
1

What Can Be Computed Locally?

Michael Kaufmann

Distributed Computing Seminar, November 2003

1 Summary

The paper [1] deals with locality on several levels: It introduces a model for distrib-
uted computations and the notion of locally checkable labelings (LCLs). It proves
properties about algorithms for locally checkable labeling problems. Two algorithms
are analyzed in detail: One for the Weak Coloring problem and one for the Formal
Dining Philosophers problem.

2 Locally checkable Labelings

The paper shows fundamental properties of local algorithms for LCL problems:

• Undecidability: In general, it’s impossible to decide if a certain LCL problem has a
local algorithm. However, it is possible to decide if the time bound is fixed.

Unfortunately, this proof doesn’t give instructions on how to find an algorithm.

• Randomization: If there’s a randomized local algorithm for a LCL problem, then a
deterministic algorithm with the same time bound can be found.

This proof is important: We can concentrate on deterministic algorithms if we want to
find one for a particular problem.

3 Weak Coloring

The Weak Coloring problem is quite artificial and has only few applications. It can be
used where two types of resources are needed to perform an operation, but since
every node only gets one type of resource, they have to cooperate.

3.1 Phase 1: Initial Coloring

The first phase creates a coloring with 2d)1d(d ++⋅ colors. If d ≥ 8, this expression is
bigger than 232. In cases where we have less than 232 IDs, we could take the ID as
color number (example: IP addresses).

3.2 Phase 2: Assigning different Subsets

The authors don’t give instructions on how to assign a different subset to every color
number. Of course, in the model used (any computation on a single processor can be
carried out in one time step) this isn’t a problem, but in practice it is.

2

3.3 Phase 3: Runtime

The color reduction algorithm of the third phase is slower than that of the second
phase. The paper states that it takes O(number of colors) rounds to decrease the
colors to 2 in the worst case. But the runtime depends on the distribution of the colors
in the graph. It may be interesting to study the average runtime of this algorithm, for
example on random graphs.

3.4 Limitations

The paper only considers graphs where d (this is the maximal degree of a node in the
graph) is known. Weak Coloring can be solved for graphs with unknown d (by re-
placing the algorithm of phase 2 with the algorithm of phase 3), but the runtime won’t
be constant anymore. It’s an open question if a constant-time algorithm for graphs
with unbounded d exists.
The second concern is the big number of colors that are generated in phase 1. This
has been resolved by the follow-up paper [2] in which the authors describe a much
better phase 1 algorithm that uses 2d colors.

3.5 Example Graph: Equally colored Nodes

It was hard to find a sample graph where two nodes get the same color (Figure 1).
Unfortunately the authors of the paper have not included any example graphs or fig-
ures that help to understand their paper.

4 Formal Dining Philosophers Problem

The paper uses the Weak Coloring problem to solve the Formal Dining Philosophers
Problem. It’s an extension of the Dining Philosophers Problem by Dijkstra: Instead of
two specified forks, a processor can take any two forks that are in its reach.

4.1 Limitations

Often more than two processors need to share a resource. So this algorithm is suit-
able only for special applications.

5 Other local Algorithms

The Formal Dining Philosophers Problem is the only known non-trivial locally solv-
able LCL problem. Probably most LCL problems are trivial, and once we have a non-
trivial instance, it’s very hard to find an algorithm.

The follow-up paper [2] contains much improved algorithms compared to [1]. It also
considers dynamic networks.

3

References

[1] Moni Naor and Larry Stockmeyer, What Can Be Computed Locally?,
25th Symposium on the Theory of Computing, 1993.

[2] Alain Mayer, Moni Naor and Larry Stockmeyer, Local Computations on Static
and Dynamic Graphs, 3rd Israeli Symposium on the Theory of Computing and
Systems, 1995.

2

3

4

5

6

7

8

9

10

11

12
13

14

1

2

3

4

5

6

7

8

9

10

11

12
13

14

1

Figure 1: The nodes 5, 7, 8, 9 and 11 get the same color

