
1

Peer-to-Peer Systems

Nicole Hatt
Seminar of Distributed Computing

WS 03/04

Papers

• Pastry: Scalable, decentralized object
location and routing for large-scale peer-
to-peer systems
Antony Rowstron and Peter Druschel

• Viceroy: A Scalable and Dynamic
Emulation of the Butterfly
Dahlia Malki, Moni Naor and David Ratajczak

Short reminder: Chord
• A distributed lookup

protocol
• Key associated with each

data item using
consistent hashing

• Maps keys onto nodes
• Each of the N nodes

needs routing information
of O(logN) nodes

• Joins/ Leaves cost
O(log2N) messages

• Each node maintains a
finger table

• Example:
net with nodes 0,1,3
and keys 1, 2, 6

Pastry

Design: nodeID and key
• Unique 128 bit nodeID for each node assigned at random:

- e.g. hash of node‘s IP address
- indicates the position in a circular nodeID space from

0 to 2128 – 1
- nodes with adjacent nodeID‘s are not physically

close to each other

• Every message is assigned a key
• nodeIDs and keys are sequences of digits with base 2b

• Pastry routes a message with key k to the node having the
nodeID numerically closest to k

Design: Proximity metric

• When routing messages, Pastry minimizes
the distance the messages travel

• Each node has the possibility to determine
its distance to any other node

• Distance is measured according to a
scalar proximity metric:
– Geographic distance

2

Design: Routing (1)
• Messages are routed to node with numerically

closest nodeId to the given key

• In each routing step:
– the message is routed to a node whose nodeId shares one digit

more with the key than the nodeId of the present node
– or to a node whose nodeId shares a prefix with the key as long

as the current one but is numerically closer

Repeat until numerically closest node is found

• Each node maintains a routing state to support the routing
procedure

Design: Pastry node state
• Routing table

– rows with 2b-1
entries

– nodeIds of row n‘s entries
share first n digits

– Routing table entry is empty if
no suitable node is known

• Neighborhood set
Contains nodeIds of the closest
nodes according to the proximity
metric

• Leaf set
A set of nodes with
numerically closest larger and
smaller nodeIds

Design: Routing (2)
• Message with key D arrives at node with nodeId A

• Leaf set
- Check whether D is in the range of the leaf set
- In this case, directly forward message to corresponding node

• Routing table
- if this is not the case, forward message to a node whose nodeId shares one
more digit with D than the current node‘s nodeId

- If entry is empty or not reachable, forward message to a node with nodeId that
shares a prefix with the key as long as the present one and is numerically closer

Repeat this step until searched node is found

• Routing procedure always converges

• Routing Performance
The expected number of routing steps is

Node Join
Phase 1:
• A routes a join message with key

equal to X
• X receives state tables from A to Z
• X initializes its state tables with:

- A‘s neigborhood set
- Z‘s leaf set
- routing table:

row 0 = row 0 of A
row 1 = row 1 of B
row 2 = row 2 of C

• X send a copy of its state to all
nodes

• Total cost:
N=number of nodes

A

C

ZB

X

Join

?

State

Node Join (2)
Phase 2:
• Proximity metric: Each node is able to determine

the physical distance to any other node
• Improvement of X‘s routing table quality: X

– requests state from each node in the routing
and the neighborhood set

– compares physical distances of the nodes in
those tables

– updates its state when closer nodes are found
– informs other nodes about its state

Node departure
• Failed/departed node:

Immediate neighbors can no longer communicate with it
• Node replacement:

– To replace a node in its leaf set, a node n asks the
next alive node m with largest index for its leaf table

– M‘s leaf set partly overlaps with n‘s leaf set
– A non common node among these leaf sets is

selected to be the failed node‘s replacement
– It is important to keep the neighborhood set up to

date because it is important for testing if nearby
nodes are still alive

3

Node failures: experimental
results
• 5000 node Pastry network
• Quality of the network before and after 500 node failures (b=4)

Applications: PAST
• A storage utility on top of Pastry
• PAST replicates a file on its k numerically

closest nodes
• PAST profits from the proximity metric:

– When routing a message from a client to the
numerically closest node, the message first
reaches a physically close node among the
numerically closest nodes

– Minimize network load and client latency

Applications: SCRIBE
• Publish/subscribe system
• A node (rendez-vous point) with a nodeId

numerically closest to a topicId of a given topic
stores a list of subscribers

• Subscribers send messages using the topicId as
key

• Each node along the path registers the message
• Publishers send data to the rendez-vous point

using topicId as key
• Rendez-vous point forwards the data to all

subscribers

Viceroy

Viceroy: properties
• Completely distributed and scalable lookup service
• Key-value pairs are distributed across a changing set of

servers
• Keys and servers have identifiers chosen in the same

metric
• A key-value pair is on the server with the closest

identifier to the key
• Viceroy is a combination of a ring and a butterfly network
• Each server in the network is entirely determined by:

– Its identifier
– Its level

The Viceroy network
The network consists of three sets of links:

• a general ring
each node s is connected to
– its successor (s.successor)
– Its predecessor (s.predecessor)

• level rings
all nodes of the same level are connected
in a ring with these links:
– s.nextonlevel
– s.prevonlevel

• butterfly
each node s points to two down nodes and
one up level node:

– s.right
– s.left
– s.up

0 0.5 1

Level 1

Level 2

4

System model: General ring
• Distribution of key-value pairs among servers:

- each server is referred by an unique identifier
- keys and server ID‘s are treated as dots in

the same metric
- keys and servers are mapped to the unit ring [0..1)
- a key-value pair is on the server with the closest ID

to the key
- a server manages key-value pairs with

keys between its counter-clockwise
neighbor‘s ID and its own ID

System model: Level ring
• Goal:

– select levels that require as few level changes as possible when
joins and leaves occur

– Select levels so that a good dispersal of levels among servers is
achieved

Distributed SELECT-LEVEL algorithm:
1. A server s estimates n0, the total number of

servers in the configuration
Let n0 = 1/distance(s, SUCC(s))

2. Based on this estimate n0, select a level l
between uniformly at random and
return l

System model: butterfly
• Each server s at level l points to:

– A right down link to level l+1
clockwise closest node
to s +1/2l (NLEVELl+1(s+1/2l))

– A left down link to level l+1
clockwise-closest node to s
(NLEVELl+1(s))

– An up link (if l>1) to level l-1
clockwise closest node to s
(NLEVELl-1(s))

Simple LOOKUP subroutine
• Only global ring and butterfly links are used
• LOOKUP(x,y) finds the clockwise closest to the value x starting at server y
• It consists of 3 routing phases:

– Proceed to root
find root server by following level up links

– Traverse tree
lookup down from the root, if down link does not exist, go directly to traverse ring
- if distance d(current, x) < 1/2current..level then

current = current.left
- else current = current.right

– Traverse ring
select closer server to x between current.successor and current.predecessor,
repeat until closest server is found and return result

Viceroy construction: Join
A joining server s performs the steps:
1. Select an identifier
2. Find its successor using the LOOKUP function,

insert s in the ring and update the pointers
3. Transfer all key-value pairs from successor

with key between s.predecessor and s
4. Select a level l, update level ring pointers
5. Find s.left, s.right and s.up

Viceroy construction: Leave
• Outbound connections

have to be removed
• Inbound connections

must find a replacement
– Using the LOOKUP

subroutine
– By pointing to the

successor

• Transfer resources to its
successor

5

Improved LOOKUP subroutine
• Problem of the simple LOOKUP:

In the third phase the current and target node might be at a distance of
O(log2n) when the ring is traversed.

• Improvement to achieve an O(logn) dilation:
Third phase is a combination of level and global rings:

if current.nextonlevel stretch(current,x)
then current = current.nextonlevel

elsif current.prevonlevel stretch(current,x)
then current = current.prevonlevel

else current = current.successor or predecessor
repeat until clockwise closest node to x found

Stretch (x, y) = clockwise region between server x and y

Simple Viceroy Analysis
If n servers are present:
• The first two phases take O(logn) steps
• The last phase takes O(logn) steps in

expectation and O(log2n) at worst w.h.p. with the
simple lookup and O(logn) with the improved

• For any server the expected load is O((logn)/n)
and w.h.p. the maximum load on all servers is
O((log2n)/n)

• The outdegree of each node is 7 (in simple
version only 5), the expected indegree is O(1)
and the largest indegree is O(logn) w.h.p.

The Bucket solution
• Largest indegree in the number can be as large as the

log of the number of servers
• „Buckets“ are added:

– Sets of O(logn) servers
In case of a size drop, two buckets are merged
If the size exceeds ,the bucket is split in two

– One set does not overlap with any other set
– Inside a bucket a ring is maintained
– In one bucket is at least one server of each level and

no more than c

Comparison: Pastry/Viceroy
• Implementation

– Pastry:
• Implemented in java
• Report on experimental results
• Applications running on top of it

• Assumptions
– Viceroy: multiple join/leave operations can fail

Comparison: Pastry/Viceroy (2)
• Routing table

Each Pastry node provides routing information in a state
table

• Locality
Pastry has the additional ability to root messages along
the shortest distance according to the proximity metric

• Network
– Viceroy: butterfly/ ring combination
– Pastry: ring

