
Distrib Comput (1993) 7:3-16

�9 Springer-Verlag 1993

Self-stabilization of dynamic systems assuming
only read/write atomicity*
Shlomi Dolev 1, Amos Israeli 2, Shlomo Moran 1

1 Department of Computer Science, Technion - Israel Institute of Technology, Haifa 32000, Israel
2 Department of Electrical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel

Received February 1990/Accepted April 1993

Shlomi Dolev received his B.Sc.
in Civil Engineering and B.A. in
Computer Science in 1984 and 1985,
and his M.Sc. and Ph.D. in com-
puter Science in 1989 and 1992 from
the Technion Israel Institute of
Technology. He is currently a post-
dotoral fellow in the Department of
Computer Science at Texas A & M
University. His current research in-
terests include the theoretical as-
pects of distributed computing and
communication networks.

Amos Israeli received his B.Sc.
in Mathematics and Physics from
Hebrew University in 1976, and his
M.Sc. and D.Sc. in Computer Sci-
ence from the Weizmann Institute
in 1980 and the Technion in 1985,
respectively. Currently he is a sen-
ior lecturer at the Electrical Engi-
neering Department at the Tech-
nion. Prior to this he was a post-
doctoral fellow at the Aiken Com-
putation Laboratory at Harvard.
His research interests are in Parallel
and Distributed Computing and in
Robotics. In particular he has
worked on the design and analysis

of Wait-Free and Self-Stabilizing distributed protocols.

Summary. Three self-stabi l izing p ro toco l s for d i s t r ibu ted
systems in the shared m e m o r y m o d e l are presented. The
first p r o t o c o l is a mutua l -exc lus ion p ro toco l for tree
s t ruc tured systems. The second p ro toco l is a spanning
tree p ro toco l for systems wi th any connec ted communi -

* Part of this research was supported in part by Technion V.P.R.
Funds - Wellner Research Fund, and by the Foundation for Re-
search in Electronics, Computers and Communications, adminis-
trated by the Israel Academy of Sciences and Humanities

Correspondence to: A. Israeli

Shlomo M o r a n received his B.Sc.
and D.Sc. degrees in mathematics
from Technion, Israel Institute of
Technology, Haifa, in 1975 and
1979, respectively. From 1979 to
1981 he was assistant professor and
a visiting research specialist at the
University of Minnesota, Minnea-
polis. From 1981 to 1985 he was a
senior lecturer at the Department of
Computer Science, Technion, and
from 1985 to 1986 he visited at IBM
Thomas J. Watson Research Cen-
ter, Yorktown Heights. From 1986
to 1993 he was an associate profes-
sor at the Department of Com-

puter Science, Technion. In 1992-3 he visited at AT&T Bell Labs
at Murray Hill and at Centrum voor Wiskunde en Informatica,
Amsterdam. From 1993 he is a full professor at the Department of
Computer Science, Technion. His research interests include dis-
tributed algorithms, computational complexity, combinatorics and
graph theory.

ca t ion graph. The th i rd p ro toco l is ob ta ined by use o f
fair protocol combination, a simple technique which en-
ables the combina t i on o f two self-stabil izing dynamic
protocols . The resul t p ro toco l is a self-stabil izing, mutua l -

e x c l u s i o n p ro toco l for dynamic systems with a general
(connec ted) commun ica t i on graph. The presented p ro -
tocols improve u p o n previous p ro toco l s in two ways:
Fi rs t , it is assumed tha t the only a tomic opera t ions are
ei ther read or wri te to the shared memory . Second, our
p ro toco l s w o r k for any connec ted ne twork and even for
dynamic ne tworks , in which the t opo logy o f the ne twork
m a y change dur ing the execution.

Key words: Self-stabil ization - R e a d / w r i t e a tomic i ty -
Pro toco l c o m b i n a t i o n

1 Introduction

A self-stabilizing system which is s ta r ted f rom an arbi -
t r a ry ini t ial conf igura t ion , regains its consis tency and

demonstrates legal behavior by itself, without any outside
intervention. Consequently, a self-stabilizing system need
not be initialized to any particular configuration, and can
recover from transient bugs, bugs which change the state
of one or more components of the system but keep those
components in working order. In this paper we present
self-stabilizing protocols for mutual-exclusion and for
constructing a spanning tree. The presented protocols
work on connected networks of arbitrary topology which
can change dynamically during execution. Communica-
tion among neighboring processors is carried out by use
of communication registers (called registers throughout
this paper). The atomic operations that these registers
support are read and write.

We model distributed self-stabilizing systems as a set
of state machines called processors. Each processor can
communicate with some subset of the processors called
its neighbors. The system's communication graph is the
graph formed by representing each processor as a node
an by drawing an edge between every two neighbors. A
protocol is a parameterized family of systems where the
parameters can vary over the number of different state
machines used by the protocol, the various families of
communication graphs, the set of atomic operations sup-
ported by the communications registers, etc. A proces-
sor's degree is equal to the number of its neighbors. A
protocol is uniform if all processors of the same degree
are identical. If all processors of the same degree are
identical except a single processor in the entire system,
then the protocol is semi-uniform. An atomic step is the
"largest" step that is guaranteed to be executed uninter-
ruptedly. A protocol uses composite atomicity if some
atomic step contains (at least) a read operation and a
write operation. A processor uses read~write atomicity if
each atomic step contains either a single read operation
or a single write operation but not both. The behavior
of the system is modeled by the interleaving model in
which processors are activiated by a scheduler. Whenever
an enabled processor is activated, it executes a single
atomic step. To ensure the correctness of a protocol, the
scheduler is regarded as an adversary and the protocol is
required to be correct in all possible executions. The com-
mon schedulers are the central demon which activates
processors one by one and the distributed demon which
activates subsets of processors.

The class of self-stabilizing protocols was defined by
Dijkstra in his pioneering paper [4]. In that paper Dijk-
stra presents three semi-uniform, self-stabilizing, mutual-
exclusion protocols for rings. Protocols in the same setup
but under the distributed demon are presented by Brown
et al. in [1], and by Burns in [3]. Burns and Pachl in [2]
present a uniform, self-stabilizing, mutual-exclusion pro-
tocol for rings with a prime numer of processors. A semi-
uniform, self-stabilizing protocol for some variant of the
mutual-exclusion problem which runs on tree systems is
presented by Kruijer in [11]. A self-stabilizing, mutual-
exclusion protocol for systems with arbitrary communi-
cation graphs is presented by Tchuente in [16]. Unlike
the aforementioned protocols the protocol presented in
[16] is not semi-uniform, in fact the program of each
processor depends on the system's communication graph,

and for many communication graphs all processors are
distinct. Furthermore, obtaining the protocol for each
individual system requires extensive programming work.
All these papers use the shared-memory model. The work
of Katz and Perry in [10] deals with the message-passing
model which is different in some respects from the shared
memory model. In [10], Katz and Perry present a general
method for converting arbitrary programs in the message-
passing model to equivalent self-stabilizing programs in
the same model.

All previous self-stabilizing protocols use composite
atomicity. In the work of Loui and Abu-Amara in [12],
it was shown that while there exists no consensus protocol
for systems that use read/write atomicity, the consensus
task is solvable for systems that use composite atomicity.
Since any system under composite atomicity can trivially
emulate an equivalent system that uses read/write
atomicity, composite atomicity is strictly stronger than
read/write atomicity.

A protocol is dynamic if it tolerates changes in the
communication graph during execution as long as the
communication graph remains connected. The changes
we allow are processor addition or removal and link ad-
dition or removal. Every self-stabilizing, uniform pro-
tocol that works on every communication graph is dy-
namic, since it stabilizes after any topology change. A
semi-uniform protocol that works on any communication
graph is dynamic as long as the (single) special processor
is not removed from the system. In [4], Dijkstra used
symmetry considerations and showed that for rings of
composite size, there exists no uniform, self-stabilizing,
mutual-exclusion protocol. Thus, if one opts for dynamic,
self-stabilizing, mutual-exclusion protocols then the best
that can be achieved are semi-uniform protocols.

Most previous works assumed that one-way commu-
nication from P1 to P2 is carried out by/'1 changing its
state which is observable by/~ This mode of commu-
nication is equivalent to the use of a single communica-
tion register in which P~ writes and from which all pro-
cessor to which it can communicate read. It is not hard
to show that under this communication mode, there exists
no semi-uniform, self-stabilizing, mutual-exclusion pro-
tocol in many systems, including systems with very simple
communication graphs. There are two possible ways to
remedy this problem: The first one, which was chosen by
Tchuente in [16], is to give up uniformly altogether and
program each processor individually. Since in this method
each processor is programmed individually, it cannot yield
dynamic protocols. The alternative way, which we choose
in this work, is to allow each processor to break the
symmetry among its neighbors locally. This is done by
introducing a link between every pair of neighbors. Each
link is composed of two registers and supports two-way
communication. One neighbor writes in the first register
and reads from the second, the other neighbor reads from
the second register and writes in the first. Each register
is serializable (atomic) with respect to read and write
actions.

We present two semi-uniform, self-stabilizing proto-
cols: The first protocol is a mutual-exclusion protocol for
tree structured systems. The second protocol constructs

a spanning tree of the system's communication graph;
both protocols are correct under read/write atomicity.
We then present fair protocol combination as a technique
for combining self-stabilizing protocols into another self-
stabilizing protocol. The presentation is completed by
combining the two aforementioned protocols into a semi-
uniform, self-stabilizing, mutual-exclusion protocol for
systems with any connected communication graph using
fair protocol combination. The combined protocol, like
both its building blocks, is correct under read/write at-
omicity. Using this final protocol we show that any pro-
tocol which is self-stabilizing under composite atomicity
can be executed in a self-stabilizing fashion in the pre-
sence of read/write atomicity.

Our protocols improve upon all previous protocols in
two important aspects:

- Atomieity: All previous self-stabilizing protocols use
composite atomicity. Our protocols use read/write ato-
micity, hence they subsume all aforementioned self-sta-
bilizing protocols.
- T o p o l o g y : Almost all previous self-stabilizing proto-
cols work only on restricted families of communication
graphs. In this respect our protocols improve upon all
previous protocols except the protocol of [16], since they
work in systems with arbitrary connected communication
graphs. Furthermore, our protocols are semi-uniform
hence, they are also dynamic and superior to the protocol
of [16].

The rest of this paper is organized as follows: in Sect. 2
the computational model and the requirements for self-
stabilization are discussed and formally defined. In Sect. 3
we present a simple self-stabilizing protocol called the
balance-unbalance protocol for mutual-exclusion in a two
processor system and show how to adapt it to read/write
atomicity. In Sect. 4 we present a self-stabilizing, mutual-
exclusion protocol for tree-structured systems which uses
the balance-unbalance protocol as a building block. In
Sect. 5 we present a self-stabilizing protocol for finding
a spanning tree of the system's communication graph.
We proceed by presenting fair protocol combination.
Combining the spanning tree protocol with the mutual-
exclusion protocol yields the final protocol. Section 6
contains some concluding remarks.

2 M o d e l a n d r e q u i r e m e n t s

2.1 The model

A distributed system consists of n processors, denoted by
P1, P2 Pn. Each processor is a (possibly infinite) state
machine. Processor P~ is distinguished as a special pro-
cessor. All other processors are called normal. Normal
processors have no distinct identities, the subscripts
2 n are used for notation only. Neighbors Pi and Pj
communicate with each other by using two shared
registers, r;j in which P; writes and from which Ps reads,
and ri, ~ in which Pj writes and from which P; reads. All
links incident to each processor Pi are ordered by some

arbitrary ordering e~ which induces in a natural way an
ordering of the neighbors of Pi. The collection of all these
orderings is denoted by e = (c~ 1 an).

Every register r is associated with the set 2; r of per-
mitted values which can be stored in r (the set 27 r is not
necessarily finite). Each register r has a writer - a pro-
cessor that can write in r, and a reader - a processor that
can read from r. A write operation to r stores a value
from ~r in r. A read operation retrieves the value (from
Xr) stored in r. Each register is serializable with respect
to read and write operations. The registers in which pro-
cessor P can write are called the registers of P. We choose
to look at a processor and its registers as a single entity,
thus the state of a processor fully describes the values
stored in its registers. Denote by S i the set of states of
P~. A configuration of the system is the vector of states
of all processors. Denote by G = ($1 • $2 x . . . • Sn) the
set of all possible configurations of the system.

An atomic step of a processor consists of an internal
computation followed by either a read or a write oper-
ation, but not both. Processor activity is managed by a
scheduler, which is also called the central demon. In any
given configuration the demon activates a single proces-
sor which executes a single atomic step. An execution E,
of the system, is an infinite sequence of configurations
E = C1, C2,- �9 �9 where for every i > 0, C~+ ~ is reached
from C~ by a single atomic step of a single processor. An
infinite execution is fair if every processor executes steps
infinitely often.

2.2 Task specification and self-stabilizing protocols

A self-stabilizing system demonstrates legitimate behavior
some time after it is started from an arbitrary configu-
ration. A natural way to specify a behavior in an abstract
way is by a set of sequences of configurations. We define
tasks as sets of legitimate-sequences. The semantics of any
specific task is expressed by requirements on its se-
quences. Intuitively each legitimate sequence can be
thought of as an execution of a protocol but we do not
require it formally. For instance, the mutual-exclusion
task is defined as the set of sequences of configurations
which satisfy: Each processor has a subset of its states
called the critical section; in each configuration, at most
one processor is in its critical section, and every processor
is in its critical section in infinitely many configurations.

To formally define a task T, one should specify for
each possible system ST, a set of legitimate sequences for
ST. The task T is defined as the union of the legitimate
sequence sets over all possible systems. A configuration
C of a system is safe with respect to a task T and a
protocol Pr if any fair execution of Pr starting from C
belongs to T. A protocol and a scheduler determine the
set of all possible executions of the protocol under this
scheduler. In the non-self-stabilizing model, a protocol
implements a task if all its executions belong to the set
of sequences which constitutes the task. In the self-sta-
bilizing model this requirement is relaxed, and a protocol
is defined to be self-stabilizing with respect to a task T
if the following definition holds:

[Self-stabilization]

A protocol is self-stabilizing if starting from any system
configuration, it eventually reaches a safe configuration.

This definition separates the specific task which the
protocol implements from the general requirements for
self-stabilization and allows self-stabilizing protocols for
any task. It is natural (though not necessary) to require
that a task is closed under the suffix operation. When
this requirement is adopted, any configuration which is
reachable from a safe configuration is also safe, therefore
the set of safe configurations for task T with respect to
protocol Pr is closed under executions of Pr.

2.3 Protocol description

A semi-uniform protocol is specified by describing two
types of processors: A special processor and a normal
processor. A processor is entirely determined by its type
and by the number of its neighbors. For convenience we
choose to represent each of our processors as a R A M
executing a program. Since the system is dynamic the
number of neighbors of each processor may change dur-
ing execution. This is modeled by assuming that each
processor has access to a local constant called nu~neigh-
bors in which the number of the processor's neighbors is
stored. This constant is assumed to be updated by the
hardware whenever the number of neighbors is changed.
(Later we discuss the technique of protocol combination.
In a combined protocol nu~eighbors can be updated by
a lower level protocol).

The program of each processor is partioned to distinct
atomic steps. It is assumed that each program is executed
step by step where each step is executed uninterruptedly.
Each processor is assumed to be equipped with aprogram
counter (pc) whose value indicates the next atomic step
to be executed. The partition of the program into atomic
steps is straightforward: Each atomic step consists of a
sequence of internal operations which ends either with a
write operation or with a read operation. The state of a
processor is determined by the internal state of the R A M
and the contents of its registers. The internal state of the
R A M is fully described by the values stored in its internal
variables and by its next step (the pc). Each internal
variable has a set of permitted values, a permitted state
of a processor is any assignment of permitted values to
its internal variables and to its registers.

3 The balance-unbalance protocol

3.1 The basic protocol

A processor is enabled if it can execute a state-transition.
A mutual-exclusion protocol under composite atomicity
is designed so that in each legitimate configuration there
exists a single enabled processor. The enabled processor
is privileged, it has the right to enter its critical section.
Presumably the enabled processor finds out that is is
enabled by reading its neighbors' registers, executes its

critical section, and then passes the privilege to one of its
neighbors by executing a state transition which includes
writing new values in some of its registers. The composite
atomicity ensures that this extended atomic step is exe-
cuted uninterruptedly. The balance-unbalance protocoll is
probably the simplest protocol for mutual-exclusion un-
der composite atomicity. It is designed for a system of
two processors, which are connected by a link. The two
processors are the unbalancing processor UB and the
balancing processor BA. Each processor has two states,
denoted by 0 and 1. The configuration of a system is
defined by the states (sl, s2) of UB and BA respectively.
Thus, the system has four possible configurations: (0, 0),
(1, 0), (1, 1), and (0, 1). Processor UB is enabled when
the link is balanced. Its transition function unbalances the
link by transfering (0, 0) to (1, 0) and (1, 1) to (0, 1). Anal-
ogously, BA is enabled when the link is unbalanced. Its
transition function balances the link by transfering (0, 1)
to (0, 0) and (1, 0) to (1, 1).

Consider an execution of the protocol under compos-
ite atomicity. In any possible configuration, exactly one
processor is enabled (and privileged); the enabled pro-
cessor passes the privilege to the other processor by
changing its state. Thus, starting with any configuration
of the system, and regardless of the specific behavior of
the demon, the system configuration is changed repeat-
edly according to the following cycle: ((0, 0), [UB writes],
(1, 0), [BA writes], (1, 1), [UB writes], (0, 1), [BA writes],
(0, 0)). Therefore, this protocol is a self-stabilizing, mu-
tual-exclusion protocol in the strongest possible sense:
There is a unique legitimate sequence of configurations,
which is a suffix of every possible execution of the pro-
tocol. In a way, this protocol is well known and is a
simplified version of protocols presented in [3, 4, 11, 13].

Under read/write atomicity an atomic step includes
either a read action or a write action. When an atomic
step ends by a read action, the read value may affect the
next transition. Therefore the state of each processor
should reflect the last value it read from the (register of
the) other processor. We use here the term state to denote
the full information describing the processor behavior,
while the balance-unbalance bits are called colors. The
state of UB is described by the following components:
{the color of UB, the last color of BA read by UB, the
next action to be executed by UB}. The state of BA is
described analogously as follows: {the last color of UB
read by BA, the color of BA, the next action to be exe-
cuted by BA }. A configuration of the systems is a pair
of the processor states.

Lemma 3.1. Under read/write atomicity the balance-un-
balance protocol is not a self-stabilizing, mutual-exclusion
protocol

Proof Consider configuration C = ({0, 0, write},
{ 1, 0, write}), in which the colors of UB and BA are both
0, but as a result of a transient bug, BA "thinks" that
the color of UB is 1. In C both processors are enabled
(and hence privileged).

In Fig. 3.1 we depict a prefix of an execution, starting
and ending with configuration C. In this prefix each pro-

({0, 0, write} { 1, 0, write}) [BA writesl,
({0, 0, write} { 1, 1, read})[BA readsl,
({0, 0, write} {0, 1, write}) [UB writes],
({ 1, 0, read} {0, 1, write})[UB readsl,
({ 1, 1, write} {0, 1, write}) [BA writes],
({ 1, 1, write} {0, 0, read})[BA reads],
({ 1, 1, write} { 1, 0, write}) [UB writes],
({0, 1, read}{ 1, 0, write}) [UB reads],
({0, 0, write}{ 1, 0, write}) [BA writes],

Fig. 3.1. A prefix of a non-stabilizing execution

cessor is activated and both processor are simultaneously
privileged. Since this prefix starts and terminates with the
same configuration it can be duplicated infinitely often
to obtain an infinite fair execution. In half of the config-
urations of this infinite execution UB and BA are both
privileged, hence the system does not stabilize. []

3.2 Adaption for read~write atomicity

In this section we modify the balance-unbalance protocol
to be correct under read/write atomicity. The registers
of UB and BA are called r,b and rba respectively. Pro-
cessor UB has two internal variables called my_color and
ba_color. These variables constitute the view of UB, the
values it "thinks" rub and rba have. In case the colors of
rub and rba are equal to the values of variables my color
and ba_eolor respectively, we say that ub has a correct
view. Analogously, processor BA has two internal vari-
ables called my_color and ub_color which constitute BA's
view. In case the colors of rba and rub are equal to the
values of my_color and ub_color respectively, we say that
BA has a correct view.

The problem depicted in Fig. 3.1 is caused by the na-
ture of read/write atomicity. A processor may read the
color of the other processor, then the second processor
may write and change its color. After that, the first pro-
cessor may use the color it read, which is already outdated
at this point, and enter its critical section. Consequently
mutual-exclusion might be violated. In order to overcome
this problem, some additional synchronization between
the processors is required. For this purpose UB is allowed
to close the link for BA using the binary close field with
which r,b is augmented. Whenever BA reads UB's register
it considers the value it reads only if the link is open, that
is if ub. close = 0. In this way UB controls the number of
times BA executes its loop between every consecutive
executions of UB's loop.

The code for the modified protocol appears in Fig. 3.2.
The program for each processor in the modified protocol
consists of a loop which is executed repeatedly. The loops
for both processors have a similar structure. Each loop
consists of two blocks: a refresh block and a main block.
In the refresh block each processor unconditionally
copies its internal variable my_color to its register. In this
way the processor ensures that the color of its register is
equal to the processor's "belief". The unconditional write
is called the refreshing write. Following the first refreshing

1 UB: repeat forever
rub := write(my color, 0) refresh

2 ba_color:= read(rba)
f f my_color = ba_color link seems balanced
then begin main loop

CRITICAL SECTION
3 rub := write(my_color, 1) close link
4 ba_color:= read(rb.) reread ba_color

my_color := 1 - ba_color complement your color
5 rub:= write(my_color, 0) unbalanced and open link

end

BA: repeat forever
6 rba := write(my_color) refresh

repeat
7 (ub_color, close)

:= read(r.b)
until close = 0
if ub~color :/: my_color

then begin
CRITICAL SECTION
my color := ub_color

8 rba := write(my_color)
end

Fig. 3.2. The modified balance-unbalance protocol

link seems open and un-
balanced

main loop

complement b~color
balance link

write the value of the register can always be inferred from
the values of the proeessor's internal variables. Hence,
the only refreshing write which may change the value of
a register is the first write in an execution. After refreshing
its register each processor proceeds to its main block
which includes the processor's critical section. Unlike the
refresh block, execution of the main block is conditional.
The first atomic step in the main block is a read action.
The value read in this action is used as a guard for the
rest of the main block in which the critical section is
executed.

A system configuration is specified by the values of
the varaibles my_color (of both processors), the values
of ba_color and ub_color, the values of the registers and
the next step each processor is about to execute (the pc
of both processors). After both registers are refreshed the
values of the my_color variables are the same as the values
of the correesponding registers. In this situation and when
the values of the pc-s are implied by the context, we
describe a configuration by a 5-tuple (ba_color, r,b.color ,
rub.close---,rba, ub_color) which is called the link descrip-
tor. The arrow in the link descriptor stands for the link
that separates the variables and register values of UB (at
the tail) from those of BA.

Under composite atomicity a non enabled processor
which is activated by the demon does not execute any
state transition. The situation is different under read/
write atomicity where a processor can always execute
some action. This action may be a read action after which
the processor may find that it cannot execute any write
action. Another possibility is that the processor finds out
that it can execute a write action, but the written value
is equal to the value which is stored in the register before
the write action is executed. In order t o accommodate
these situations we define some segment of a processor's

(0,0,0 ,0 ,0)
[UB writes], (0, 0, 1 ,0, 0),
[UB reads], (0, 0, 1 ,0, 0),
[UB writes], (0, 1,0 ,0, 0),
[BA reads], (0, 1, 0 - - - ,0 , 1),
[BA writes], (0, 1, 0 ,1, 1),
[UB reads], (1, 1, 0 ,1, 1),
[UB writes], (1, 1, 1 ,1, 1),
[UB reads], (1, 1, 1 ,1, 1),
[UB writes], (1, 0, 0 ,1, 1),
[BA reads], (1, 0, 0----* 1, 0),
[BA writes], (1, 0, 0----* 0, 0),
,[UB reads], (0, 0, 0 ,0,0),

Fig. 3.3. The legitimate cycle

execution as a stuttering section if the only changes in the
processor's state are in its pc. A stuttering section that
starts and ends with the same system configuration is
called a cyclic stuttering section. A cyclic stuttering sec-
tion might be removed from an execution, except the first
(or last) configuration, and the resulting sequence is also
an execution. We say that two executions are equivalent
up to stuttering if when all cyclic stuttering sections are
removed the resulting system executions are equal.

Consider a configuration C in which the registers are
refreshed, the value of rub is (0, 0) and the value of rba is
0. The link descriptor of C is (0, 0, 0 ~ 0 , 0). In such a
configuration, the only possible subsequent changes in
the value of the link descriptor are given by the legitimate
cycle which appears in Fig. 3.3: (In the legitimate cycle
the refreshing writes are omitted).

Define B UB' to be the set containing the sequence l
obtained by a repeated execution of the legitimate cycle
and all suffixes of 1. The task B UB is now defined as the
set of all sequences which are equivalent to some task in
B UB" up to stuttering. Note that B UB is a subtask of
the mutual-exclusion task. By this definition, each con-
figuration in the legitimate cycle is safe for the set B UB.
Observe that when the system is in the legitimate cycle
the processors access their critical section in a mutually
exclusive (and fair) fashion. In the following lemmas we
prove that the protocol is self-stabilizing by showing that
in every fair execution some configuration in the legiti-
mate cycle is reached.

L e m m a 3.2. In every fair execution E of the protocol in
which the color of no register is changed, there is a con-
figuration C t after which the link is always open.

Proof Execution E is fair, therefore UB is activated in-
finitely often, in particular rub is refreshed infinitely often.
Consider configuration C t right after rub is refreshed for
the first time. In C t the link is open since it was opened
in the refreshing write of UB. In its next activation UB
reads %a; since during E the color of no register changes,
after this read action UB has a correct view which is
constant throughout E. In case the link is unbalanced in
this constant view, UB does not enter its loop and there-
fore never closes the link. In case the link is balanced in
the constant view, UB executes the loop and unbalances

the link, in contradiction to the assumption that no color
is changed during E. []

Lemina 3.3. In every fair execution of the protocol both
registers are refreshed infinitely often.

Proof The Lemma holds trivially for rub. Assume that E
is a fair execution in which rba is never refreshed. This is
possible only if whenever BA executes step 7, it finds that
the link is closed. By Lemma 3.2 this implies that the
content of some register is changed infinitely often. If
register rba is changed infinitely often then we are done,
so it must be the case that only the content of register
r,b is changed infinitely often. In particular, it implies
that there is a suffix E ' of E in which the content of rub
is changed infinitely often, but the content of rba is never
changed. We complete the proof by showing that this
latter scenario is impossible.

Consider two successive changes of rub in E ' , which
are done after r,b is refreshed. The first change is done
after UB executes step 4, and learns that the link is bal-
anced. Since BA never writes in E ' , after UB writes (in
step 5), the link becomes unbalanced. The next time UB
executes step 2 it finds that the link is unbalanced, and
hence it does not change the value of rub anymore - a
contradiction. []

Corol lary 3.4. In every fair execution E, UB closes the
link, by executing step 3, infinitely often.

Proof let E ' be a suffix of E in which both registers are
refreshed, as guaranteed by Lemma 3.3. Assume that the
link is never closed during E ' . In particular this implies
that UB never changes the color of rub during E ' , and
also that infinitely often during E ' , the color of rba is not
equal to the (constant) color of rub. This implies that
eventually, BA balances the link by changing the color
of rba. Once BA have done this, it does not change the
color again, unless the link becomes unbalanced. This
means that the next time UB executes step 2, it will find
out that the link is balanced, and hence it executes step 3
and closes the link - a contradiction. []

L e m m a 3.5. In every fair execution E of the protocol, the
system reaches a configuration in the legitimate cycle.

Proof By Lemmas 3.3 and 3.4, there is a suffix E" of E
during which both processors are refreshed, and during
E" UB closes the link. After closing the link, UB reads
the value of rba , changes the color of rub (if necessary),
and opens rub for reading. Call the sequence of config-
urations during which UB executes these operations the
closed period of r,b. Consider the behavior of the link
during the closed period of rub. Whenever BA reads r,b
during the closed period, it repeats executing line 7 until
rub is opened. Therefore BA can change the color of rba
(by executing step 8) at most once, during the closed pe-
riod, since after any such change, BA reads rub. During
the closed period UB reads rba once. The following three
cases sum up the possible ways in which the link descrip-
tor might be changed by BA, during the closed period of
rub :

Case 1. BA does not change rba during the closed period.

Case 2. B A changes rba before U B reads from it.

Case 3. B A changes rba after U B reads from it.

In the first two cases U B reads the updated value of
rba and unbalances the link (if it is not already unbal-
anced) hence the link descriptor in the configuration that
immediately follows the closed period is equal to either
(1 ,0 ,0---*1,?) or (0,1,0 ,0 ,?) (the question mark
stands for either 0 or 1), which are all in the legitimate
cycle. The third case starts as follows: U B reads rba, then
B A changes the color of r b ~ to be equal to ub_color. At
this stage the link descriptor is either (0, ?, 1 ,1, 1) or
(1, ?, 1 ---* 0, 0). At the end of the closed period, U B tries
to unbalance the link using the last (not updated) color
it read from rba. Thus the value of the link descriptor in
the configuration that immediately follows the closed pe-
riod is either (0, 1,0 ~ 1, 1) or (1, 0, 0---* 0, 0) which are
both in the legitimate cycle. []

4 M u t u a l - e x c l u s i o n p r o t o c o l f o r d y n a m i c t r e e s y s t e m s

In this section we present a self-stabilizing, mutual-ex-
clusion protocol for systems whose communication graph
is a tree directed from the (special) root processor to the
leaves. The protocol is dynamic as long as the topology
changes preserve the tree structure. The tool by which
the privilege is passed along links is the balance-un-
balance protocol. Each link e, is regarded as directed from
U B to B A . The registers of e are called the unbalance
register of e and the balance register of e, respectively.
Thus in the tree protocol a processor with n u ~ o n s sons
plays the role of U B n u ~ o n s times, and each normal
processor plays the role of B A once. A processor is priv-
ileged in the tree protocol if it is privileged in all the
balance-unbalance protocols in which it participates, that
is when all its outgoing links are balanced and its incom-
ing link (for a non-root processor) is unbalanced. A pic-
ture of a node and the registers on its links appears in
Fig. 4.1. The code of the protocol, for the root and for
a normal processor appears in Fig. 4.2.

r q
I I
I I
L 3

n e w - c o l o r = b [a c k

b o r d e r = 3

I I I I I I
I I I I I I
[J t J 1_ J

Fig. 4.1. A pictorial description of a node in the system

After stabilizing, an execution of the protocol pro-
ceeds in phases. Execution of a phase corresponds to a
D F S tour of the whole tree, where the D F S ' s "center of
activity" is at the node of the privileged processor. The
first privileged processor in each phase is the root. Fol-
lowing its first activation the root (recursively) passes the
privilege to (the subtrees rooted at) its sons in a left to
right order. Processor P that becomes privileged for the
first time in some phase, passes the privilege to its leftmost

Root: repeat forever
1 R E F R E S H
2 for m:= 1 to nu~ons

do ba_color [m]:= read (sba [m])
3 if (all out_links_balanced) {you are privileged}

then
CRITICAL SECTION
if (border = O)
then

new_color: = 1 - new_color
border: = 1

end
4 unbalance~order_link

end

Other:repeat forever
R E F R E S H
repeat

(ub color, close) := read (qub)
{read unbalance register}

until close = 0
for m := 1 to nu~ons
do ba_color [m] := read (sb~ [m])
if (all out_links_balanced)
and (in_link_unbalanced) {you are privileged}
then

CRITICAL SECTION
if (border = O)
then

rba := write (ne~color)
new_color: = 1 - new_color
if (not_leaf) then border:= 1

else
unbalance_border_link

end
end

Procedure unbalance border_link
{pass privilege to your border son}

10 rub [border] := write ((1 - new_color, 1))
11 ba_color [border] := read (sba [border])

if (border_link_balanced)
then

12 rub [border] := write (@ew_color, 0))
border:= border + 1 rood (nu~ons + 1)

else
13 rub [border]:= write ((1 - new_color, 0))

end

Procedure R E F R E S H {refresh register values}
if not_leaf
then

14 for m:= 1 to border - 1 do rub [m] := write ((new_color, 0))
15 for m : = border to nu~ons

do rub [m] : = write ((1 - new_color, 0))
end

16 if not_root then rba := write (1 -- new_color)

Fig. 4.2. The mutual-exclusion protocol for dynamic tree systems

10

son. Once the privilege is passed to all processors in the
subtree rooted at this son it is returned to P. Subsequently
the privilege is passed to P's second son from the left,
and so on. The phase ends when the rightmost son of the
root returns the privilege to the root itself. In each phase
the privilege is passed twice along each edge, once in each
direction. Consequently, each processor becomes privi-
leged d times where d is the processor's degree.

At the beginning of each phase all registers in the tree
are colored by one color (say 0), during the phase the
tree is recolored by the complementing color (in this
case 1). For each edge e, its unbalance register is recolored
whenever the privilege is passed through e, and its balance
register is recolored when the privilege is returned back
through e. Thus in every intermediate configuration the
tree is partitioned by a path of unbalanced edges that
goes from the root to the DFS's "center of activity",
which is the node of the privileged processor. Every un-
balance register on this path is colored with the new color
(1), while all balance registers on this path are colored
with the old color (0). All edges left of this path are
colored with the new color (1) while all edges right of
the path are colored by the old color (0).

Each processor P has two internal variables called
new_color and border. Variable new_color is binary, its
value indicates the color in which the tree is recolored.
The value of border indicates the index of the next son
of P to whom the privilege should be passed. This is also
the index of the next outgoing link of P to be recolored
by new_color. When the value of border is 0 the privilege
should be returned to P's father in the next pass. There-
fore the value of border ranges between 0 and nu~ons.
In addition to new_color and border, each processor has
the internal variables needed for all instances of the bal-
ance-unbalance protocol in which it participates. The state
set of Pg, S~, contains every possible assignment of per-
mitted values to the variables of Pi.

The protocol for the root and for a normal processor
is written for processor P with nu~ons sons. The un-
balance register of P's incoming link (which is written by
P's father and which is read by P) is denoted by q,b, the
balance register of P's incoming link (which is written by
P and which is read by P's father) is denoted by rba. The
registers of P's outgoing links are denoted as follows: for
each outgoing edge e m, 1 <_ m <_ nu~ons, the unbalance
register of em, (which is written by P and which are read
by P's son) is denoted by rub [m] and the balance register
of e m (which is written by P's son and which is read by
P) is denoted by sba [m].

The program for a processor is a loop which is exe-
cuted forever. Analogous to the balance-unbalance pro-
tocol the loop is divided to a refresh block and a main
block. The refresh block consists of a subroutine called
R E F R E S H in which all the processor's registers are re-
freshed. Similar to the individual balance-unbalance pro-
tocol it can be proved formally (though we do not bother
to do it) that R E F R E S H may change a color of a register
only until the end of its first complete execution. After
R E F R E S H is executed once from its beginning to its end
the processor is refreshed and the colors in all its registers
can be deduced by the values of border and new_color.

After a processor is refreshed it proceeds to execute
its main block. Processor P starts its main block by read-
ing all the balance registers of its sons. In addition a non-
root processor repeatedly reads the unbalance register of
its father until its incoming link is open. Analogous to
the balance-unbalance protocol a processor proceeds to
execute its main block only if it is privileged. A processor
checks that it is privileged by use of two predicates called
al lout l inks_balanced and in_link_unbalanced (the root
only checks predicate allout_Iinks_balanced). Both predi-
cates are checked using local values only, no additional
read actions are required. Predicate allout_l inks bal-
anced holds if the processor's internal variables indicate
that all its outgoing links are balanced, for leaf nodes
that have no outgoing links this predicate always
holds. Predicate in_link_unbalanced holds if ub_color=
1 - new_color. Since the processor only checks its internal
variables it may get an erroneous indication. In the cor-
rectness proof below we show that this situation may
happen only finitely many times.

In order to prove that the protocol is self-stabilizing
we first define the set M E of legitimate sequences of
system configurations. Any sequences s ~ M E satisfies
the following:

[Exclusion]: In each configuration C of s at most one
processor is privileged.
[Fairness]: During s each processor is privileged infinitely
often.

A subtree T is uniformly colored in some configuration
C, if in C, all the processors of Tare refreshed, all registers
of T have the same color and all links of T are open. To
get some intuition on how the protocol stabilizes note
that after a processor is refreshed, it is privilegd only if
all its outgoing links are balanced. When the processor
is privileged it "assumes" that all its subtrees left of the
border link are colored with new_color and that the bor-
der subtree itself and all the subtrees right of the border
link are colored with the complementing color. When any
of its outgoing links is not balanced the processor "waits"
until its son balances the link. As the execution proceeds
larger subtrees become uniformly colored until the entire
tree is uniformly colored. In the sequel we prove that any
configuration in which the entire tree is uniformly colored
is a safe configuration for the protocol.

Lemma 4.1. Let E be an arbitrary fair execution. I f during
E the colors of all registers in the system are constant then
there exists a configuration C t in E such that for every
subsequent configuration C= (u >> t) all the system links are
open.

Proof We prove the lemma by showing that for every
processor Pi in the system there is an index t (i) (t (i)
depends on E) such that starting in Ct(o and subsequently
throughout E all the outgoing links of P~ are open. The
proof proceeds by induction on d, the distance of P; from
the root.

Base Case. d= O. In this case Pi is the root processor.
Since E is fair the root refreshes its registers infinitely
often. Let Ct(i) be the configuration reached by the system

after the root executes R E F R E S H entirely for the first
time. (A processor may start in the middle of REFRESH,
in this case we only consider the second time in which
R E F R E S H is executed.) In Ct(~ all the root's outgoing
links are open. Following C~(o the root reads all the
balance registers of its sons. Since in E all colors are
constant, by the time this read step is over the root has
a correct view. The proof proceeds now by assuming that
the root closes a link and by applying Lemma 3.2 to show
that whenever the root closes a link it subsequently
changes the color of the link's unbalance register, a con-
tradiction.

Induction Step. We assume correctness of the lemma for
all processors at distance d from the root. Let Pi be an
arbitrary processor at distance d + 1 from the root. We
show the existence of a configuration Ct(o after which all
Pg's outgoing links are open. Let Pf be the "father" of P~.
The distance of PT from the root is d. By the induction
hypothesis there exists a configuration C,(T~ after which
P~'s incoming link is open throughout E. Therefore fol-
lowing C~)P~'s behavior is similar to the root's behavior
and the same proof applies. []

Lemma 4.2. Eventually, the color o f at least one register
in the system is changed.

Proof Assume towards a contradiction that E is a fair
execution during which no processor changes the color
of any of its registers. By Lemma 4.1 there exists a con-
figuration C~ (t >_ 0) in E such that for every configuration
C u (u >_ t) all the system links are open.

Case 1. In C~ all the links of the root are balanced.
Following C~ and after the root is refreshed, it reads the
balance registers of all its sons, discovers that it is priv-
ileged and subsequently changes the color of its border
link, a contradiction.

Case 2. In C~ at least one of the root's outgoing links is
not balanced.

By the assumption no color field is changed. Hence
any unbalanced (balanced) link in C t remains unbalanced
(balanced) during E. Consider an unbalanced link
(PT---~P~) of maximal distance from the root. The in-
coming link of P, is unbalanced and all the outgoing links
of P~ are balanced in any configuration of E. Following
C~ and after P~ is refreshed it reads the unbalance register
of its incoming link and the balance registers of its out-
going links (if it has any) and discovers that it is privi-
leged. Subsequently P~ unbalances its border link or, if
border = O, P, rebalances its incoming link, a contradic-
tion. []

Corollary 4.3. In every fair execution the color of at least
one register is changed infinitely often.

Proof The proof is immediate by a repeated application
of Lemma4.2. []

Lemma 4.4. I f a processor P changes the color of one o f
its registers infinitely often, then P executes its loop infi-
nitely often.

11

Proof By the observation that during one execution of
its loop, P may change the color of each of its registers
at most twice (at most once after the first time P com-
pletes its loop). []

Lemma 4.5. Let P be arbitrary processor, let e 1 be P's
incoming link and let e 2 be an arbitrary outgoing link of

1 and 2 be the unbalance registers o f e 1 and e 2 P. Let rub rub
respectively, and let r~a and r~a be the balance registers o f
e 1 and e 2 respectively. The following claims hold:
(a) I f the color of rla is changed infinitely often, so is the
color of rib.
(b) I f the color of r~a is changed infinitely often, so is the
color o f r]b.
(c) I f the color o f r2b is changed infinitely often, so is the
color o f r2a.
(d) I f the color of rib is changed infinitely often, so is the
color of r~a.

Proof By Lemma 4.4 each of the conditions in items
a -d implies that P executes its loop infinitely often and
in particular P is eventually refreshed in E.
(a) Once P is refreshed and throughout E it holds that
right before the color of r~a changes, the color of r~a is
not equal to the color of rub.2 This last assertion implies
that between any two successive changes of the color of
rla, the color of rib is changed too.
(b) If r ~ is changed infinitely often, then eventually it is
changed only after P executes line 7 and finds that the
incoming link e I is unbalanced. Assume for contradiction

i is never changed from some point on. After this that rub
point, whenever P writes to rb~ the link becomes balanced,
and it remains so until the next time P checks the con-
dition in line 7. Since the link remains balanced, this
condition does not hold. Hence, P never changes r~ again,
a contradiction.
(c) The proof is similar to the proof of (b).
(d) The proof is identical to the proof of (a). []

Lemma 4.6. In every fair execution of the protocol the color
of every register is changed infinitely often.

Proof By Corollary 4.3, the color of some register is
changed infinitely often. By a repeated application of (b)
and (d) of Lemma 4.5, this implies that the color of a
register of the root processor is changed infinitely often.
Assume that the root has nu~ons sons. Whenever the
root colors a register, the value of border is increased by
1 (mod nu~ons + 1). This means that the color of all the
root's registers is changed infinitely often. The proof is
now completed by a repeated application of (a) and (c)
of Lemma 4.5. []

Since the color of every register in the system changes
infinitely often we can now use Lemma 3.5. For this we
consider a fair execution of the tree protocol, E, and
regard the color changes on the registers of any link dur-
ing E, as a separate execution of the balance-unbalance
protocol. Using this method we get:

Corollary 4.7. In every fair execution every link descriptor
reaches a configuration in the legitimate cycle (o f Fig. 3.3).

12

We proceed by combining the above results in order
to show that eventually the system converges to a con-
figuration in which the entire system tree is uniformly
colored.

Lemma 4.8. There are configurations in E in which the
entire system tree is uniformly colored.

Proof Let E ' be a suffix of E in which all registers are
refreshed and all link descriptors follow the legitimate
cycle. Consider an arbitrary link e = (Pf---~P=): In E ' the
predicate allout_links_balanced holds for P= only when
all its outgoing links are indeed balanced. Thus in E ' ,
after e is unbalanced, P= rebalances e (by changing the
color of its balance register) only when e is open and after
P='s outgoing links are balanced and colored by the color
of the unbalance register of e. Using this fact, we prove
the following:

Claim. Eventually, for each link e = (Pz--->P=), P= writes
0 in the balance register o fe only when the subtree rooted
at P= is uniformly colored by O.

Proof of claim. The proof is by induction on h, the height
of the subtree rooted at P=. The claim holds trivially if
P= is a leaf. Assume it holds for any processor P such
that the height of the subtree rooted at P is smaller then
h. Let the height of the subtree rooted at P= be h. Consider
a configuration in which Ps writes 0 into the unbalance
register of e, setting the link descriptor to (1,0, 0---* 1, 1).
Since all processors are already refreshed, any additional
execution of REFRESH does not change the color of the
unbalance register of e. Since the link descriptor of e is
in the legitimate cycle the unbalance register of e is not
changed before P= rebalances the link by recoloring the
balance register of e with 0. It was already proved that
P= rebalances the link only after the registers of all its
outgoing links are balanced and colored 0. Since the link
descriptors are changed according to the legitimate cycle,
those outgoing links are balanced by the sons of P=. By
the induction hypothesis, each son of P= rebalances its
incoming link only after its subtree is uniformly colored
with 0, hence when all links outgoing from P= are
balanced with 0 the entire subtree rooted at P= is
colored with 0. This proves the claim.

The proof of the lemma is completed by applying the
claim to the links emanating from the root processor. For
this, consider a configuration C in which all the root
registers are colored 0 (there are infinitely many such
configurations in E - see proof of Lemma 4.6), and all
the link descriptors are changed according to the legiti-
mate cycle. There is a configuration C' following C
in which all the root's outgoing links are balanced to 0
(otherwise the root never colors any of its registers). But
C' could be reached only by having all the root sons
balancing their incoming links to 0, which by the claim
means that all the subtrees rooted at the root's sons are
uniformly colored by 0, and hence the entire tree is uni-
formly colored. []

We proceed by showing that eventually, in any con-
figuration at most one processor is privileged.

Lemma 4.9. Eventually there is a single privileged processor
in every configuration.

Proof Recall that a privileged processor in our proto-
col is a processor P which is about to execute either
line 3 or line 7 of the code and for which the predicates
in_link_unbalanced and allout_linLbalanced are true.
Once every link descriptor is in the legitimate cycle, those
predicates are true for P only if indeed the incoming link
of P is unbalanced and its outgoing links are balanced.
To prove the lemma it suffices to prove that eventually
there is at most one processor for which the incoming
link is unbalanced (or it is the root) and all its outgoing
links are unbalanced. We will prove the following stronger
result:

Claim. Eventually, in every eonfiguration there is at most
one processor, say P, whose incoming link is unbalanced
(or it is the root), and all its outgoing links are balanced.
Moreover, all the links in the system are balanced, except
the links on the path from the root to P.

Proof of Claim. By induction on the order of configu-
rations in E. The induction base is a configuration Ct in
which all registers and variables are colored 0. By
Lemma 4.8 this configuration, which satisfies the claim,
is reached in every fair execution. Assume that the claim
holds for a certain configuration C, (u :> t). We have to
show that the claim holds for C= +1.

Let P be the only privileged processor in C,. If the
atomic step between C, and C,+ 1 does not change the
value of any register then we are done. If the atomic step
changes the value of some register say r, then r is a register
of P (since P is the only privileged processor, and only
a privileged processor may write). The fact that every
link descriptor is in the legitimate cycle, implies that if r
is the unbalance register of an outgoing link then P un-
balances the link, and the claim holds for P's son. If r is
the balance register of P's incoming link, then P balances
the link, and the claim holds for P's father. This com-
pletes the proof of the claim, and hence of the Lemma. []

Corollary 4.10. The protocol is self-stabilizing relative to
the set ME.

Proof By Lemma4.9 at most one privileged processor
exist hence the [exelusionl requirement holds.

By Lemma 4.6 each processor is privileged infinitely
often hence the [fairness] requirement holds. []

5 A mutual-exclusion protocol for dynamic networks

In this section we present a mutual-exclusion protocol
for dynamic networks. Consider a semi-uniform system
in which each link is augmented by two read only registers
called the tree-registers. The tree registers encode a span-
ning tree of the communication graph rooted at the spe-
cial processor, as follows: The registers for each link
should specify whether the link belongs to the spanning
tree; in case the link belongs to the spanning tree its
registers should specify its direction; these parameters can
be obtained by the processors on the link's endpoints. In

13

this case a self-stabilizing, mutual-exclusion protocol for
a system with any (static) communication graph can be
derived simply by pre-computing a spanning tree for this
system's communication graph and encoding it into the
tree registers. The tree registers can be hardwired and
therefore constant throughout any execution. The pro-
tocol is obtained by executing the mutual-exclusion pro-
tocol for tree systems where links which are not in the
spanning tree are ignored.

This however falls short of our aim in this paper since
the resulting protocol is not dynamic and it requires some
pre-computing. On the other hand this protocol moti-
vates the following ideas:

(1) A rooted spanning tree of the communication graph
will be computed by a self-stabilizing protocol whose
registers are eventually constant.
(2) The registers of the spanning tree protocol will be
used as tree registers for the mutual-exclusion protocol.
(3) Both protocols will be combined to achieve a dy-
namic, self-stabilizing, semi-uniform protocol for mutual-
exclusion on general graphs.

In the rest of this section we show how- these ideas are
implemented.

5.1 A rooted spanning tree protocol

The spanning tree protocol produces a B F S tree of the
system's communication graph. Let G (V, E) be a graph
with orderings a = (~ , a 2 , ' ' " , ~) of the edges incident
to each node v i ~ V. Define the First B F S Tree of G
relative to v~ and c~ to be a B F S tree, rooted at v 1. In
case a node, v~ of distance d + 1 from v 1 has more than
a single neighbor of distance d from v~, v~ is connected
to its first neighbor, according to c~, whose distance from
v ~ is d. The protocol always produces the First B F S Tree
of the system's communication graph, with respect to the
node of the special processor and to the (arbitrary) or-
derings a = (a~, c~2,.. . , ~,) in which the neighbors of all
processors are ordered. The special processor is called the
root processor.

Essentially the protocol is a distributed B F S protocol.
Each processor continuously tries to compute its distance
from the root and reports it to all its neighbors by writing
it in its registers. At the beginning of an arbitrary
execution the only processor which is guaranteed to com-
pute the right distance is the root itself. Once this distance
is written in all the root 's registers, the value stored in
these registers will never change. Once all processors of
distance d from the root have completed computing their
distance from the root correctly and write it in all their
registers, their registers remain constant throughout the
execution and processors of distance d + 1 from the root
are ready to compute their own distance from the root
and so forth. The spanning tree protocol bears some
similarity to the ARPANET routing protocol [14, 15]
(that latter protocol assumes a different model).

The output tree is encoded by means of the registers
as follows: Each register rij, in which Pi writes and from
which Pj reads, contains a binary father field denoted by

R o o t : do fo rever
for m : = 1 to nu~eighbors do write ti, . : = (0, 0) ;

od

Other: do forever
for m:= 1 to nu_neighbors do irmi:=read(rmi);
first found:= FALSE;

(*) dist:=min(irmi.dist)+ l;
fo r m : = 1 to nu~eighbors
do

(**) if not first_found and ir ,, i . distance = dist - 1
then

write t im : = (1, dist) ;
first found:= TRUE;

else
write tim : = (0, dist) ;

od
od

Fig. 5.1. The spanning tree protocol for Pi

rij.father. If Pj is the father of Pi in the output B F S tree
then the value of r~j.father is 1, otherwise the value of
r~j.father is 0. In addition each register r U has a distance
field, denoted by rij.distance which holds the distance
from the root to P~.

The code of the protocol, for the root and for the
other processors, appears in Fig. 5.1. In this code the
number of the processor's neighbors is given by the pa-
rameter nu~eighbors. The program for the root is very
simple: It keeps "telling" all its neighbors that it is the
root by repeadly writing the values (0, 0) in all its reg-
isters. The first 0 tells each neighbor that it is not the
father of the root, the second 0 is the distance from the
root to itself. The program for a normal processor con-
sists of a single loop. In this loop the processor reads all
the registers of its neighbors. Processor Pi which has
nu~neighbors neighbors keeps nu~eighbors internal
variables corresponding to the nu~eighbors registers from
which Pi reads. The internal variable corresponding to
register rig is denoted by irje. This variable stores the last
value of rji read by Pc. Its two fields are denoted by
iris.father and irji.distance respectively. Once all these
registers are read, P~ computes a value for the variable
dist which represents P,'s current idea of its distance from
the root. The purpose of the boolean variable first found
is to make sure by the end of each pass of the loop that
each processor has a single father. The minimum in line
(*) is taken over m, 1 <_m<_nu~eighbors.

The task S T is defined as the set of all configuration
sequences in which every configuration encodes the first
B F S tree of the communication graph. In the following
lemma we characterize the set of the safe configurations
for the protocol:

Lennna 5.1. Let C be a system configuration which satis-
fies ."
(a) The processors registers encode the first B F S tree of
the system's communication graph rooted at the root.
(b) For each normal processor Pi and for each o f its neigh-
bors Pi , iru = ru"
(c) For each normal processor Pi, the local variable dist
stores the distance of Pifrom the root and the value of the
local variable first found satisfies: I f the value of the local

14

variable m is m o and P~ has a neighbor of distance dist - 1
from the root whose rank according to ~ < m o then
first found = TRUE, otherwise first_found = FALSE.

Under the above conditions, configuration C is safe for
the protocol

Proof Every configuration C that satisfies the above three
requirements is reachable under some schedule when the
system is initialized from the "natural" initial configu-
ration. It is not hard to verify that following C the value
of no register ever changes hence all subsequent config-
urations encode the first B F S tree of the system's com-
munication graph as required by the definition of the set
ST. []

The reader may suspect that requirement (c) is super-
fluous and that (a) and (b) are enough to ensure that a
safe configuration is reached. This possibility is refuted
by configuration C ' in which (a) and (b) hold but (for
example) all dist variables are set to 0 and the program
counter of each normal processor points to the atomic
instruction that starts in line (**). Each normal processor
writes (1,0) in the register in which it communicates with
its first neighbor in its first atomic step past C'. In its
next d - 1 atomic steps it will write (0, 0) in the registers
with which it communicates with its other neighbors. This
obviously results in a non safe configuration. Further-
more, tampering with first found while keeping the rest
of the requirements, (i.e. (a), (b), and half of (c)) may
even cause a loss of the tree structure. To prevent these
problems we need requirement (c) that guarantees that
the internal state of the processor agrees with the values
of its registers. This is another demonstration of the de-
ceiving nature of read/write atomicity in the self-stabi-
lizing paradigm which made our job in this algorithm so
difficult.

Lemma 5.2. For every integer d>_ 0 there exists an integer
t d such that for every t > t d the stabilized diameter of the
system is at least d. This means that for every pair of
neighbors Pi and P j where the distance of Pi from the root
is l, the following hoM:
(a) I f l <_ d then ru.distance = L
(b) I f l<_d then r~j.father has the "right" value. That
is: i f Pj is the first neighbor of P i (using o~) of distance
l - 1 from the root then r~j.father=l, and otherwise
rij. father = O.
(c) I f l < d then irji=rj~.
(d) I f l > d then r~j.distance > d.

Proof We prove the theorem by induction over d. In the
proof we use the fact that due to the fairness of E every
processor is activated in E infinitely often.

Base Case. (Proof for d = 0) The only node of distance 0
from the root is the root itself. Assume that the root has
nu~eighbors neighbors. After nu~eighbors activiations
of the root, all its register store the value (0, 0). The
values stored in the registers of the root will not be
changed any more. This completes the proof of assertion
(a). Assertion (b) is implied by the root's code since no
processor is the "father" of the root. Assertion (c) holds
vacuously for the base case, since there are no processors
of distance < 0 from the root. For each normal processor

P/assertion (d) is satisfied after Pi executes line (*) once
and then completes the outer loop of the protocol since
computed value of l fIdist is always positive.

Induction Step. (Assume Let t a be an integer such that
for every t > t d, configuration C t satisfies assertions
(a)-(d) for some integer d, d_> 0. We show the existence
of some integer td+ ~ such that for every integer t_> td+ 1
configuration Ct satisfies assertions (a)-(d) for d + 1.

I f the distance of P~ from the root is d + 1 then all its
neighbors are of distance => d from the root. Moreover
Pi has at least one neighbor, whose distance from the root
is exactly d. By asserton (a) of the induction hypothesis,
for every P~ of distance d from the root, it holds that the
value stored in rki.distance in Ct~ and all subsequent con-
figurations is d. By assertion (d) of the induction hy-
pothesis, for every PI of distance > d from the root, it
holds that the value stored in rli.distance in C~ and all
subsequent configurations is > d. Therefore, whenever
Pi executes line (*) after Ct~, the value assigned to the
variable dist is exactly d + 1. Once this value is written in
all registers of Pc, assertions (a) and (b) hold for P~. The
same holds for all processors of distance d + 1 from the
root. Hence there is a configuration C1 reached by the
system, such that for every configuration C following C1,
assertions (a) and (b) are satisfied for all processors of
distance d + 1 from the root.

It is easy to see that from C 1 and onwards forever, the
values stored in the registers of all processors of distance
d + 1 from the root will not be changed any more. In
particular all neighbors of all processors of distance d
from the root will not change the values stored in their
registers any more. If Pc is a processor of distance < d + 1
from the root then each read action after C~ sets one of
its internal variables to its final stationary value. Thus
there is a configuration C2 reached by the system, such
that every configuration C following C 2 satisfies assertion
(c) for d + 1.

Let P~ be an arbitrary processor of distance > d + 1
from the root. The neighbors of P~ are all of distance
> d + 1 from the root. By assertion (d) of the induction
hypothesis starting from Ct~ and onwards each neighbor
Pj of Pi satisfies rj~.distance > d. Therefore, whenever
Pi executes line (*) after Ct~ the value assigned to the
variable dist is > d + 1. Once this value is written to all
registers of Pi assertion (d) is satisfied for P~. The same
holds for all processors of distance > d + 1 from the root.
Hence there is a configuration C 3 reached by the system,
such that every configuration following it satisfies asser-
tion (d) for d + 1. Let C~+1 be the later configuration
among C 2 and C 3. It is easy to see that indeed every
configuration C following Ct~+, satisfies assertions
(a)-(d) for d + l . []

Corollary 5.3. The protocol presented above is self-stabi-
lizing relative to the set ST.

5.2 Fair combination of self-stabilizing protocols

A self-stabilizing, mutual-exclusion protocol for general
graphs can be obtained by combining the self-stabilizing

15

rooted spanning tree protocol, presented in Subsect. 5.1,
with the self-stabilizing, mutual-exclusion protocol for
dynamic tree-structured systems, presented in Sect. 4, as
follows: The combined protocol runs both protocols al-
ternately, such that the latter protocol uses the tree en-
coded by the tree registers written by the former protocol.
By the correctness of the spanning-tree protocol, the tree
registers eventually encode a spanning tree, and are sub-
sequently constant throughout the execution. By the cor-
rectness of the mutual-exclusion protocol, it eventually
converges to a legitimate execution of mutual-exclusion
on this spanning tree, and hence on the entire graph.

We now formalize and extend this idea to a general
technique of fa ir protocol combination. In this technique
two simple protocols, called a "slave" protocol and a
"master" protocol, are combined to obtain a more com-
plex protocol. Our dynamic, self-stabilizing, mutual-ex-
clusion protocol is obtained by combining the spanning
tree protocol as the slave protocol with the mutual-ex-
clusion protocol presented in the previous section as the
master protocol. In the formal definition we assume that
both protocols are shared memory protocols but we
do not impose any restriction on either the exact model
(register or non-register) or on the specific communica-
tion graph or on the protocols' atomicity level. Using
proper definitions one can also eliminate the shared mem-
ory assumption.

Assume that the "slave" protocol is called Pr~, for a
task T~ and that the "master" protocol is called Pr 2 for
a task T 2. The state set of a processor P~in the combined
protocol is S ~ = A e • e, where Az is the state set of Pr~
and Ai• B e is the state set of Pr 2 but we assume that P r 2
modifies only the B e components. The state transition
function of the slave protocol P r I for processor Pe is
a function f:Ai-----~Ae, while the state transition of the
master protocol Pr 2 for Pe is a funcion g:A~• ~.
These transition functions are extended to functions over
S e as follows: For (a , b) ~ S , f ((a , b)) is (f (a) , b) and
g ((a, b)) is (a, g (a, b)). In the combined mutual-exclusion
protocol, Prl is the spanning tree protocol and the Ai's
are the states modified by this protocol, including the tree
registers; P r 2 is the version of the mutual-exclusion pro-
tocol which uses the tree registers to encode the tree edges
on which it operates.

The next definitions formalize the concept of an ex-
ecution of the master protocol which assumes a self-sta-
bilized execution of the slave protocol. Let S i, Ae, B e and
P r 2 be as above, and let T~ be a task in which the states
of processor Pe are in A;. Assume that T~ is closed under
stuttering (i.e., for each sequence L in T~, the sequence
obtained from L by duplicating each entry finitely many
times is also in T 1). For configuration C, C ~ S~ • �9 �9 �9 • S~
define the A-projection of C as the configuration
(a ~ , . . . , a n) ~ A l • • n. For a sequence of configu-
rations L = (C1, C2,. �9 �9), the A-projection of L is the se-
quence (A~, A 2 , - �9 �9) , where A e is the A-projection of C~.
A fair execution o f P r 2 given 7"1 is a sequence of config-
urations E = (C1, C2,. �9 �9) such that

(a) For every two consecutive configurations C~ = (A~, Bz)
and C~+ 1 =(Ai+I ,B;+I) , either A i = A e + 1 or B i = B i + 1.

(b) If BecB i+ 1 then the transition from C e t o Ci+ 1 is a
transition of Pr2, and the sequence of these transitions
is fair (i.e., each processor is activated in it infinitely
often).
(c) The A-projection of E belongs to T~.

Condition (b) says that the modifications of the states in
the Be's are done by P r 2 in a fair manner, while condition
(c) says that the sequence of states in the Ai's forms a
legitimate sequence of task T~.

We say that protocol Pr 2 is self-stabilizing for task T 2
given task T~ if any fair execution of P r z given T 1 has a
suffix in T 2. Finally, a protocol Pr is a fair combination
of Pr 1 and P r 2 if in P r every processor executes steps of
Prl and Pr 2 alternately. Note that for an execution E of
Pr, the A-projection of E is a sub-execution of E corre-
sponding to a fair execution of the slave protocol Pr~.

The following theorem gives sufficient conditions un-
der which the combination of two self-stabilizing pro-
tocols is also self-stabilizing:

Theorem 5.4. Assume that Pr 2 is self-stabilizing fo r a task
T 2 given task T 1 . I f Pr 1 is self-stabilizing fo r T1, then the

fair combination o f e r a and Pr 2 is self-stabilizing fo r T 2.

Proo f Consider any execution E of Pr, the fair combi-
nation of Pr I and Pr 2. By the self-stabilizion of Pra, E
has a suffix E" such that the A-projection of E ' is in T~.
By the assumption that Pr 2 is self-stabilizing given T~,
E ' has a suffix in T 2. []

Theorem 5.4 provides a general methodology to con-
struct self-stabilizing protocols for complex tasks: Given
a task T z for which we wish to construct the protocol,
first define a task T~ and construct a protocol Pr 2 which
is self-stabilizing for T 2 given T~, and then construct a
protocol Prl which is self-stabilizing for T~. The fair com-
bination of Pr 1 and Pr 2 is the desired protocol. Note that
this methodology does not require that the protocol Pr 1
reaches a "steady state", in which the communication
registers (or any other component in the state ai of pro-
cessor Pc) are never changed.

Corollary 5.5. The fair combination o f the spanning tree
protocol with the mutual-exclusion protocol is a mutual-
exclusion protocol on systems with an arbitrary dynamic
communcation graph. This protocol is self-stabilizing in
the presence o f the distributed demon under read/wri te
atomicity.

We conclude this section by observing that the notion
of fair combination of protocols can be further extended,
by allowing the protocol Pr to interleave the executions
of the protocols Pr~ and Pr 2 in an arbitrary way, and not
necessarily in alternating manner. In this more general
setting, each processor switches from executing protocol
Pr I to executing protocol Pr 2 and vice versa according
to some internal conditions, which should guarantee fair
execution of both protocols. This adds extra flexibility to
the way by which one can achieve composite protocols
by combining simpler ones. We demonstrate this by
the following general theorem, concerning the fair com-
bination of our mutual-exclusion protocol with an arbi-

16

trary self-stabilizing protocol. In this theorem we assume
the register model used in the previous sections.

Theorem 5.6. For any semi-uniform protocol Pr 2 which is
self-stabilizing under composite atomicity there is a semi-
uniform protocol Pr which is self-stabilizing (for the same
task) under read~write atomicity.

Proo f We describe a protocol Pr which simulates Pr 2
under read/wri te atomicity. Pr is a fair combination of
Pr 2 as the master protocol and the mutual-exclusion pro-
tocol presented above, as the slave protocol Pr 1. We de-
scribe Pr by describing the rules by which it switches f rom
executing Pr 2 to executing Pr 1 and vice-versa.

Each state transition of Pr 2 under composite atomicity
can be written as a sequence of atomic steps under
read/wri te atomicity. Whenever a processor P~ is sched-
uled to operate, it first checks if it is in its critical section
according to Pr 1. I f not, then Pi executes a step of Pr 1 .
I f Pi enters its critical section in Prl , it stops executing
Pr I and executes steps of Pr 2, until it completes one state
transition of Pr 2 under the composite atomicity (this may
take many atomic steps under the read/wri te atomicity).
Once this is done, Pi transfers the privilege to one of its
neighbors, according to Prl , and so on and so forth. The
mutual-exclusion property ensures that as long as P~ does
not complete its state transition in Pr2, no other processor
(and in particular no neighbor of Pi) executes any state
transition of its own. The fair combination ensures that
each processor enters its critical section infinitely often.
Thus, each execution of Pr has a suffix which is equivalent
to a fair execution of Pr 2 under composite atomicty. []

6 Concluding remarks

A semi-uniform, dynamic, self-stabilizing, mutual-exclu-
sion protocol for systems with an arbitrary communica-
tion graph was presented. The protocol is correct in the
presence of read/wri te atomicity under the distributed
demon. (For protocols that use read/wri te atomicity the
distributed demon and the central are equivalent.) Using
this protocol we showed that any self-stabilizing protocol
which is correct under composite atomicity can be exe-
cuted under read/wri te atomicity in a self-stabilizing
fashion.

Although this paper does not concern itself with com-
plexity measures it is worth mentioning that when time
is measured by some appropriately defined round com-
plexity, the stabilization time of the spanning tree pro-
tocol is O (D) , where D is the diameter of the system's

communication graph. The stabilization time of the mu-
tual-exclusion protocol is O (n D) .

Acknowledgement. We thank three anonymous referees for their
constructive remarks on an earlier of this paper. The help of Frank
Stomp is also appreciated.

References

1. Brown GM, Gouda MG, Wu CL: A self-stabilizing token
system. In: Proc 20th Annual Hawaii International Conference
on System sciences, pp 218-223, 1987

2. Burns JE, Pachl J: Uniform self-stabilizing rings, ACM Trans
Program Lang Syst 1(2): 330-344 (1989)

3. Burns JE: Self-stabilizing rings without demons. Tech Rep GIT-
ICS-87/36, Georgia Institute of Technology, 1987

4. Dijkstra, EW: Self-stabilizing systems in spite of distributed
control. Commun ACM 17(11): 643-644 (1974)

5. Dijkstra EW: Self-stabilizing systems in spite of distributed
control (EWD391). Reprinted in: Selected writing on
computing: a personal perspective. Springer, Berlin Heidelberg
New York 1982, pp 41-46

6. Dijkstra EW: A belated proof of self-stabilizion. Distrib Comput
1(1): 5-6 (1986)

7. Dolev S, Israeli A, Moran S: Self-stabilization of dynamic
systems assuming only read/write atomicity (preliminary
version) Proc MCC Workshop on Self-Stabilization, Austin,
Texas, November 1989. Also in: Proc 9th Annual
ACM Symposium on Principles of Distributed Computing,
pp 103-117, 1990

8. Israeli A, Jalfon M: Token management schemes and random
walks yield self-stabilizing mutual exclusion. In: Proc 9th Annual
ACM Symposium on Principles of Distributed Computing,
pp 119-131, 1990

9. Israeli A, Jalfon M: Uniform self-stabilizing ring orientation.
Inf Comput 104:175-196 (1993). Also in: Van Leeuwen J,
Santoro N (eds) Distributed Algorithms (Proceedings of the
Fourth International Workshop on Distributed Algorithms,
Bari, Italy, September 1990). Lect Notes Comput Sci, vo1486.
Springer, Berlin Heidelberg New York 1991, pp 1-14

10. Katz S, Perry K J: Self-stabilizing extensions for message-passing
systems. Distrib Comput 7:17-26 (1993). Also in: Proc 9th
Annual ACM Symposium on Principles of Distributed
Computing, pp 91-101, 1990

11. Kruijer HSM: Self-stabilizion (in spite of distributed control)
in tree-structured systems. Inf Process Lett 8(2): 91-95 (1979)

12. Loui MC, Abu-Amara HH: Memory requirements for agree-
merit among unreliable asynchronous processes. In: Preparata
FP (ed) Advances in computing research. JAI Press 1987,
pp 163-183

13. Peterson GL, Fischer MJ: Economical solutions for the critical
section problem in a distributed system. In: Proc ACM
Symposium on Theory of Computing, pp 91-97, 1977

14. Tajibnapis WP: A correctness proof of a topology information
maintenance protocol for a distributed computer network.
Commun ACM 20(7): 477-485 (1977)

15. Tanenbaum AS: Computer networks. Prentice-Hall, 1981,
pp 205-231

16. Tchuente M: Sur l'auto-stabilisation dans un r'eseau
d'ordinateurs, RAIRO Inf Theor 15:47-66 (1981)

