

Finding an Algorithm for the Formal Dining Philosophers Problem

- Generate a Weak 2-Coloring
 - Colors: {0, 1, *}
 - We assume that the minimum degree of a node is 3.
 - All nodes where the algorithm fails recolor itself to color *.
 - Assign two cuff links permanently to nodes colored *. • Are there enough cuff links left for the other nodes?
- Nodes colored {0,1} run a dynamic algorithm to get two cuff links
 - Length of the "waiting chain"?

Permangent Assignment of Cuff Links to back colored * Permangent Assignment of Cuff Links to back colored * Permangent Assignment of Cuff Links to back colored * Permangent Assignment of Permangent of P

31

