
1

What Can Be Computed Locally?

Michael Kaufmann

Distributed Computing Seminar
ETH Zürich, 25.11.2003

2

Overview of this Presentation

Part 1: Introduction
What are Local Algorithms?
General Results

Part 2: Two local Algorithms
Weak Coloring
Formal Dining Philosophers problem

3

About the Paper

"What Can Be Computed Locally?"
By Moni Naor & Larry Stockmeyer (1993)
Main topic of this presentation

Follow-up paper:
"Local Computations on Static and Dynamic Graphs"

By Alain Mayer, Moni Naor & Larry Stockmeyer (1995)
Simplifies some algorithms of the previous paper

More "high-level"
Dynamic network

Part 1:

Introduction
&

General Results

5

Introduction

Locality …

… is important
Runtime is independent of the network size: Constant time t

Fast algorithms (parallel computation)
Very good scalability

Fault-tolerance
A computer crash only affects a small part of the network

6

Network model:
At each time unit, a processor may pass messages to each of its
neighbors
Any computations carried out by individual processors take one
time unit

The Model used (1)

t=0
t=1
t=2
t=3

Example:
If an algorithm takes constant time t=2, the red and the purple
processor will never communicate

⇒ In time t, every processor can only collect information that lies within
radius t

2

7

The Model used (2)

Every processor has a unique ID
This makes the processors distinguishable

Processors can tell other processors what neighbors they have
Examples for IDs:

IP address (32-bit-number)
MAC address (48-bit-number)
Processor serial number (Intel: 96-bit-number)

4

1

2

3

193.99.144.71

129.132.178.197
129.132.130.158

138.15.10.13

8

Locally Checkable Labelings (LCLs)

Algorithms produce a labeling of the graph
In a LCL problem, every node is able to check if the labeling is
locally correct
Examples of such labelings:

Vertex/Edge coloring
Maximal Independent Set

Maximal Independent Set
This problem is locally checkable:

If node v is in the MIS, then no neighbor of v is in the MIS
If node v is not in the MIS, then at least one neighbor of v is in the MIS

9

Decidability / Undecidability

Is it possible to decide if a given LCL problem L can be
solved in constant time t?

Definition: Let d be the maximum degree of a node in the graph

Yes, if d ≤ 2.
If d ≥ 3:

Yes, if t is fixed
No, if t is not fixed

⇒ in practice (we don't know d), it's undecidable.

10

Randomized Algorithms

Maybe Randomized Algorithms do a better job than
deterministic algorithms on LCL problems?
Simple answer: No.
Don't use randomized algorithms on LCL problems. You
can always find a deterministic algorithm.

Part 2:

Weak Coloring
&

The Formal Dining
Philosophers Problem

12

Weak Coloring

Color the nodes of a graph, such that every node has at
least one neighbor with a different color
Weak 2-coloring:

Applications:
French Fries & Ketchup
Digital Camera & Printer

3

13

Create an MST of the graph

Start at one node, walk through the MST in a breadth-first
manner and color the nodes alternately

Proof: Every Graph has a Weak 2-
Coloring

14

Weak Coloring as an LCL Problem

A local algorithm for Weak 2-Coloring exists!
First (and only?) non-trivial locally solvable LCL problem
But: Algorithm only works if all nodes have odd degree

Each node has to color itself with a local algorithm

15

Rank of a Node: rw(v)

Let v be a node. N+(v) is the set of all neighbors of v,
including v itself.
rv(v) is the rank of v in the set of its neighbors N+(v)

4

3

7

1

2

8

5

6=v

9

N+(v)={1,2,5,6,8,9}
rv(v)=4

N+(v)

16

Continued:
Rank of a Node: rw(v)

rw(v) is the rank of v among the neighbors of node w
(=N+(w))

Node v asks node w: "What is my rank in your perspective of
view?"

N+(w)={2,5,6,9}
rw(w)=4
rw(v)=3

4

3

7

1

2

8

5

6=v

9=w

N+(w)

17

Local Algorithm for Weak 2-Coloring

Works only if all nodes have odd degrees!
Main idea: Calculate rw(v) for all neighbors w ∈ N+(v)

Phase 1: Generate a Weak Coloring with d(d+1)d+2 colors
d is the maximum degree of a node in the graph

Phase 2: Reduce the number of colors to 4
Algorithm needs time O(log*(d))
Works only if graph has bounded degree

Phase 3: 4 colors to 2 colors
Algorithm needs time O(c), c = number of colors
Could also use this algorithm for phase 2

18

Algorithm that generates a Weak
2-Coloring (Phase 1)

Every node v calculates its color vector Cv:
Cv = (Cv[-1], Cv[0], Cv[1], ..., Cv[deg(v)+1])

The first component is in the range {1, ..., deg(v)}
The other components are in the range {1, ..., deg(v)+1}

Because of this, there are so many possible colors

13996805
30723

> 26414
> 24811
> 2328

Largest possible
color numberdeg(v)

4

19

Local Algorithm for Node v

Preparation:
Create a list of all neighbors w ∈ N+(v)
Sort it according to ID(w)
Cv[-1] := deg(v)

Nodes with different degrees are different and get different colors
Cv[0] := rv(v)

Among the rw(v), rv(v) is special and needs to get stored at a fixed
position

For every neighbor w do: Cv[rv(w)] := rw(v)
That's it! Algorithm is completely local: t=2

Every node asks only its neighbors

20

Every node has a neighbor with a different color
Proof by contradiction: Assume that v and all its neighbors
have the same color.
Cv = Cw for all neighbors w of v

We can conclude:
v and w have the same degree:
Cv[-1] = Cw[-1]
v and w have the same rank among their neighbors:
Cv[0] = Cw[0] = rv(v) = rw(w)

Proof: The Algorithm is correct (1)

v
w1 w2

w3

21

Proof (2): The contradiction is complete
as soon as we can prove that...

... v has two neighbors a and b that both have v at the
same rank j among their neighborhood.

Formally: ra(v) = rb(v) = j

Colors of a and b at array index j:
⇒ Ca[j] = Ca[ra(v)] = rv(a)
⇒ Cb[j] = Cb[rb(v)] = rv(b)

rv(a) and rv(b) are not equal!
Thus the colors Ca and Cb are different!
This means that v has two neighbors with different colors

To have the same colors:
ra(v) ≠ rb(v) (Rule 1)

4=v

1 3

5=a
6

7

8=b

9

10

2

22

Case 1: There are more neighbors with a higher ID than
with a lower ID

Formally: x:=rv(v) ≤

For each such neighbor w:
rw(w) = rv(v) ⇒ rw(v) < rv(v) (Rule 2)

Fill in this table:

Proof: The Algorithm is correct (3)

2
1)vdeg(+

bavci:

24ri(v):
4321rv(i):

4=v

1 3

5=a
6

7

8=b

9

10

2=c

1 1

1. ra(v) ≠ rb(v)
2. rw(v) < rv(v)

23

Proof: The Algorithm is correct (4)

Case 1, in general (case 2 is similar):

x
x
v

x-1
2x-1... x-1

1
x+1

2
x+2

Neighbors of v

...

...
Neighbors of vi:

...yri(v):

...2x21rv(i):

x-1 Nodes ≥ x Nodes,
x-1 smaller ranks than x

y ≠ x ⇒ two neighbors of v have different colors
y = x ⇒ node has a different color

1. ra(v) ≠ rb(v)
2. rw(v) < rv(v)

24

Algorithm that generates a Weak 2-
Coloring (Phase 2)

Phase 2: Reduce the number from c colors to 4 colors
Algorithm for node v:

Choose the smallest c' with

Associate a different subset Si ⊂ {1, …, c'} of size to every
i ∈ {1, …, c}

v has at least one neighbor w with a different color
v recolors itself to a color that is in Scolor(v), but not in Scolor(w).
Such a color exists, because the subsets have the same size and
are not equal.

c

2'c
'c

≥

 2'c

But does node v know c?
c could be calculated if d is bounded

⇒ This is no local algorithm if d is unbounded!

5

25

Algorithm that generates a Weak 2-
Coloring (Phase 3)

Phase 3: 4 colors to 2 colors
Original coloring: c colors {1,2,...,c}
Recoloring in c rounds/steps

If c is not fixed, this is no constant-time algorithm (but it is local)

Each node v waits until it has the smallest color number
among its original-colored neighbors in N+(v).
Then, v recolors itself according to the following rules:
1. If v has only original-colored neighbors: Recolor to 0
2. If v has recolored neighbors:

If all the recolored neighbors have color 1: Recolor to 0
There are recolored neighbors with color 0: Recolor to 1

After the recoloring, node v announces its new color to its
neighbors.

26

Phase 3: Correctness and Example

Correctness at node v:
If v used rule 2, the node has a different-colored neighbor
If v used rule 1, it must have a neighbor w with a bigger original
color than v.

w will recolor itself after v and use rule 2.
Because v has color 0, w will recolor itself to 1.

1
1

2

2

3
3

4

2
0

0

1

1

1

0
1

1

27

Nodes with even Degrees

Now we see why this algorithm doesn't work with even
degreed nodes

Every pigeon can find a hole if rv(v) =

How difficult is it to find an example where the algorithm
fails?

Node v is not properly colored if...
The degree d of v is even
Its rank in its neighborhood is
Every neighbor w of v has degree d and rank rw(w) =
as well

1
2

)vdeg(
+

1
2
d

+
1

2
d

+

28

Nodes with even Degrees:
Example where the Algorithm fails

2

3

4

5

6

7

8

9

10

11

12
13

14

1

4
3
5
4
3
2
1

29

The Formal Dining Philosophers Problem:
Introduction

Variant of the Dining Philosophers Problem
Formal dining:

A philosopher must wear two cuff links (Manschetten-
knöpfe) while eating!

30

The Formal Dining Philosophers Problem:
Definition

Each node represents a processor and each edge a
resource (or "cuff link").

A processor needs any two cuff links to eat
Two processors share one resource and are therefore in a conflict
Example:

Storage server farm

Find a local algorithm
Safety?
Liveness?

Formal DPP Dijkstra's DPP

R

R

R

R
RR

R

R

R

R

6

31

Finding an Algorithm for the Formal
Dining Philosophers Problem

Generate a Weak 2-Coloring
Colors: {0, 1, ∗}
We assume that the minimum degree of a node is 3.
All nodes where the algorithm fails recolor itself to color ∗.

Assign two cuff links permanently to nodes colored ∗.
Are there enough cuff links left for the other nodes?

Nodes colored {0,1} run a dynamic algorithm to get two
cuff links

Length of the "waiting chain"?

32

Permanent Assignment of Cuff Links to
Nodes colored ∗

The algorithm fails at node v only if...
v has even degree
half of its neighbors have lower and half have higher ranks

A node colored ∗ grabs the two cuff links that lie on the
edges to two nodes with lower IDs
Are there enough cuff links left?

If w is a neighbor of v (v is colored ∗), then...
w has the same degree as v (at least 4)
The rank of w among its neighbors is half the degree plus 1

⇒ In the "worst case", only half of the adjacent edges are
grabbed permanently

33

Nodes colored {0,1}

Nodes colored {0,1} must run this algorithm to get a cuff
link:
1. Request cuff link from the first neighbor
2. Request cuff link from the second neighbor
3. Eat
4. Release cuff links

"Request" means: Grab the cuff link, or wait until it's ready

First and second neighbor need to be defined carefully to
prevent deadlocks

Bad choice of 1st

and 2nd neighbors: R1 0

1

w1 w2

w3

2nd

2ndR

1st

R

1st2nd

1st

34

How to choose the Second and First
Neighbor

Trick: Choose the second neighbor first
Deadlock only occurs if a node can't grab its second resource

If v is colored 1:
Choose any neighbor colored 0 as second neighbor
Announce this to all neighbors

If v is colored 0:
Wait if v has been chosen as a second neighbor by neighbor w

If yes: Choose w as second neighbor to match the choice of w
If no: Choose any neighbor colored 1 as second neighbor

Then choose an arbitrary first neighbor (other than the
second neighbor)

Never choose a neighbor colored ∗ as first neighbor

35

Deadlock? – Proof about the Length of
the Waiting Chain

Given any assignment of first and second neighbors, the
maximum length of a waiting chain is at most 4

Can this happen?

R1 0

1

w1 w2

w3

2nd

1st
2ndR

No, because w2 would choose w1 as its second neighbor
to match the choice of w1

R1 0

1

w1 w2

w3

2nd

1st

2nd

R

36

Proof: Maximum Length of the Waiting
Chain (1)

Try to build a very long waiting chain:

... c

u0

1-c

u1

c

u2

1-c

u3

Waits for Waits for Waits for Waits for

First First First First First

Second Second Second Second Second

...Waits for

⇒ It's impossible to build a waiting chain of arbitrary length!

The rules were violated. If we obey the rules, we get this
(c=1):

... 1

u0

0

u1

1

u2

0

u3

First Second First Second First

First Second First Second First

...

7

37

Proof: Maximum Length of the Waiting
Chain (2)

The longest possible waiting chain has length 4

1 0

u0

1

u1

0

u2

1

u3

Waits for Waits for Waits for Waits for

First First First Second

First Second Second Second

38

Summary of this Presentation

Local algorithms & LCL problems
It's undecidable if a local algorithm for a given LCL
problem exists
Randomized local algorithms: Don't use them
Weak 2-Coloring:

Local algorithm that works if all nodes have odd degree
Color Generation & Color Reduction
Fails only in very rare cases

Formal Dining Philosophers Problem:
Efficient algorithm based on Weak Coloring
Static "cuff link" allocation for nodes where Weak Coloring fails

