Peer-to-Peer Systems

Nicole Hatt
Seminar of Distributed Computing
WS 03/04

Papers

» Pastry: Scalable, decentralized object
location and routing for large-scale peer-
to-peer systems
Antony Rowstron and Peter Druschel

* Viceroy: A Scalable and Dynamic
Emulation of the Butterfly

Dahlia Malki, Moni Naor and David Ratajczak

Short reminder: Chord

« A distributed lookup * Example:
protocol net with nodes 0,1,3

« Key associated with each
data item using
consistent hashing

* Maps keys onto nodes

« Each of the N nodes
needs routing information
of O(logN) nodes Al

« Joins/ Leaves cost be 24
O(log2N) messages /

« Each node maintains a -
finger table :

Pastry

Design: nodelD and key

* Unique 128 bit nodelD for each node assigned at random:
- e.g. hash of node's IP address
- indicates the position in a circular nodelD space from
0to2128 -1
- nodes with adjacent nodelD’s are not physically
close to each other

« Every message is assigned a key
» nodelDs and keys are sequences of digits with base 2°

« Pastry routes a message with key k to the node having the
nodelD numerically closest to k

Design: Proximity metric

* When routing messages, Pastry minimizes
the distance the messages travel

» Each node has the possibility to determine
its distance to any other node

+ Distance is measured according to a
scalar proximity metric:

—Geographic distance

Design: Routing (1)

» Messages are routed to node with numerically
closest nodeld to the given key

» In each routing step:

— the message is routed to a node whose nodeld shares one digit
more with the key than the nodeld of the present node

— orto a node whose nodeld shares a prefix with the key as long
as the current one but is numerically closer

Repeat until numerically closest node is found

» Each node maintains a routing state to support the routing
procedure

Design: Pastry node state

* Routingtable ____Nodeld 10233102
entries Leafset [AREE]
— nodelds of row n's entries = 20
share first n digits L toaziom |
— Routing table entry is empty if Rout
i f outing table
no suitable node is known [I Dm";%! Ty gy

* Neighborhood set

Contains nodelds of the closest
nodes according to the proximity

1302 || 102-2-2302

metric
+ Leafset [
A set of nodes with |£]/z Neighborhood set
numerically closest larger and | EETZE = EF=o BOETFEE |
smaller nodelds [D2zizi0z | 22301203 | 31200203 | ss2iasel |

Design: Routing (2)

Message with key D arrives at node with nodeld A

Leaf set

- Check whether D is in the range of the leaf set

- In this case, directly forward message to corresponding node

Routing table

- if this is not the case, forward message to a node whose nodeld shares one
more digit with D than the current node’s nodeld

- If entry is empty or not reachable, forward message to a node with nodeld that
shares a prefix with the key as long as the present one and is numerically closer

Repeat this step until searched node is found
Routing procedure always converges

Routing Performance
The expected number of routing steps is [legas V|

Node Join

Phase 1:
« Avroutes a join message with key
equal to X
« Xreceives state tables from A to Z
« Xinitializes its state tables with:
- A's neigborhood set
-Z's leaf set
- routing table:
row 0 = row 0 of A
row 1 =row 1 of B
row 2 =row 2 of C
« Xsend a copy of its state to all
nodes

« Total cost: (MmN
N=number of nodes

Node Join (2)

Phase 2:

* Proximity metric: Each node is able to determine
the physical distance to any other node

* Improvement of X's routing table quality: X

— requests state from each node in the routing
and the neighborhood set

— compares physical distances of the nodes in
those tables

— updates its state when closer nodes are found
— informs other nodes about its state

Node departure

« Failed/departed node:
Immediate neighbors can no longer communicate with it
* Node replacement:
— To replace a node in its leaf set, a node n asks the
next alive node m with largest index for its leaf table
— M’s leaf set partly overlaps with n‘s leaf set
— A non common node among these leaf sets is
selected to be the failed node‘s replacement
— Itis important to keep the neighborhood set up to
date because it is important for testing if nearby
nodes are still alive

Node failures: experimental
results

* 5000 nods Pastry network « A storage utility on top of Pastry

* Quality of the network before and after 500 node failures (b=4) PAST replicates a fl|e on ItS K numerically
closest nodes

» PAST profits from the proximity metric:

— When routing a message from a client to the
numerically closest node, the message first
reaches a physically close node among the
numerically closest nodes

— Minimize network load and client latency

Applications: PAST

Applications: SCRIBE

» Publish/subscribe system

* A node (rendez-vous point) with a nodeld
numerically closest to a topicld of a given topic .
stores a list of subscribers Vlceroy

» Subscribers send messages using the topicld as
key

« Each node along the path registers the message

» Publishers send data to the rendez-vous point
using topicld as key

» Rendez-vous point forwards the data to all
subscribers

» Completely distributed and scalable lookup service The network consists of three sets of links: . o 1
» Key-value pairs are distributed across a changing set of + ageneral ring ’
servers each node s is connected to
. . . - its (s.successor) | | I I |
« Keys and servers have identifiers chosen in the same ~Its predecessor (s.predecessor)
metric
. . * level rings
* A key-value pair is on the server with the closest all nodes of the same level are connected Level 1
identifier to the key " reonever
» Viceroy is a combination of a ring and a butterfly network ~ s.prevonlevel
» Each server in the network is entirely determined by: - butterfly Level 2
-— |tS identifier each node s points to two down nodes and

one up level node:
— lts level - sright
- sleft
- sup

System model: General ring

Distribution of key-value pairs among servers:
- each server is referred by an unique identifier
- keys and server ID's are treated as dots in
the same metric
- keys and servers are mapped to the unit ring [0..1)

- akey-value pair is on the server with the closest ID
to the key

- aserver manages key-value pairs with
keys between its counter-clockwise
neighbor’s ID and its own ID

System model: Level ring

* Goal:

— select levels that require as few level changes as possible when
joins and leaves occur

— Select levels so that a good dispersal of levels among servers is
achieved

Distributed SELECT-LEVEL algorithm:

1. A server s estimates n,, the total number of
servers in the configuration
Let n, = 1/distance(s, SUCC(s))

2. Based on this estimate n,, select a level |
between [1... lugn, | uniformly at random and
return |

System model: butterfly

Each server s at level | points to:

— Aright down link to level I+1
clockwise closest node
tos +1/2/ (NLEVEL,, ,(s+1/2))

— A left down link to level I+1

clockwise-closest node to s
(NLEVEL, (s))

— An up link (if 1>1) to level I-1

clockwise closest node to s
(NLEVEL, (s))

Simple LOOKUP subroutine

Only global ring and butterfly links are used
LOOKUP(x,y) finds the clockwise closest to the value x starting at server y
It consists of 3 routing phases:

— Proceed to root
find root server by following level up links

— Traverse tree
lookup down from the root, if down link does not exist, go directly to traverse ring
- if distance d(current, x) < 1/2¢urent.level then
current = current.left
- else current = current.right

— Traverse ring
select closer server to x between current.successor and current.predecessor,
repeat until closest server is found and return result

Viceroy construction: Join

A joining server s performs the steps:
1. Select an identifier

2. Find its successor using the LOOKUP function,
insert s in the ring and update the pointers

3. Transfer all key-value pairs from successor
with key between s.predecessor and s

4. Select a level |, update level ring pointers
5. Find s.left, s.right and s.up

Viceroy construction: Leave

* Outbound connections
have to be removed
* Inbound connections
must find a replacement
— Using the LOOKUP
subroutine
— By pointing to the
successor

» Transfer resources to its
successor

Improved LOOKUP subroutine

Problem of the simple LOOKUP:

In the third phase the current and target node might be at a distance of
O(log2n) when the ring is traversed.

Improvement to achieve an O(logn) dilation:
Third phase is a combination of level and global rings:

if current.nextonlevel & stretch(current,x)
then current = current.nextonlevel
elsif current.prevonlevel = stretch(current,x)
then current = current.prevonlevel
else current = current.successor or predecessor
repeat until clockwise closest node to x found

Stretch (x, y) = clockwise region between server x and y

Simple Viceroy Analysis

If n servers are present:

» The first two phases take O(logn) steps

» The last phase takes O(logn) steps in
expectation and O(log2n) at worst w.h.p. with the
simple lookup and O(logn) with the improved

» For any server the expected load is O((logn)/n)
and w.h.p. the maximum load on all servers is
O((log2n)/n)

» The outdegree of each node is 7 (in simple
version only 5), the expected indegree is O(1)
and the largest indegree is O(logn) w.h.p.

The Bucket solution

« Largest indegree in the number can be as large as the
log of the number of servers

« Buckets" are added:
— Sets of O(logn) servers
In case of a size drop, two buckets are merged
If the size exceeds clogn ,the bucket is split in two
— One set does not overlap with any other set
— Inside a bucket a ring is maintained

— In one bucket is at least one server of each level and
no more than c

Comparison: Pastry/Viceroy

* Implementation
— Pastry:
« Implemented in java
« Report on experimental results
« Applications running on top of it

* Assumptions
— Viceroy: multiple join/leave operations can fail

Comparison: Pastry/Viceroy (2)

* Routing table

Each Pastry node provides routing information in a state
table

« Locality

Pastry has the additional ability to root messages along
the shortest distance according to the proximity metric

* Network
— Viceroy: butterfly/ ring combination
— Pastry: ring

