
Algebraic Topology and Distributed Computing
A Primer

Maurice Herlihy1 and Sergio Rajsbaum2

1 Computer Science Department
Brown University, Providence, RI 02912

herlihy@cs.brown.edu ???

2 Digital Equipment Corporation, Cambridge Research Lab
One Kendall Square, Cambridge, MA 02139

rajsbaum@crl.dec.comy

Abstract. Models and techniques borrowed from classical algebraic topol-
ogy have recently yielded a variety of new lower bounds and impossibility
results for distributed and concurrent computation. This paper explains
the basic concepts underlying this approach, and shows how they apply
to a simple distributed problem.

1 Introduction

The problem of coordinating concurrent processes remains one of the central
problems of distributed computing. Coordination problems arise at all scales in
distributed and concurrent systems, ranging from synchronizing data access in
tightly-coupled multiprocessors, to allocating data paths in networks. Coordi-
nation is di�cult because modern multiprocessor systems are inherently asyn-
chronous: processes may be delayed without warning for a variety of reasons,
including interrupts, pre-emption, cache misses, communication delays, or fail-
ures. These delays can vary enormously in scale: a cache miss might delay a
process for fewer than ten instructions, a page fault for a few million instruc-
tions, and operating system pre-emption for hundreds of millions of instructions.
Coordination protocols that do not take such delays into account run the risk
that if one process is unexpectedly delayed, then the remaining processes may
be unable to make progress.

Recently, techniques and models borrowed from classical algebraic topology
have yielded a variety of new lower bounds for coordination problems. This paper
is an attempt to explain the basic concepts and techniques underlying these
results. We are particularly interested in making the mathematical concepts
accessible to the Computer Science community. Although these concepts are

??? Research partly supported by ONR N00014-91-J-4052, ARPA Order 8225.
y On leave from Instituto de Matem�aticas, U.N.A.M., M�exico. Part of this work was
done while visiting the Laboratory for Computer Science, MIT. Partly supported by
DGAPA Projects.

abstract, they are elementary, being fully covered in the �rst chapter of Munkres'
standard textbook [18].

Our discussion focuses on a class of problems called decision tasks, described
in Section 2. In Section 3, we show how decision tasks can be modeled using
simplicial complexes, a standard combinatorial structure from elementary topol-
ogy. In Section 4, we review the notion of a chain complex, which provides an
algebraic vocabulary for describing the topological properties of simplicial com-
plexes. In Section 5, we show how these combinatorial and algebraic notions
can be applied to prove a variety of lower bounds for a well-known problem in
distributed computing, the k-set agreement task [7].

2 Model

A set of n + 1 sequential threads of control, called processes, communicate by
applying operations to objects in shared memory. Examples of shared objects in-
clude message queues, read/write variables, test-and-set variables, or objects of
arbitrary abstract type. Processes are asynchronous: they run at arbitrarily vary-
ing speeds. Up to t processes may fail. Because the processes are asynchronous,
a protocol cannot distinguish a failed process from a slow process.

To distill the notion of a distributed computation to its simplest interesting
form, we focus on a simple but important class of problems called decision tasks.
We are given a set of n+ 1 sequential processes P0; : : : ; Pn. Each process starts
out with a private input value, typically subject to task-speci�c constraints. The
processes communicate for a while, then each process chooses a private output
value, also subject to task-speci�c constraints, and then halts.

Decision tasks are intended to model \reactive" systems such as databases,
�le systems, or ight control systems. An input value represents information
entering the system from the outside world, such as a character typed at a
keyboard, a message from another computer, or a signal from a sensor. An output
value models an e�ect on the outside world, such as an irrevocable decision to
commit a transaction, to dispense cash, or to launch a missile.

Perhaps the simplest example of a decision task is consensus [9]. Each process
starts with an input value and chooses an output value. All output values must
agree, and each output value must have been some process's input value. If the
input values are boolean, the task is called binary consensus. The consensus task
was originally studied as an idealization of the transaction commitment problem,
in which a number of database sites must agree on whether to commit or abort
a distributed transaction.

A natural generalization of consensus is k-set agreement [7]. Like consensus,
each process's output value must be some process's input value. Unlike consen-
sus, which requires that all processes agree, k-set agreement requires that no
more than k distinct output values be chosen. Consensus is 1-set agreement.

A program that solves a decision task is called a protocol. A protocol is t-
resilient if any non-faulty process will �nish the protocol in a �xed number of

steps, regardless of failures or delays by up to t other processes. A protocol is
wait-free if it tolerates failures or delay by all but one of the processes.

3 Combinatorial Structures

Formally, an initial or �nal state of a process is a vertex, v = hPi; vii, a pair con-
sisting of a process id and a value (either input or output). A set of d+1 mutually
compatible initial or �nal process states is modeled as a d-dimensional simplex ,
(or d-simplex). A simplex is properly colored if each vertex is labeled with a
distinct process id. The complete set of possible initial (or �nal) process states
is represented by a set of properly colored simplexes, closed under containment,
called a simplicial complex (or complex). The dimension of C is the dimension
of a simplex of largest dimension in C. Where convenient, we use superscripts to
indicate dimensions of simplexes and complexes. The k-th skeleton of a complex,
skelk(Cn), is the subcomplex consisting of all simplexes of dimension k or less.
The set of process ids associated with simplex Sn is denoted by ids(Sn), and the
set of values by vals(Sn). Sm is a (proper) face of Sn if the vertexes of Sm are a
(proper) subset of the vertices of Sn. If K and L are complexes, a simplicial map
� : K ! L carries vertexes of K to vertexes of L so that simplexes are preserved.

It is often convenient to visualize vertexes, simplexes, and complexes as point
sets in Euclidian space. A vertex is simply a point, and an n-simplex is the con-
vex hull of n+1 a�nely-independent5 vertexes. A complex is represented by a set
of (geometric) simplexes arranged so that that each pair of simplexes intersects
either in a common face, or not at all. The point set occupied by such a com-
plex is called its polyhedron. Although we use this geometric interpretation for
illustrations and informal discussions, we do not use it in our formal treatment.

A decision task for n+ 1 processes is given by an input complex I, an output
complex O, and a map � carrying each input n-simplex of I to a set of n-
simplexes of O. This map associates with each initial state of the system (an
input n-simplex) the set of legal �nal states (output n-simplexes). It is convenient
to extend � to simplexes of lower dimension: when n� t � m < n, �(Sm) is the
set of legal �nal states in executions where only the indicated m + 1 processes
take steps.

For example, the input complex for binary consensus is constructed by assign-
ing independent binary values to n+1 processes. We call this complex the binary
n-sphere, because its polyhedron is homeomorphic to an n-sphere (exercise left
to the reader). The output complex consists of two disjoint n-simplexes, corre-
sponding to decision values 0 and 1. Figure 1 illustrates the input and output
complexes for two-process binary consensus.

As an example of an interesting output complex, consider the renaming task
[1], in which each process is given a unique input name taken from a large name
space, and must choose a unique output name taken from a much smaller name
space. Figure 2 shows the output complex for the three-process renaming task

5 v0; : : : ;vn are a�nely independent if v1� v0; : : : ;vn � v0 are linearly independent.

Input Complex Output Complex

∆

P 0 Q 0

P 1

P 0 Q 0

P 1Q 1 Q 1

Fig. 1. Input and Output Complexes for 2-Process Consensus

P 0 Q 3 R 0 P 3 Q 0 R 3

P 2R 1Q 2 Q 1 P 1R 2

R 0 P 3 Q 0 R 3 P 0

Q 2

P 0

P 1

Q 3

R 2

P 0

A

A

B

B

Fig. 2. Output Complex for 3-Process Renaming with 4 Names

using four output names. Notice that the two edges marked A are identical, as
are the two edges marked B. By identifying these edges, we can see that this
complex has a polyhedron homeomorphic to a torus.

At the end of a protocol, the process's local state is its view of the computa-
tion: its input value followed by the sequence of operations (including arguments
and results) applied to shared objects. It is convenient to view a process as exe-
cuting a protocol for a �xed number of steps, and then choosing its output value
by applying a task-speci�c decision map � to its local state.

We can treat any protocol as an \uninterpreted" protocol simply by treating
each process's local state as its decision value (i.e., omitting the task-speci�c
decision map �). This uninterpreted protocol itself de�nes a complex P, called
its protocol complex. Each vertex v in this complex is labeled with a process
id and a local state such that there exist some execution of the protocol in
which process id(v) �nishes the protocol with local state val(v). A simplex

Tm = (t0; : : : ; tm) is in this complex if there is an execution of the protocol in
which each process id (ti) �nishes the protocol with local state val (ti) (i.e., the
vertexes of any simplex are compatible local states). For an input simplex Sm,
let P(Sm) be the subcomplex of P generated by executions in which only the
processes in ids(Sm) take steps, starting with input values from vals(Sm).

P 0

Q 0

R 0

S 0

P 1

Q 1

R 1

S 1

Fig. 3. Two Views of Protocol Complex for Single-Round Test-And-Set Protocol

Fig. 4. Protocol Complexes for Multi-Round Test-And-Set Protocols

For example, consider a system in which asynchronous processes communi-
cate by applying test-and-set6 operations to shared variables. Figure 3 shows two
views of the protocol complex for a a four-process one-round protocol in which
processes P and Q share one test-and-set variable, and R and S share another.
Both variables are initialized to 0, and each process executes a single test-and-set

6 Recall that test-and-set atomically writes a 1 to a variable and returns the variable's
previous contents.

operation and halts. This complex consists of four tetrahedrons, corresponding
to the four possible outcomes of the two test-and-set operations. The left-hand
side shows a schematic view of the complex, where each vertex is labeled with a
process id and the result of the operation, while the right-hand side shows the
same complex in three-dimensional perspective. Figure 4 shows two more proto-
col complexes for protocols in which the processes respectively iterate two and
three-round test-and-set protocols, using fresh, 0-initialized variables for each
round.

What does it mean for a protocol to solve a decision task? Recall that a
process chooses a decision value by applying a decision map � to its local state
when the protocol is complete. Expressed in our terminology, a protocol solves a
decision task hI;O;�i if and only if there exists a simplicialmap � : P ! O such
that for all Sm 2 I, and all Tm 2 P(Sm), �(Tm) 2 �(Sm), for n� t � m � n.
This de�nition is just a formal way of stating that every execution of the protocol
must yield an output value assignment permitted by the decision task. This
might seem like a roundabout way to formulate such an obvious property, but
it has an important and useful advantage. We have moved from an operational
notion of a decision task, expressed in terms of computations unfolding in time,
to a purely combinatorial description.

We are now ready to describe our strategy for proving impossibility results.
To show that a decision task has no protocol in a given model of computation,
it is enough to show that no decision map � exists. Because decision maps are
simplicial, they preserve topological structure. If we can show that a class of
protocols generates protocol complexes that are \topologically incompatible"
with the task's output complex, then we have established impossibility.

4 Algebraic Structures

So far, our model is entirely combinatorial. To analyze the topological structure
of simplicial complexes, however, we now need to introduce some algebraic con-
cepts. Our discussion closely follows that of Munkres [18, Section 1.13], which
the reader is encouraged to consult for more details.

Let K be an n-dimensional simplicial complex, and Sq = (s0; : : : ; sq) a q-
simplex of K. An orientation for Sq is an equivalence class of orderings on
s0; : : : ; sq, consisting of one particular ordering and all even permutations of
it. For example, an orientation of a 1-simplex (s0; s1) is just a direction, either
from s0 to s1, or vice-versa. An orientation of a 2-simplex (s0; s1; s2) can be
either \clockwise," as in (s0; s1; s2), or \counterclockwise," as in (s0; s2; s1) (see
Figure 5). By convention, simplexes are oriented in increasing subscript order
unless explicitly stated otherwise.

A q-chain of K is a formal sum of oriented q-simplexes:
P`

i=0 �i � S
q
i , where

each �i is an integer, and the Sqi range over the q-simplexes of K. When writing
chains, we typically omit q-simplexes with zero coe�cients, unless they are all
zero, when we simply write 0. We write 1 � Sq as Sq and �1 � Sq as �Sq . We
identify �Sq with Sq having the opposite orientation. The q-chains of K form

a free Abelian group Cq(K), called the q-th chain group of K. For technical
reasons, it is convenient to de�ne C�1(K) to be the (in�nite cyclic) group of
integers under addition.

s0 s1

s2

s0 s1

s2

Fig. 5. An Oriented Simplex and its Boundary

Let Sq = (s0; : : :sq) be an oriented q-simplex. De�ne facei(S
q), the ith face

of Sq , to be the (q � 1)-simplex (s0; : : : ; ŝi; : : : ; sq), where circumex denotes
omission. The boundary operator @q : Cq(K) ! Cq�1(K), q > 0, is de�ned on
simplexes:

@Sq =

qX
i=0

(�1)i � facei(S
q);

and extends additively to chains: @(�0+�1) = @�0+@�1. The zero-dimensional
boundary operator7 @0 : C0(K) ! C�1(K) is de�ned by @0(s) = 1, for each
vertex s. The boundary operator has the important property that applying it
twice causes chains to vanish:

@q�1@q� = 0: (1)

The boundary operator is illustrated in Figure 5. Henceforth, we usually omit
subscripts from boundary operators.

We illustrate these concepts with an example. Let S2 = (s0; s1; s2) be an
oriented 2-simplex (a \solid" triangle), and _S1 the complex of its proper faces
(a \hollow" triangle). The complex _S1 includes three 0-simplexes (vertexes): s0,
s1, and s2, and three 1-simplexes: S1i = face i(S

2), 0 � i � 2. The boundaries
for each of these simplexes are shown in Figure 7. The 0-th chain group of _S1,
C0(_S

1), is generated by the si, meaning that all 0-chains have the form

�0 � s0 + �1 � s1 + �2 � s2;

where the �i are integers. The �rst chain group, C1(_S1), is generated by the S1i ,
and all 1-chains have the form

�0 � S
1
0 + �1 � S

1
1 + �2 � S

1
2 ;

7 Munkres [18] calls this operator an augmentation, and denotes it by �.

where the S10 each have standard orientation. Since _S1 contains no simplexes of
higher dimension, the higher chain groups are trivial.

A q-chain � is a boundary if � = @� for some (q+1)-chain �, and it is a cycle
if @� = 0. The boundary chains form a group Bq(K) = im(@q+1), and the cycles
form a group Zq(K) = ker(@q). Equation 1 implies that Bq(K) is a subgroup of
Zq(K), and their quotient group is called the qth homology group:8

Hq(K) = Zq(K)=Bq(K):

Informally, homology groups measure the extent to which a complex has holes.
Any non-zero element of Hq(K) is a q-cycle but not a q-boundary, corresponding
to the intuitive notion of a q-dimensional \hole". Conversely, if Hq(K) = 0 (the
trivial single-element group), then every q-cycle is a q-boundary, so K has no
\holes" of dimension q. H0(K) = 0 if and only if K is connected. If Hq(K) = 0
for every q, we say that K is acyclic.

For example,H0(_S1) is trivial, because _S1 is connected. H1(_S1) is non-trivial:
the chain @S2 is a cycle (because @@S2 = 0), but not a boundary (because S2 is
not a simplex of _S1). It can be shown that H1(_S1) is in�nite cyclic, generated
by the equivalence class of @S2 [18, 31.8].

The chain complex C(K) is the sequence of groups and homomorphisms
fCq(K); @qg. Let C(K) = fCq(K); @qg and C(L) =

�
Cq(L); @0q

	
be chain com-

plexes for simplicial complexes K and L. A chain map � is a family of homo-
morphisms.

�q : Cq(K)! Cq(L);

that commute with the boundary operator: @0q ��q = �q�1 �@q. (In dimension -1,
��1 is just the identity map.) Chain maps thus preserve cycles and boundaries.

Recall that a simplicial map from K to L carries vertexes of K to vertexes
of L so that every simplex of K maps to a simplex of L. Any simplicial map
� induces a chain map �# from C(K) to C(L): when �(Sq) is of dimension
q, �#(S

q) = �(Sq), otherwise �#(S
q) = 0. Note, however, that not all chain

maps are induced by simplicial maps. Henceforth, we abuse notion by omitting
subscripts and sharp signs from chain maps. In this paper, we de�ne chain maps
by giving their values on simplexes (the chain group generators) and extending
additively.

If �; : C(K) ! C(L) are chain maps, then a chain homotopy from � to
is a family of homomorphisms

Dq : Cq(K)! Cq+1(L);

such that

@0q+1Dq +Dq�1@q = �q � q:

Very roughly, if two chain maps are homotopic, then one can be deformed into
the other; see Munkres [18] for intuitive justi�cation for this de�nition.

8 Strictly speaking, these are the reduced homology groups [18, p.71].

De�nition1. An acyclic carrier from K to L is a function � that assigns to
each simplex Sq of K a non-empty subcomplex of L such that (1) �(Sq) is
acyclic, and (2) if Sp is a face of Sq , then �(Sp) � �(Sq).

Fig. 6. The Complex S2 and a Subdivision

For example, a subdivision of a complex is an acyclic carrier. Informally,
a complex is subdivided by partitioning each component simplex into smaller
simplexes, as illustrated in Figure 6. Here, the acyclic carrier maps the 2-simplex
S2 to the entire subdivided complex, and each face S1i to the corresponding
subdivided face. While every subdivision is an acyclic carrier, an acyclic carrier
need not be a subdivision.

A homomorphism � : Cq(K) ! Cq(L) is carried by � if each simplex ap-
pearing with a non-zero coe�cient in �(Sm) is in the subcomplex �(Sm).

Theorem2 [Acyclic Carrier Theorem]. Let � be an acyclic carrier from K
to L.

(1) If � and are two chain maps from C(K) to C(L) that are carried by �,
then there exists a chain homotopy of � to that is also carried by �.

(2) There exists a chain map from C(K) to C(L) that is carried by �.

A proof of this theorem can be found in Munkres's text [18, 13.3]. The fol-
lowing lemma is an immediate consequence of the de�nitions.

Lemma3. If �; : C(K)! C(L) are both carried by �, and for each Sq in K,
q = dim(Sq) = dim(�(Sq)), then Cq+1(�(Sq)) = 0, Di = 0 for all i, and � and
 are equal chain maps.

Returning to our example, the rotation map � : _S1 ! _S1 de�ned by �(si) =
si+1mod3 induces a chain map � : C(_S1) ! C(_S1), shown in Figure 7. To verify
that � is a chain map, it su�ces to check that �(@S1i) = @�(S1i). The identity
map � : _S1 ! _S1 also induces a chain map � : C(_S1) ! C(_S1). We now show
that � and � are chain homotopic, by displaying both an acyclic carrier �, and
an explicit chain homotopy D. �(si) is the complex consisting of S1i�1mod3 and

its vertexes, and �(S1i) is the subcomplex of _S1 containing S1i , �(S
1
i), and their

vertexes. Both � and � are carried by �, and both �(si) and �(S
1
i) are acyclic

s0 s1 s2 S1

0 S1

1 S1

2

@ 1 1 1 s2 � s1 s2 � s0 s1 � s0
� s1 s2 s0 �S1

1 �S1

2 S1

0

D �S1

2 �S1

0 S1

1 0 0 0
� s0 s1 s2 S1

0 + @S2 S1

1 � @S2 S1

2 + @S2

Fig. 7. Maps used in Extended Example

(being contractible). The chain homotopy D is given in Figure 7. It is easily
veri�ed that

(D@ + @D)(S) = (�� �)(S):

Although every simplicial map induces a chain map, some chain maps are not
induced by any simplicial map. Consider the chain map � given in Figure 7.
Notice that �(@S2) = 4 �@S2, so this map \wraps" the triangle boundary around
itself four times, something no simplicial map could do. This map is not chain
homotopic to � or �, which \wrap around" only once.

5 An Application

Recall that in the k-set agreement task [7], each process is required to choose
some process's input value, and the set of values chosen should have size at
most k. We �rst give a theorem specifying an algebraic property that prevents
a protocol from solving k-set agreement, and then we apply this theorem to a
variety of di�erent models of computation. The arguments presented here are
taken from Herlihy and Rajsbaum [13].

Theorem4. Let S` be a simplex each of whose vertexes is labeled with a distinct
input value, and S` the complex of its faces. Let � be a protocol, P its protocol
complex, and � its decision map. If there exists an acyclic carrier � from S` to
P such that

vals(�(�(S))) = vals(S) (2)

for all simplexes S in S`, then � cannot solve k-set agreement for k � `.

Proof. Let � : C(O) ! C(S`) be the chain map induced by the simplicial map
sending hPi; vji to the vertex of S` with value vj . The acyclic carrier theorem
guarantees a chain map � : C(S`) ! C(P) carried by �. By slight abuse of
notation, let � be the chain map induced by the (simplicial) decision map �. We
have:

C(S`)
�
! C(P)

�
! C(O)

�
! C(S`)

Let � : C(S`) ! C(S`) be the composition of �, �, and �. Let � be the acyclic
carrier from S` to itself, �(Si) = Si, and � the identity chain map on S`. Thus
� is carried by �. Equation 2 implies that � is an acyclic carrier also for �.

Because dim(Si) = i = dim(�(Si)), Lemma 3 implies that the two maps are
equal. Therefore �(S`) = �(S`) = S`.

Assume for contradiction that k � `. In each execution, however, no more
than ` values are chosen, implying that � reduces the dimension of every `-
simplex. The chain map � thus sends every `-simplex to the 0 chain, so � � � �
�(S`) = �(S`) = 0, a contradiction. ut

We now show how to apply Theorem 4. Consider a model in which processes
communicate by reading and writing shared variables. For any wait-free proto-
col, Herlihy and Shavit [14] showed that P(Sm) is acyclic for every input simplex
Sm, 0 � m � n. Let Sn be an input simplex where each vertex has a distinct
input. The map �WF that assigns to each face Sm of Sn the protocol subcom-
plex P(Sm) is an acyclic carrier. The only input values read or written in any
execution in P(Sm) are the values from Sm, so each process must decide some
value from vals(Sm), and therefore �WF satis�es the conditions of Theorem 4.

Corollary5. There is no wait-free read/write n-consensus protocol [4, 14, 20].

For t-resilient protocols, a similar argument shows:

Corollary6. There is no t-resilient read/write t-consensus protocol.

Although read/write memories are important from a theoretical point of view,
modern multiprocessor architectures provide a variety of more powerful synchro-
nization primitives, including test-and-set, fetch-and-add, compare-and-swap,
and load-linked/store-conditional operations. How do these primitives a�ect the
ability to solve k-set agreement? One way to classify these synchronization prim-
itives is by consensus number [11, 16]: how many processes can solve consensus
using such primitives. For example, test-and-set has consensus number 2, mean-
ing that protocols using read, write, and test-and-set operations can solve con-
sensus for two processes, but not three.

There is a direct connection between an object's consensus number and
the homology of its protocol complexes. Consider a system in which processes
share both read/write variables and objects that allow any c processes to reach
consensus. Using shared objects that solve consensus among c processes, Her-
lihy and Rajsbaum [12] showed that it is possible to solve k-set agreement for
k = d(n + 1)=ce (via an easy protocol, left to the reader), but for no lower value of
k. In other words, for any protocol complex P in this model, P(Sn) has no holes
of dimension less than d(n+ 1)=ce � 1 (i.e., these low-order homology groups
are trivial). This result is illustrated by the protocol complexes of Figures 3 and
4: here, n = 3 and c = 2. Each of these complexes has non-trivial homology in
dimension d4=2e�1 = 1, but trivial homology in dimension d4=2e�2 = 0 (being
connected). More generally, at one extreme, when c = 1, P(Sn) is acyclic [14].
For higher consensus numbers, however, the complex may have holes. If the con-
sensus number is low, then holes appear only in higher dimensions, but as the
consensus number grows, the holes spread into increasingly lower dimensions.
Finally, when c = n+ 1, the protocol complex may become disconnected.

Let Sj be an input simplex, where j = d(n+ 1)=ce � 1, and Sj its complex
of faces. These observations about the homology of the protocol complex can
be exploited to construct an acyclic carrier �c from Sj to P. This carrier does
not directly satisfy Equation 2, because �c(S) may include processes not in
ids(S). Nevertheless, it is possible to modify the decision values of the processes
in ids(�c(S)) � ids(S) so as to satisfy Equation 2 (see [12] for details).

Corollary 7. There is no wait-free (d(n+ 1)=ce � 1)-set agreement protocol if
processes share read/write variables and objects with consensus number c [12].

This result can be further generalized by including objects that allow any m
processes to solve j-set agreement, a task we call (m; j)-consensus. There is an
acyclic carrier from `-simplexes of I to P, for ` � J(n+ 1), where

J(u) = j
j u
m

k
+minfj; u modmg � 1: (3)

By a similar argument:

Corollary 8. There is no wait-free (n + 1; J(n + 1) � 1)-consensus protocol if
processes share a read/write memory and (m; j)-consensus objects.

Finally, we turn our attention to synchronous models. Chaudhuri, Herlihy, Lynch,
and Tuttle [8] considered a model in which n+1 processes communicate by send-
ing messages over a completely connected network. Computation in this model
proceeds in a sequence of rounds. In each round, processes send messages to
other processes, then receive messages sent to them in the same round, and then
perform some local computation and change state. Communication is reliable,
but up to t processes can fail by stopping in the middle of the protocol, perhaps
after sending only a subset of their messages. Let Pr be the protocol complex
after r rounds. In the Bermuda Triangle construction, Chaudhuri et al. identi�ed
an acyclic carrier from an `-simplex S` to Pr, for r < bt=`c, satisfying Equation
2.

Corollary 9. There is no t-resilient (n+1; k)-consensus protocol that takes fewer
than bt=kc + 1 rounds in the synchronous fail-stop message-passing model [8].

6 Related Work

In 1985, Fischer, Lynch, and Paterson [9] showed that the consensus task has no
1-resilient solution in a system where asynchronous processes communicate by
exchanging messages. In 1988, Biran, Moran, and Zaks [3] gave a graph-theoretic
characterization of a class of tasks that could be solved in asynchronous message-
passing systems in the presence of a single failure.

Herlihy and Shavit [14] were the �rst to use simplicial complexes to model
decision tasks, and to formulate properties of decision tasks in terms of sim-
plicial homology. They showed that the protocol complex for every wait-free
read/write protocol is simply connected with trivial homology (i.e., it has no

holes). They also give a complete characterization of tasks that have a wait-free
solution in read/write memory [14, 15]. Herlihy and Rajsbaum [12] showed that
if read/write variables are augmented by more powerful shared objects than
read/write registers, then the protocol complexes may have holes (non-trivial
homology), but only in the higher dimensions.

The k-set agreement task was �rst proposed by Soma Chaudhuri [7] in 1989,
along with a conjecture that it could not be solved in asynchronous systems. In
1993, three independent research teams, Borowsky and Gafni [4], Herlihy and
Shavit [14], and Saks and Zaharoglou [20] proved this conjecture correct.

Attiya, Bar-Noy, Dolev, Koller, Peleg, and Reischuk [1] showed that in asyn-
chronous systems, the renaming task has a solution if the output name space is
su�ciently large, but they were unable to demonstrate the existence of a solu-
tion for a range of smaller output name spaces. In 1993, Herlihy and Shavit [14]
showed that the task has no solution for these smaller name spaces.

Most of the technical content this paper is adapted from Herlihy and Rajs-
baum [13], which simpli�es the impossibility results of [14] by eliminating the
need for certain continuous arguments. Attiya and Rajsbaum [2] take a di�erent
approach, proving a number of results about wait-free read/write memory by
extending the simplicial model with a combinatorial notion called a \divided
image".

In an intriguing recent development, Gafni and Koutsoupias [10] have shown
that it is undecidable whether a wait-free read/write protocol exists for three-
process tasks, using an argument based on the impossibility of computing the
protocol complex's fundamental group, a topological invariant related to the �rst
homology group.

7 Conclusions

We believe that these techniques and models, borrowed from classical algebraic
topology, represent a promising new approach to the theory of distributed com-
puting. Because these notions come from a mature branch of mainstream math-
ematics, the terminology (and to a lesser degree, the notation) is largely stan-
dardized, and the formalisms have been thoroughly debugged. Most importantly,
however, this model makes it possible to exploit the extensive literature that has
accumulated in the century since Poincar�e and others invented modern algebraic
topology.

We close with a brief summary of some open problems. The problem of
classifying the computational power of objects for wait-free computation has
attracted the attention of many researchers [5, 6, 16, 17, 19]. We have seen that
the protocol complexes for di�erent kinds of objects share certain topological
properties: read/write complexes have no holes, set-agreement complexes have no
holes below a certain dimension, and so on. It is intriguing to speculate whether
some kind of topological classi�cation of protocol complexes might yield a useful
computational classi�cation of objects.

We believe the time is ripe to apply these techniques to other tasks, to other
models that make di�erent timing or failure assumptions, as well as to long-
lived objects that service repeated requests. Finally, most of the results surveyed
here are impossibility results; little is known about the complexity of solvable
problems in most models.

Acknowledgments

We are grateful to Hagit Attiya, Prasad Chalasani, Alan Fekete, Michaelangelo
Grigni, Somesh Jha, ShlomoMoran, Lyle Ramshaw, Amber Settle, Lewis Stiller,
Mark Tuttle, and David Wittenberg for their comments.

References

1. H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and R. Reischuk. Renaming in an asyn-
chronous environment. Journal of the ACM, 37(3):524{548, July 1990.

2. H. Attiya and S. Rajsbaum. A combinatorial topology framework for wait-free
computability. Preprint.

3. O. Biran, S. Moran, and S. Zaks. A combinatorial characterization of the dis-
tributed tasks which are solvable in the presence of one faulty processor. In Pro-

ceedings 7th Annual ACM Symposium on Principles of Distributed Computing,
pages 263{275, August 1988.

4. E. Borowsky and E. Gafni. Generalized FLP impossibility result for t-resilient
asynchronous computations. In Proceedings 25th Annual ACM Symposium on

Theory of Computing, pages 206{215, May 1993.
5. E. Borowsky, E. Gafni, and Y. Afek. Consensus power makes (some) sense! In

Proceedings 13th Annual ACM Symposium on Principles of Distributed Computing,
pages 363{373, August 1994.

6. T Chandra, V. Hadzilacos, P. Jayanti, and S. Toueg. Wait-freedom vs. t-resiliency
and the robustness of wait-free hierarchies. In Proceedings 13th Annual ACM

Symposium on Principles of Distributed Computing, pages 334{343, August 1994.
7. S. Chaudhuri. Agreement is harder than consensus: Set consensus problems in

totally asynchronous systems. In Proceedings 9th Annual ACM Symposium On

Principles of Distributed Computing, pages 311{234, August 1990.
8. S. Chaudhuri, M.P. Herlihy, N. Lynch, and M.R. Tuttle. A tight lower bound for

k-set agreement. In Proceedings 34th annual IEEE Symposium on Foundations of

Computer Science, pages 206{215, October 1993.
9. M. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility of distributed commit

with one faulty process. Journal of the ACM, 32(2):374{382, April 1985.
10. E. Gafni and E. Koutsoupias. 3-processor tasks are undecidable. In Proceedings

14th Annual ACM Symposium on Principles of Distributed Computing, August
1995.

11. M.P. Herlihy. Wait-free synchronization. ACM Transactions on Programming

Languages and Systems, 13(1):123{149, January 1991.
12. M.P. Herlihy and S. Rajsbaum. Set consensus using arbitrary objects. In Pro-

ceedings 13th Annual ACM Symposium on Principles of Distributed Computing,
August 1994.

13. M.P. Herlihy and S. Rajsbaum. Algebraic spans. In Proceedings 14th Annual ACM
Symposium on Principles of Distributed Computing, August 1995.

14. M.P. Herlihy and N. Shavit. The asynchronous computability theorem for t-
resilient tasks. In Proceedings 25th Annual ACM Symposium on Theory of Com-

puting, pages 111{120, May 1993.
15. M.P. Herlihy and N. Shavit. A simple constructive computability theorem for

wait-free computation. In Proceedings 26th Annual ACM Symposium on Theory

of Computing, pages 243{252, May 1994.
16. P. Jayanti. On the robustness of Herlihy's hierarchy. In Proceedings 12th Annual

ACM Symposium on Principles of Distributed Computing, pages 145{158, August
1993.

17. J. Kleinberg and S. Mullainathan. Resource bounds and combinations of consensus
objects. In Proceedings 12th Annual ACM Symposium on Principles of Distributed

Computing, pages 133{145, August 1993.
18. J.R. Munkres. Elements Of Algebraic Topology. Addison Wesley, Reading MA,

1984. ISBN 0-201-04586-9.
19. G. Peterson, R. Bazzi, and G. Neiger. A gap theorem for consensus types. In

Proceedings 13th Annual ACM Symposium on Principles of Distributed Computing,
pages 344{354, August 1994.

20. M. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: The topology
of public knowledge. In Proceedings 25th Annual ACM Symposium on Theory of

Computing, pages 101{110, May 1993.

This article was processed using the LaTEX macro package with LLNCS style

