What Can Be Computed Locally?

Michael Kaufmann

Distributed Computing Seminar
ETH Zürich, 25.11.2003

Overview of this Presentation
- Part 1: Introduction
 - What are Local Algorithms?
 - General Results
- Part 2: Two local Algorithms
 - Weak Coloring
 - Formal Dining Philosophers problem

About the Paper
- "What Can Be Computed Locally?"
 - By Moni Naor & Larry Stockmeyer (1993)
 - Main topic of this presentation
- Follow-up paper:
 - "Local Computations on Static and Dynamic Graphs"
 - By Alain Mayer, Moni Naor & Larry Stockmeyer (1995)
 - Simplifies some algorithms of the previous paper
 - More "high-level"
 - Dynamic network

Part 1:
Introduction &
General Results

Introduction
- Locality ...
- ... is important
 - Runtime is independent of the network size:
 Constant time t
 - Fast algorithms (parallel computation)
 - Very good scalability
 - Fault-tolerance
 - A computer crash only affects a small part of the network

The Model used (1)
- Network model:
 - At each time unit, a processor may pass messages to each of its neighbors
 - Any computations carried out by individual processors take one time unit
- Example:
 - If an algorithm takes constant time $t=2$, the red and the purple processor will never communicate
 - In time t, every processor can only collect information that lies within radius t
The Model used (2)

- Every processor has a unique ID
- This makes the processors distinguishable
- Processors can tell other processors what neighbors they have
 - Examples for IDs:
 - IP address (32-bit number)
 - MAC address (48-bit number)
 - Processor serial number (Intel: 96-bit number)

Locally Checkable Labelings (LCLs)

- Algorithms produce a labeling of the graph
- In an LCL problem, every node is able to check if the labeling is locally correct
- Examples of such labelings:
 - Vertex/Edge coloring
 - Maximal Independent Set

- Maximal Independent Set
 - This problem is locally checkable:
 - If node v is in the MIS, then no neighbor of v is in the MIS
 - If node v is not in the MIS, then at least one neighbor of v is in the MIS

Decidability / Undecidability

- Is it possible to decide if a given LCL problem L can be solved in constant time t?
- Definition: Let d be the maximum degree of a node in the graph
- Yes, if $d \leq 2$.
- If $d \geq 3$:
 - Yes, if t is fixed
 - No, if t is not fixed
- In practice (we don't know d), it's undecidable.

Randomized Algorithms

- Maybe Randomized Algorithms do a better job than deterministic algorithms on LCL problems?
- Simple answer: No.
- Don't use randomized algorithms on LCL problems. You can always find a deterministic algorithm.

Part 2:

Weak Coloring

&

The Formal Dining Philosophers Problem

Weak Coloring

- Color the nodes of a graph, such that every node has at least one neighbor with a different color
- Weak 2-coloring:

 - Applications:
 - French Fries & Ketchup
 - Digital Camera & Printer
Proof: Every Graph has a Weak 2-Coloring

- Create an MST of the graph
- Start at one node, walk through the MST in a breadth-first manner and color the nodes alternately

Weak Coloring as an LCL Problem

- A local algorithm for Weak 2-Coloring exists!
 - First (and only?) non-trivial locally solvable LCL problem
 - But: Algorithm only works if all nodes have odd degree
 - Each node has to color itself with a local algorithm

Rank of a Node: \(r_w(v) \)

- Let \(v \) be a node. \(N^+(v) \) is the set of all neighbors of \(v \), including \(v \) itself.
- \(r_w(v) \) is the rank of \(v \) in the set of its neighbors \(N^+(v) \)

Continued: Rank of a Node: \(r_w(v) \)

- \(r_w(v) \) is the rank of \(v \) among the neighbors of node \(w \) \((=N^+(w))\)
 - Node \(v \) asks node \(w \): “What is my rank in your perspective of view?”

Local Algorithm for Weak 2-Coloring

- Works only if all nodes have odd degrees!
- Main idea: Calculate \(r_w(v) \) for all neighbors \(w \in N^+(v) \)

- Phase 1: Generate a Weak Coloring with \(d(d+1)^{d-2} \) colors
 - \(d \) is the maximum degree of a node in the graph

- Phase 2: Reduce the number of colors to 4
 - Algorithm needs time \(O(\log^*(d)) \)
 - Works only if graph has bounded degree

- Phase 3: 4 colors to 2 colors
 - Algorithm needs time \(O(c) \), \(c \) = number of colors
 - Could also use this algorithm for phase 2

Algorithm that generates a Weak 2-Coloring (Phase 1)

- Every node \(v \) calculates its color vector \(C_v \):
 - \(C_v = (C_v[1], C_v[0], C_v[1], ..., C_v[\deg(v)+1]) \)
 - The first component is in the range \((1, ..., \deg(v))\)
 - The other components are in the range \((1, ..., \deg(v)+1)\)
 - Because of this, there are so many possible colors
Local Algorithm for Node v

- Preparation:
 - Create a list of all neighbors \(w \in N^+(v) \)
 - Sort it according to \(ID(w) \)
 - \(C[v][1] = deg(v) \)
 - Nodes with different degrees are different and get different colors
 - Among the \(C[v][1] \), \(C[v][0] \) is special and needs to be stored at a fixed position
 - For every neighbor \(w \) do: \(C[v][rv(w)] := rw(v) \)

That's it! Algorithm is completely local: \(t=2 \)
- Every node asks only its neighbors

Proof: The Algorithm is correct (1)

- Every node has a neighbor with a different color
 - Proof by contradiction: Assume that \(v \) and all its neighbors have the same color, \(C[v][1] = C[w][1] \)
 - \(v \) and \(w \) have the same rank among their neighbors: \(C[v][0] = C[w][0] = rv(v) = rw(w) \)
 - This means that \(v \) has two neighbors with different colors

Case 1, in general (case 2 is similar):

<table>
<thead>
<tr>
<th>(x)</th>
<th>Neighbors of (v)</th>
<th>Neighbors of (v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x+1)</td>
<td>(x+2)</td>
<td>(x+1)</td>
</tr>
<tr>
<td>(x+1)</td>
<td>(x+1)</td>
<td>(x+1)</td>
</tr>
<tr>
<td>(x+2)</td>
<td>(x+1)</td>
<td>(x+1)</td>
</tr>
<tr>
<td>(x)</td>
<td>(x)</td>
<td>(x)</td>
</tr>
</tbody>
</table>

- \(y \neq x \) \(\Rightarrow \) two neighbors of \(v \) have different colors
- \(y = x \) \(\Rightarrow \) node has a different color

Algorithm that generates a Weak 2-Coloring (Phase 2)

- Phase 2: Reduce the number from \(c \) colors to 4 colors
 - Algorithm for node \(v \):
 - Choose the smallest \(c' \) with \(\left\lceil \frac{c}{2} \right\rceil \leq c' \)
 - Associate a different subset \(S_i \subset \{1, \ldots, c'\} \) of size \(\left\lceil c/2 \right\rceil \) to every \(i \in \{1, \ldots, 6\} \)
 - \(v \) has at least one neighbor \(w \) with a different color
 - \(v \) recolors itself to a color that is in \(S_{\text{color}(v)} \), but not in \(S_{\text{color}(w)} \)
 - Such a color exists, because the subsets have the same size and are not equal.
 - But does node \(v \) know \(c' \)?
 - \(c ' \) could be calculated if \(d \) is bounded
 - \(\Rightarrow \) This is no local algorithm if \(d \) is unbounded!

Proof (2): The contradiction is complete as soon as we can prove that...

- ... \(v \) has two neighbors \(a \) and \(b \) that both have \(v \) at the same rank \(j \) among their neighborhood.
 - Formally: \(j = rv(v) \)
- Colors of \(a \) and \(b \) at array index \(j \):
 - \(C[a][j] = ra(v) \)
 - \(C[b][j] = rb(v) \)
 - \(ra(v) \) and \(rb(v) \) are not equal!
 - Thus the colors \(C[a] \) and \(C[b] \) are different!
 - This means that \(v \) has two neighbors with different colors

To have the same colors:
- \(ra(v) = rb(v) \) (Rule 1)

Proof (3): The contradiction is complete as soon as we can prove that...

- Case 1: There are more neighbors with a higher ID than with a lower ID
 - Formally: \(x := rv(v) \)
 - For each such neighbor \(w \):
 - \(rw(w) = rv(v) \)
 - \(rw(v) < rv(v) \) (Rule 2)

- Fill in this table:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(c)</th>
<th>(v)</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Proof (4): The contradiction is complete as soon as we can prove that...

- Case 2: There are more neighbors with a lower ID than with a higher ID
 - Formally: \(x := rv(v) \)
 - For each such neighbor \(w \):
 - \(rw(w) = rv(v) \)
 - \(rw(v) < rv(v) \) (Rule 2)

- Fill in this table:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(c)</th>
<th>(v)</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Proof: The Algorithm is correct (2)
Algorithm that generates a Weak 2-Coloring (Phase 3)

- Phase 3: 4 colors to 2 colors
 - Original coloring: c colors \{1,2,...,c\}
 - Recoloring in c rounds/steps
 - If c is not fixed, this is no constant-time algorithm (but it is local)
 - Each node v waits until it has the smallest color number among its original-colored neighbors in \(N^+(v)\).
 - Then, v recolors itself according to the following rules:
 1. If v has only original-colored neighbors: Recolor to 0
 2. If v has recolored neighbors:
 - If all the recolored neighbors have color 1: Recolor to 0
 - There are recolored neighbors with color 0: Recolor to 1
 - After the recoloring, node v announces its new color to its neighbors.

Phase 3: Correctness and Example

- Correctness at node v:
 - If v used rule 2, the node has a different-colored neighbor
 - If v used rule 1, it must have a neighbor w with a bigger original color than v.
 - w will recolor itself after v and use rule 2.
 - Because v has color 0, w will recolor itself to 1.

Nodes with even Degrees

- Now we see why this algorithm doesn't work with even degree nodes
 - Every pigeon can find a hole if \(r(v) = \frac{\deg(v)}{2} + 1\)
- How difficult is it to find an example where the algorithm fails?
 - Node v is not properly colored if...
 - The degree \(d\) of v is even
 - Its rank in its neighborhood is \(\frac{d}{2} + 1\)
 - Every neighbor w of v has degree \(d\) and rank \(r(w) = \frac{d}{2} + 1\)

Nodes with even Degrees: Example where the Algorithm fails

The Formal Dining Philosophers Problem: Introduction

- Variant of the Dining Philosophers Problem
- Formal dining:

A philosopher must wear two cuff links (Manschettenknöpfe) while eating!

The Formal Dining Philosophers Problem: Definition

- Each node represents a processor and each edge a resource (or "cuff link")
- A processor needs any two cuff links to eat
- Two processors share one resource and are therefore in a conflict
- Example:
 - Storage server farm
- Find a local algorithm
 - Safety?
 - Liveness?
Finding an Algorithm for the Formal Dining Philosophers Problem

- Generate a Weak 2-Coloring
 - Colors: {0, 1, ∗}
 - We assume that the minimum degree of a node is 3.
 - All nodes where the algorithm fails recolor itself to color ∗.
- Assign two cuff links permanently to nodes colored ∗.
 - Are there enough cuff links left for the other nodes?
- Nodes colored {0, 1} run a dynamic algorithm to get two cuff links
 - Length of the "waiting chain"?

Permanent Assignment of Cuff Links to Nodes colored ∗

- The algorithm fails at node v only if...
 - v has even degree
 - half of its neighbors have lower and half have higher ranks
- A node colored ∗ grabs the two cuff links that lie on the edges to two nodes with lower IDs
- Are there enough cuff links left?
 - If w is a neighbor of v (v is colored ∗), then...
 - w has the same degree as v (at least 4)
 - The rank of w among its neighbors is half the degree plus 1
 - In the "worst case", only half of the adjacent edges are grabbed permanently

Nodes colored {0, 1}

- Nodes colored {0, 1} must run this algorithm to get a cuff link:
 1. Request cuff link from the first neighbor
 2. Request cuff link from the second neighbor
 3. Eat
 4. Release cuff links
 - "Request" means: Grab the cuff link, or wait until it's ready
- First and second neighbor need to be defined carefully to prevent deadlocks
 - Bad choice of 1st and 2nd neighbors:

How to choose the Second and First Neighbor

- Trick: Choose the second neighbor first
 - Deadlock only occurs if a node can't grab its second resource
- If v is colored 1:
 - Choose any neighbor colored 0 as second neighbor
 - Announce this to all neighbors
- If v is colored 0:
 - Wait if v has been chosen as a second neighbor by neighbor w
 - If yes: Choose w as second neighbor to match the choice of w
 - If no: Choose any neighbor colored 1 as second neighbor
 - Then choose an arbitrary first neighbor (other than the second neighbor)
 - Never choose a neighbor colored ∗ as first neighbor

Deadlock? – Proof about the Length of the Waiting Chain

- Given any assignment of first and second neighbors, the maximum length of a waiting chain is at most 4
 - Can this happen?

Proof: Maximum Length of the Waiting Chain (1)

- Try to build a very long waiting chain:
 - The rules were violated. If we obey the rules, we get this (c=1):

⇒ It's impossible to build a waiting chain of arbitrary length!
Proof: Maximum Length of the Waiting Chain (2)

- The longest possible waiting chain has length 4

Summary of this Presentation

- Local algorithms & LCL problems
- It's undecidable if a local algorithm for a given LCL problem exists
- Randomized local algorithms: Don't use them
- Weak 2-Coloring:
 - Local algorithm that works if all nodes have odd degree
 - Color Generation & Color Reduction
 - Fails only in very rare cases
- Formal Dining Philosophers Problem:
 - Efficient algorithm based on Weak Coloring
 - Static "cuff link" allocation for nodes where Weak Coloring fails