P com- 
pletes its loop). [] 

Lemma 4.5. Let P be arbitrary processor, let e 1 be P's 
incoming link and let e 2 be an arbitrary outgoing link of  

1 and 2 be the unbalance registers o f  e 1 and e 2 P. Let rub rub 
respectively, and let r~a and r~a be the balance registers o f  
e 1 and e 2 respectively. The following claims hold: 
(a) I f  the color of  rla is changed infinitely often, so is the 
color of  rib. 
(b) I f  the color of  r~a is changed infinitely often, so is the 
color o f  r]b. 
(c) I f  the color o f  r2b is changed infinitely often, so is the 
color o f  r2a. 
(d) I f  the color of  rib is changed infinitely often, so is the 
color of  r~a. 

Proof By Lemma 4.4 each of the conditions in items 
a -d  implies that P executes its loop infinitely often and 
in particular P is eventually refreshed in E. 
(a) Once P is refreshed and throughout E it holds that 
right before the color of r~a changes, the color of r~a is 
not equal to the color of rub.2 This last assertion implies 
that between any two successive changes of the color of 
rla, the color of rib is changed too. 
(b) If  r ~  is changed infinitely often, then eventually it is 
changed only after P executes line 7 and finds that the 
incoming link e I is unbalanced. Assume for contradiction 

i is never changed from some point on. After this that rub 
point, whenever P writes to rb~ the link becomes balanced, 
and it remains so until the next time P checks the con- 
dition in line 7. Since the link remains balanced, this 
condition does not hold. Hence, P never changes r~  again, 
a contradiction. 
(c) The proof is similar to the proof of (b). 
(d) The proof is identical to the proof of (a). [] 

Lemma 4.6. In every fair execution of  the protocol the color 
of  every register is changed infinitely often. 

Proof By Corollary 4.3, the color of some register is 
changed infinitely often. By a repeated application of (b) 
and (d) of Lemma 4.5, this implies that the color of a 
register of the root processor is changed infinitely often. 
Assume that the root has nu~ons  sons. Whenever the 
root colors a register, the value of border is increased by 
1 (mod nu~ons + 1). This means that the color of all the 
root's registers is changed infinitely often. The proof is 
now completed by a repeated application of (a) and (c) 
of Lemma 4.5. [] 

Since the color of every register in the system changes 
infinitely often we can now use Lemma 3.5. For this we 
consider a fair execution of the tree protocol, E, and 
regard the color changes on the registers of any link dur- 
ing E, as a separate execution of the balance-unbalance 
protocol. Using this method we get: 

Corollary 4.7. In every fair execution every link descriptor 
reaches a configuration in the legitimate cycle (o f  Fig. 3.3). 
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We proceed by combining the above results in order 
to show that eventually the system converges to a con- 
figuration in which the entire system tree is uniformly 
colored. 

Lemma 4.8. There are configurations in E in which the 
entire system tree is uniformly colored. 

Proof Let E '  be a suffix of E in which all registers are 
refreshed and all link descriptors follow the legitimate 
cycle. Consider an arbitrary link e = (Pf---~P=): In E '  the 
predicate allout_links_balanced holds for P= only when 
all its outgoing links are indeed balanced. Thus in E ' ,  
after e is unbalanced, P= rebalances e (by changing the 
color of its balance register) only when e is open and after 
P='s outgoing links are balanced and colored by the color 
of the unbalance register of e. Using this fact, we prove 
the following: 

Claim. Eventually, for each link e = (Pz--->P=), P= writes 
0 in the balance register o fe  only when the subtree rooted 
at P= is uniformly colored by O. 

Proof of claim. The proof is by induction on h, the height 
of the subtree rooted at P=. The claim holds trivially if 
P= is a leaf. Assume it holds for any processor P such 
that the height of the subtree rooted at P is smaller then 
h. Let the height of the subtree rooted at P= be h. Consider 
a configuration in which Ps writes 0 into the unbalance 
register of e, setting the link descriptor to (1,0, 0---* 1, 1). 
Since all processors are already refreshed, any additional 
execution of REFRESH does not change the color of the 
unbalance register of e. Since the link descriptor of e is 
in the legitimate cycle the unbalance register of e is not 
changed before P= rebalances the link by recoloring the 
balance register of e with 0. It was already proved that 
P= rebalances the link only after the registers of  all its 
outgoing links are balanced and colored 0. Since the link 
descriptors are changed according to the legitimate cycle, 
those outgoing links are balanced by the sons of P=. By 
the induction hypothesis, each son of P= rebalances its 
incoming link only after its subtree is uniformly colored 
with 0, hence when all links outgoing from P= are 
balanced with 0 the entire subtree rooted at P= is 
colored with 0. This proves the claim. 

The proof of the lemma is completed by applying the 
claim to the links emanating from the root processor. For 
this, consider a configuration C in which all the root 
registers are colored 0 (there are infinitely many such 
configurations in E - see proof of Lemma 4.6), and all 
the link descriptors are changed according to the legiti- 
mate cycle. There is a configuration C' following C 
in which all the root's outgoing links are balanced to 0 
(otherwise the root never colors any of its registers). But 
C'  could be reached only by having all the root sons 
balancing their incoming links to 0, which by the claim 
means that all the subtrees rooted at the root's sons are 
uniformly colored by 0, and hence the entire tree is uni- 
formly colored. [] 

We proceed by showing that eventually, in any con- 
figuration at most one processor is privileged. 

Lemma 4.9. Eventually there is a single privileged processor 
in every configuration. 

Proof Recall that a privileged processor in our proto- 
col is a processor P which is about to execute either 
line 3 or line 7 of the code and for which the predicates 
in_link_unbalanced and allout_linLbalanced are true. 
Once every link descriptor is in the legitimate cycle, those 
predicates are true for P only if indeed the incoming link 
of P is unbalanced and its outgoing links are balanced. 
To prove the lemma it suffices to prove that eventually 
there is at most one processor for which the incoming 
link is unbalanced (or it is the root) and all its outgoing 
links are unbalanced. We will prove the following stronger 
result: 

Claim. Eventually, in every eonfiguration there is at most 
one processor, say P, whose incoming link is unbalanced 
(or it is the root), and all its outgoing links are balanced. 
Moreover, all the links in the system are balanced, except 
the links on the path from the root to P. 

Proof of Claim. By induction on the order of configu- 
rations in E. The induction base is a configuration Ct in 
which all registers and variables are colored 0. By 
Lemma 4.8 this configuration, which satisfies the claim, 
is reached in every fair execution. Assume that the claim 
holds for a certain configuration C, (u :> t). We have to 
show that the claim holds for C= +1. 

Let P be the only privileged processor in C,. If  the 
atomic step between C, and C,+ 1 does not change the 
value of any register then we are done. If  the atomic step 
changes the value of some register say r, then r is a register 
of P (since P is the only privileged processor, and only 
a privileged processor may write). The fact that every 
link descriptor is in the legitimate cycle, implies that if r 
is the unbalance register of an outgoing link then P un- 
balances the link, and the claim holds for P's son. If  r is 
the balance register of P's incoming link, then P balances 
the link, and the claim holds for P's father. This com- 
pletes the proof of the claim, and hence of the Lemma. [] 

Corollary 4.10. The protocol is self-stabilizing relative to 
the set ME. 

Proof By Lemma4.9 at most one privileged processor 
exist hence the [exelusionl requirement holds. 

By Lemma 4.6 each processor is privileged infinitely 
often hence the [fairness] requirement holds. [] 

5 A mutual-exclusion protocol for dynamic networks 

In this section we present a mutual-exclusion protocol 
for dynamic networks. Consider a semi-uniform system 
in which each link is augmented by two read only registers 
called the tree-registers. The tree registers encode a span- 
ning tree of the communication graph rooted at the spe- 
cial processor, as follows: The registers for each link 
should specify whether the link belongs to the spanning 
tree; in case the link belongs to the spanning tree its 
registers should specify its direction; these parameters can 
be obtained by the processors on the link's endpoints. In 
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this case a self-stabilizing, mutual-exclusion protocol for 
a system with any (static) communication graph can be 
derived simply by pre-computing a spanning tree for this 
system's communication graph and encoding it into the 
tree registers. The tree registers can be hardwired and 
therefore constant throughout any execution. The pro- 
tocol is obtained by executing the mutual-exclusion pro- 
tocol for tree systems where links which are not in the 
spanning tree are ignored. 

This however falls short of  our aim in this paper since 
the resulting protocol is not dynamic and it requires some 
pre-computing. On the other hand this protocol moti- 
vates the following ideas: 

(1) A rooted spanning tree of the communication graph 
will be computed by a self-stabilizing protocol whose 
registers are eventually constant. 
(2) The registers of  the spanning tree protocol will be 
used as tree registers for the mutual-exclusion protocol. 
(3) Both protocols will be combined to achieve a dy- 
namic, self-stabilizing, semi-uniform protocol for mutual- 
exclusion on general graphs. 

In the rest of this section we show how- these ideas are 
implemented. 

5.1 A rooted spanning tree protocol 

The spanning tree protocol produces a B F S  tree of the 
system's communication graph. Let G (V, E)  be a graph 
with orderings a = ( ~ , a 2 , ' '  " , ~ )  of  the edges incident 
to each node v i ~ V. Define the First B F S  Tree of G 
relative to v~ and c~ to be a B F S  tree, rooted at v 1. In 
case a node, v~ of distance d +  1 from v 1 has more than 
a single neighbor of  distance d from v~, v~ is connected 
to its first neighbor, according to c~, whose distance from 
v ~ is d. The protocol always produces the First B F S  Tree 
of the system's communication graph, with respect to the 
node of the special processor and to the (arbitrary) or- 
derings a = (a~, c~2,.. . ,  ~,)  in which the neighbors of all 
processors are ordered. The special processor is called the 
root processor. 

Essentially the protocol is a distributed B F S  protocol. 
Each processor continuously tries to compute its distance 
from the root and reports it to all its neighbors by writing 
it in its registers. At the beginning of an arbitrary 
execution the only processor which is guaranteed to com- 
pute the right distance is the root  itself. Once this distance 
is written in all the root 's registers, the value stored in 
these registers will never change. Once all processors of 
distance d from the root have completed computing their 
distance from the root correctly and write it in all their 
registers, their registers remain constant throughout the 
execution and processors of distance d +  1 from the root 
are ready to compute their own distance from the root 
and so forth. The spanning tree protocol bears some 
similarity to the ARPANET routing protocol [14, 15] 
(that latter protocol assumes a different model). 

The output tree is encoded by means of  the registers 
as follows: Each register rij, in which Pi writes and from 
which Pj reads, contains a binary father field denoted by 

R o o t :  do fo rever  
for  m : =  1 to nu~eighbors do write ti, . : =  (0,  0 )  ; 

od 

Other: do forever 
for m:= 1 to nu_neighbors do irmi:=read(rmi); 
first found:= FALSE; 

(*) dist:=min(irmi.dist)+ l; 
fo r  m : =  1 to nu~eighbors 
do 

(**) if not first_found and ir ,, i . distance = dist - 1 
then 

write t im : = (1, dist ) ; 
first found:= TRUE; 

else 
write tim : =  (0,  dist) ; 

od 
od 

Fig. 5.1. The spanning tree protocol for Pi 

rij.father. If Pj is the father of Pi in the output B F S  tree 
then the value of r~j.father is 1, otherwise the value of 
r~j.father is 0. In addition each register r U has a distance 
field, denoted by rij.distance which holds the distance 
from the root to P~. 

The code of  the protocol, for the root and for the 
other processors, appears in Fig. 5.1. In this code the 
number of the processor's neighbors is given by the pa- 
rameter nu~eighbors. The program for the root is very 
simple: It keeps "telling" all its neighbors that it is the 
root by repeadly writing the values (0, 0)  in all its reg- 
isters. The first 0 tells each neighbor that it is not the 
father of  the root, the second 0 is the distance from the 
root to itself. The program for a normal processor con- 
sists of a single loop. In this loop the processor reads all 
the registers of  its neighbors. Processor Pi which has 
nu~neighbors neighbors keeps nu~eighbors internal 
variables corresponding to the nu~eighbors registers from 
which Pi reads. The internal variable corresponding to 
register rig is denoted by irje. This variable stores the last 
value of rji read by Pc. Its two fields are denoted by 
iris.father and irji.distance respectively. Once all these 
registers are read, P~ computes a value for the variable 
dist which represents P,'s current idea of  its distance from 
the root. The purpose of the boolean variable first found 
is to make sure by the end of each pass of the loop that 
each processor has a single father. The minimum in line 
(*) is taken over m, 1 <_m<_nu~eighbors. 

The task S T  is defined as the set of all configuration 
sequences in which every configuration encodes the first 
B F S  tree of the communication graph. In the following 
lemma we characterize the set of  the safe configurations 
for the protocol: 

Lennna 5.1. Let C be a system configuration which satis- 
fies ." 
(a) The processors registers encode the first B F S  tree of  
the system's communication graph rooted at the root. 
(b) For each normal processor Pi and for each o f  its neigh- 
bors Pi ,  iru = ru" 
(c) For each normal processor Pi, the local variable dist 
stores the distance of  Pifrom the root and the value of  the 
local variable first found satisfies: I f  the value of  the local 
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variable m is m o and P~ has a neighbor of distance dist - 1 
from the root whose rank according to ~ < m o then 
first found = TRUE, otherwise first_found = FALSE. 

Under the above conditions, configuration C is safe for 
the protocol 

Proof Every configuration C that satisfies the above three 
requirements is reachable under some schedule when the 
system is initialized from the "natural" initial configu- 
ration. It is not hard to verify that following C the value 
of no register ever changes hence all subsequent config- 
urations encode the first B F S  tree of the system's com- 
munication graph as required by the definition of the set 
ST. [] 

The reader may suspect that requirement (c) is super- 
fluous and that (a) and (b) are enough to ensure that a 
safe configuration is reached. This possibility is refuted 
by configuration C '  in which (a) and (b) hold but (for 
example) all dist variables are set to 0 and the program 
counter of each normal processor points to the atomic 
instruction that starts in line (**). Each normal processor 
writes (1,0) in the register in which it communicates with 
its first neighbor in its first atomic step past C'.  In its 
next d -  1 atomic steps it will write (0, 0) in the registers 
with which it communicates with its other neighbors. This 
obviously results in a non safe configuration. Further- 
more, tampering with first found while keeping the rest 
of the requirements, (i.e. (a), (b), and half of (c)) may 
even cause a loss of the tree structure. To prevent these 
problems we need requirement (c) that guarantees that 
the internal state of the processor agrees with the values 
of its registers. This is another demonstration of the de- 
ceiving nature of read/write atomicity in the self-stabi- 
lizing paradigm which made our job in this algorithm so 
difficult. 

Lemma 5.2. For every integer d>_ 0 there exists an integer 
t d such that for every t > t d the stabilized diameter of  the 
system is at least d. This means that for every pair of  
neighbors Pi and P j where the distance of  Pi from the root 
is l, the following hoM: 
(a) I f  l <_ d then ru.distance = L 
(b) I f  l<_d then r~j.father has the "right" value. That 
is: i f  Pj is the first neighbor of  P i (using o~) of distance 
l - 1  from the root then r~j.father=l, and otherwise 
rij. father = O. 
(c) I f  l <  d then irji=rj~. 
(d) I f  l > d then r~j.distance > d. 

Proof We prove the theorem by induction over d. In the 
proof we use the fact that due to the fairness of E every 
processor is activated in E infinitely often. 

Base Case. (Proof for d =  0) The only node of distance 0 
from the root is the root itself. Assume that the root has 
nu~eighbors neighbors. After nu~eighbors activiations 
of the root, all its register store the value (0, 0).  The 
values stored in the registers of the root will not be 
changed any more. This completes the proof of assertion 
(a). Assertion (b) is implied by the root's code since no 
processor is the "father" of the root. Assertion (c) holds 
vacuously for the base case, since there are no processors 
of distance < 0 from the root. For each normal processor 

P/assertion (d) is satisfied after Pi executes line (*) once 
and then completes the outer loop of the protocol since 
computed value of l fIdist is always positive. 

Induction Step. (Assume Let t a be an integer such that 
for every t > t  d, configuration C t satisfies assertions 
(a)-(d) for some integer d, d_> 0. We show the existence 
of some integer td+ ~ such that for every integer t_> td+ 1 
configuration Ct satisfies assertions (a)-(d) for d +  1. 

I f  the distance of P~ from the root is d +  1 then all its 
neighbors are of distance => d from the root. Moreover 
Pi has at least one neighbor, whose distance from the root 
is exactly d. By asserton (a) of the induction hypothesis, 
for every P~ of distance d from the root, it holds that the 
value stored in rki.distance in Ct~ and all subsequent con- 
figurations is d. By assertion (d) of the induction hy- 
pothesis, for every PI of distance > d from the root, it 
holds that the value stored in rli.distance in C~ and all 
subsequent configurations is > d. Therefore, whenever 
Pi executes line (*) after Ct~, the value assigned to the 
variable dist is exactly d + 1. Once this value is written in 
all registers of Pc, assertions (a) and (b) hold for P~. The 
same holds for all processors of distance d + 1 from the 
root. Hence there is a configuration C1 reached by the 
system, such that for every configuration C following C1, 
assertions (a) and (b) are satisfied for all processors of 
distance d +  1 from the root. 

It is easy to see that from C 1 and onwards forever, the 
values stored in the registers of all processors of distance 
d +  1 from the root will not be changed any more. In 
particular all neighbors of all processors of distance d 
from the root will not change the values stored in their 
registers any more. If  Pc is a processor of distance < d +  1 
from the root then each read action after C~ sets one of 
its internal variables to its final stationary value. Thus 
there is a configuration C2 reached by the system, such 
that every configuration C following C 2 satisfies assertion 
(c) for d +  1. 

Let P~ be an arbitrary processor of distance > d +  1 
from the root. The neighbors of P~ are all of distance 
> d +  1 from the root. By assertion (d) of the induction 
hypothesis starting from Ct~ and onwards each neighbor 
Pj of Pi satisfies rj~.distance > d. Therefore, whenever 
Pi executes line (*) after Ct~ the value assigned to the 
variable dist is > d +  1. Once this value is written to all 
registers of Pi assertion (d) is satisfied for P~. The same 
holds for all processors of distance > d +  1 from the root. 
Hence there is a configuration C 3 reached by the system, 
such that every configuration following it satisfies asser- 
tion (d) for d +  1. Let C~+1 be the later configuration 
among C 2 and C 3. It is easy to see that indeed every 
configuration C following Ct~+, satisfies assertions 
(a)-(d) for d + l .  [] 

Corollary 5.3. The protocol presented above is self-stabi- 
lizing relative to the set ST. 

5.2 Fair combination of self-stabilizing protocols 

A self-stabilizing, mutual-exclusion protocol for general 
graphs can be obtained by combining the self-stabilizing 
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rooted spanning tree protocol, presented in Subsect. 5.1, 
with the self-stabilizing, mutual-exclusion protocol for 
dynamic tree-structured systems, presented in Sect. 4, as 
follows: The combined protocol runs both protocols al- 
ternately, such that the latter protocol uses the tree en- 
coded by the tree registers written by the former protocol. 
By the correctness of the spanning-tree protocol, the tree 
registers eventually encode a spanning tree, and are sub- 
sequently constant throughout the execution. By the cor- 
rectness of  the mutual-exclusion protocol, it eventually 
converges to a legitimate execution of mutual-exclusion 
on this spanning tree, and hence on the entire graph. 

We now formalize and extend this idea to a general 
technique of  fa ir  protocol  combination. In this technique 
two simple protocols, called a "slave" protocol and a 
"master" protocol, are combined to obtain a more com- 
plex protocol. Our dynamic, self-stabilizing, mutual-ex- 
clusion protocol is obtained by combining the spanning 
tree protocol as the slave protocol with the mutual-ex- 
clusion protocol presented in the previous section as the 
master protocol. In the formal definition we assume that 
both protocols are shared memory protocols but we 
do not impose any restriction on either the exact model 
(register or non-register) or on the specific communica- 
tion graph or on the protocols'  atomicity level. Using 
proper definitions one can also eliminate the shared mem- 
ory assumption. 

Assume that the "slave" protocol is called Pr~, for a 
task T~ and that the "master" protocol is called Pr  2 for 
a task T 2. The state set of  a processor P~in the combined 
protocol is S ~ = A e •  e, where Az is the state set of Pr~ 
and Ai• B e is the state set of Pr  2 but we assume that P r  2 
modifies only the B e components. The state transition 
function of the slave protocol P r  I for processor Pe is 
a function f:Ai-----~Ae, while the state transition of the 
master protocol Pr  2 for Pe is a funcion g:A~•  ~. 
These transition functions are extended to functions over 
S e as follows: For  ( a , b ) ~  S , f ( ( a , b ) )  is ( f ( a ) , b )  and 
g ((a, b)) is (a, g (a, b)). In the combined mutual-exclusion 
protocol, Prl  is the spanning tree protocol and the Ai's 
are the states modified by this protocol, including the tree 
registers; P r  2 is the version of the mutual-exclusion pro- 
tocol which uses the tree registers to encode the tree edges 
on which it operates. 

The next definitions formalize the concept of an ex- 
ecution of  the master protocol which assumes a self-sta- 
bilized execution of the slave protocol. Let S i, Ae, B e and 
P r  2 be as above, and let T~ be a task in which the states 
of processor Pe are in A;. Assume that T~ is closed under 
stuttering (i.e., for each sequence L in T~, the sequence 
obtained from L by duplicating each entry finitely many 
times is also in T 1). For  configuration C, C ~ S~ • �9 �9 �9 • S~ 
define the A-projection of C as the configuration 
( a ~ , . . . , a n ) ~ A l •  •  n. For  a sequence of configu- 
rations L = (C1, C2,. �9 �9 ), the A-projection of L is the se- 
quence (A~, A 2 , -  �9 �9 ) ,  where A e is the A-projection of C~. 
A fair  execution o f  P r  2 given 7"1 is a sequence of config- 
urations E =  (C1, C2,. �9 �9 ) such that 

(a) For  every two consecutive configurations C~ = (A~, Bz) 
and C~+ 1 =(Ai+I ,B;+I ) ,  either A i = A e +  1 or B i = B i +  1. 

(b) If BecB i+  1 then the transition from C e t o  Ci+ 1 is a 
transition of Pr2, and the sequence of these transitions 
is fair (i.e., each processor is activated in it infinitely 
often). 
(c) The A-projection of E belongs to T~. 

Condition (b) says that the modifications of the states in 
the Be's are done by P r  2 in a fair manner, while condition 
(c) says that the sequence of states in the Ai's forms a 
legitimate sequence of  task T~. 

We say that protocol  Pr  2 is self-stabilizing for  task T 2 
given task T~ if any fair execution of P r  z given T 1 has a 
suffix in T 2. Finally, a protocol Pr  is a fair  combination 
of Pr  1 and P r  2 if in P r  every processor executes steps of 
Prl  and Pr  2 alternately. Note that for an execution E of 
Pr, the A-projection of E is a sub-execution of E corre- 
sponding to a fair execution of the slave protocol Pr~. 

The following theorem gives sufficient conditions un- 
der which the combination of two self-stabilizing pro- 
tocols is also self-stabilizing: 

Theorem 5.4. Assume that Pr 2 is self-stabilizing fo r  a task 
T 2 given task T 1 . I f  Pr 1 is self-stabilizing fo r  T1, then the 

fair  combination o f  e r  a and Pr 2 is self-stabilizing fo r  T 2. 

Proo f  Consider any execution E of Pr, the fair combi- 
nation of Pr I and Pr 2. By the self-stabilizion of Pra, E 
has a suffix E" such that the A-projection of E '  is in T~. 
By the assumption that Pr 2 is self-stabilizing given T~, 
E '  has a suffix in T 2. [] 

Theorem 5.4 provides a general methodology to con- 
struct self-stabilizing protocols for complex tasks: Given 
a task T z for which we wish to construct the protocol, 
first define a task T~ and construct a protocol Pr 2 which 
is self-stabilizing for T 2 given T~, and then construct a 
protocol Prl which is self-stabilizing for T~. The fair com- 
bination of Pr 1 and Pr 2 is the desired protocol. Note that 
this methodology does not require that the protocol Pr 1 
reaches a "steady state", in which the communication 
registers (or any other component in the state ai of  pro- 
cessor Pc) are never changed. 

Corollary 5.5. The fair  combination o f  the spanning tree 
protocol with the mutual-exclusion protocol  is a mutual- 
exclusion protocol  on systems with an arbitrary dynamic 
communcation graph. This protocol is self-stabilizing in 
the presence o f  the distributed demon under read/wri te  
atomicity. 

We conclude this section by observing that the notion 
of  fair combination of  protocols can be further extended, 
by allowing the protocol Pr to interleave the executions 
of the protocols Pr~ and Pr 2 in an arbitrary way, and not 
necessarily in alternating manner. In this more general 
setting, each processor switches from executing protocol 
Pr I to executing protocol Pr 2 and vice versa according 
to some internal conditions, which should guarantee fair 
execution of both protocols. This adds extra flexibility to 
the way by which one can achieve composite protocols 
by combining simpler ones. We demonstrate this by 
the following general theorem, concerning the fair com- 
bination of  our mutual-exclusion protocol with an arbi- 
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trary self-stabilizing protocol. In this theorem we assume 
the register model used in the previous sections. 

Theorem 5.6. For any semi-uniform protocol Pr 2 which is 
self-stabilizing under composite atomicity there is a semi- 
uniform protocol Pr which is self-stabilizing (for the same 
task)  under read~write atomicity. 

Proo f  We describe a protocol Pr which simulates Pr 2 
under read/wri te  atomicity. Pr is a fair combination of  
Pr 2 as the master protocol and the mutual-exclusion pro- 
tocol presented above, as the slave protocol Pr 1. We de- 
scribe Pr by describing the rules by which it switches f rom 
executing Pr  2 to executing Pr 1 and vice-versa. 

Each state transition of  Pr 2 under composite atomicity 
can be written as a sequence of atomic steps under 
read/wri te  atomicity. Whenever a processor P~ is sched- 
uled to operate, it first checks if it is in its critical section 
according to Pr 1. I f  not, then Pi executes a step of  Pr 1 . 
I f  Pi enters its critical section in Prl ,  it stops executing 
Pr I and executes steps of  Pr 2, until it completes one state 
transition of  Pr 2 under the composite atomicity (this may 
take many  atomic steps under the read/wri te  atomicity). 
Once this is done, Pi transfers the privilege to one of its 
neighbors, according to Prl ,  and so on and so forth. The 
mutual-exclusion property ensures that as long as P~ does 
not complete its state transition in Pr2, no other processor 
(and in particular no neighbor of  Pi) executes any state 
transition of its own. The fair combination ensures that  
each processor enters its critical section infinitely often. 
Thus, each execution of Pr has a suffix which is equivalent 
to a fair execution of  Pr 2 under composite atomicty. [] 

6 Concluding remarks 

A semi-uniform, dynamic, self-stabilizing, mutual-exclu- 
sion protocol for systems with an arbitrary communica- 
tion graph was presented. The protocol is correct in the 
presence of read/wri te  atomicity under the distributed 
demon. (For  protocols that use read/wri te  atomicity the 
distributed demon and the central are equivalent.) Using 
this protocol we showed that any self-stabilizing protocol 
which is correct under composite atomicity can be exe- 
cuted under read/wri te  atomicity in a self-stabilizing 
fashion. 

Although this paper  does not concern itself with com- 
plexity measures it is worth mentioning that  when time 
is measured by some appropriately defined round com- 
plexity, the stabilization time of  the spanning tree pro- 
tocol is O ( D ) ,  where D is the diameter of  the system's 

communication graph. The stabilization time of the mu- 
tual-exclusion protocol is O ( n D ) .  
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