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A decomposition of a graph G = (V, E) is a parti-

tion of the vertex set into subsets (called lhks).

The diameter of a decomposition is the least. d

such that any two vertices belonging to the same
connected component of a block are at distance
< d. In this paper we prove (nearly best possi-

ble) statements of the form: .4ny n–vertex graph

has a decomposition into a small number of blocks

each having small diameter. Such decompositions

provide a tool for efficiently decentralizing dis-

tributed computations. In [AGLP1 it was shown

that every graph has a decomposition into at most

s(n) blocks of diameter at most s(n) for s(n) =

~o(~loglog d h n). usinga,technique of Awerbuch

[A] and Awerbuch and Peleg [AP], we improve this

result by showing that every graph has a decom-

position of diameter ()(log n) into O(log n) blocks.

In addition, we give a randomized distributed al-

gorithm that produces such a decomposition and

runs in time 0(log2 n). The construction can

be parametrized to provide decompositions that

trade-off between the number of blocks and the

diameter. We show that this trade-off is nearly

best possible for two families of graphs the first

consists of skeletons of certain triangulations of a

simplex and the second consists of grid graphs with

added diagonals. The proofs in both cases rely on
basic results in combinatorial topology, Sperner’s

lemma for the first class and Tucker’s lemma for

the second.
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1 Introduction

In this paper, we investigate a problem in al-

gorithmic graph theory that originated in the

theory of distributed computing. The sys-

tems we are concerned with can be modeled as

graphs whose nodes correspond to processors

and whose links correspond to communication

channels bet ween certain processors. One of

the basic difficulties in designing algorithms

for such systems is determining the extent to

which the actions of the processors must be

coordinated, and accomplishing this coordina-

tion as efficiently as possible. The most naive

approach is to centralize the network opera-

tion by appointing one of the processors as a

coordinator for the whole network and having

all processes act under the direction of the co-

ordinator. Centralization has several advan-

tages; it often simplifies the problem consid-

erably and facilitates the development of dis-

tributed algorithms based on known serial al-

gorithms. On the other hand, rigid central-

ization often degrades system performance be-

cause of delays in communication between the

coordinator and the other processors of the

system. This problem is particularly signifi-

cant in networks with large diameter and non-

negligible message transmission time.

For these reasons, there has been consider-

able research effort in distributed algorithms

devoted to finding ways to decentralize dis-

tributed computation. For many problems it

is possible to desi=a algorithms in which each

node acts with knowledge only of the activ-
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ity of nearby nodes, and these “local” activi-

ties combine together to produce a global so-

lution to the problem. The extent to which

this is possible is referred to informally as the

locality of the problem. Exploiting locality

for specific problems leads to algorithms that

are among the most novel and interesting in

the area, for example, the beautiful symme-

try breaking techniques of Cole and Vishkin

([CV]) which have been used for graph col-

oring ( [GPS] ). Limitations on locality were

addressed in [Lin].

This leads to the following general problem:

find techniques for the design of distributed

network algorithms that can be used to ex-

ploit locality. One class of techniques that has

been proposed involves partitioning the net-

work into regions of small diameter, coordi-

nating action in each region through a local

coordinator and combining the partial solu-

tions together. This natural methodology has

been considered by a number of authors; its

earliest explicit statement known to us is in

Awerbuch’s [A] analysis of time and commu-

nication trade-offs required to achieve network

synchronization. In [AGLP] it is further used

to improve the time complexity of distributed

deterministic maximal independent set (MIS)

algorithms, for graph coloring and distributed

breadth first search. More recently, the ap-

proach has been applied to distributed rout-

ing [AP] for a distributed all-pairs-shortest-

distance algorithm and other similar problems

[AR].

The above discussion motivates the follow-

ing graph definitions:

Let G be a graph. A subset TV of vertices

will be called a block of G. The st~ong diam-

eter of a block TV, SD(lV) is the maximum

diameter of any connected component of the

graph Gw induced on W. The weak diam-

eter WD(W) is the maximum distance in G

between two vertices of W that belong to the

same connected component of GW. (The dif-

ference between strong and weak diameter is

that when computing weak diameter we are

allowed to shortcut through vertices not in W

and thus WD(W) < SD(W). ) A partition

II of the vertex set of a graph G into A dis-

joint blocks is called a A-decomposition of G.

The strong diameter S-D(II) (weak diameter

WD(II)) of II is the maximum strong diame-

ter (weak diameter) of any of its blocks.

For a given graph we are interested in find-

ing decompositions into a small number of

(possibly disconnected) blocks each of small

(strong or weak) diameter. This problem was

introduced (with somewhat different terminol-

ogy) in [AGLP] as an attempt to solve a ma-

jor outstanding problem in the theory of dis-

tributed algorithms: is there a deterministic

algorithm for finding a maximal independent

set in a distributed network that runs in poly -

log time? There are various partial results

known for this tantalizing problem: a ran-

domized distributed algorithm that runs in ex-

pected polylog time (Luby [Lub] and Alon et al

[ABI]), and a deterministic polylog time algo-

rithm for bounded degree graphs (Goldberg et

al [GPS]). It was noted in [AGLP] that given

a A-decomposition of the graph, an MIS can

be constructed in a sequence of A rounds each

taking time O (D polylog(n)) where D is the

strong diameter, through the following itera-

tive procedure: after i iterations there will be

an MIS for the subgraph of vertices in the first

i blocks of the decomposition. During round

i + 1, the vertices in block i + 1 that have no

neighbors in the current independent set try to

find an MIS among themselves. This can be

done separately by each connected component

of this subgraph, and the information about

the connected component can be collected at

one node in time O(D) where D is the strong

diameter of the decomposition. In fact, it is

easy to see that D can be taken to be the weak

diameter of the decomposition as well.

In [AGLP], it was shown that for some

k = nOt@OglOgn/lOgnl, every graph has a k-

decomposition with strong diameter at most

O(k). Furthermore, they gave a distributed

algorithm running in time O(k) for find-
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ing this decomposition. This enabled them

to construct the fastest known determinis-

tic distributed algorithm for the maximal in-

dependent set problem, which runs in time

~o( @OglOgn/ logn) , (which is O(nc) for any pos-

itive c, but bigger than any polylog(n)).

The obvious questions that come out of their

work are:

1. What are the trade-offs between the num-

ber of blocks A of a decomposition and

its strong (or weak) diameter? In par-

ticular, what is the smallest k(n) such

that every graph on n-vertices has a k(n)-

decomposition with weak (or strong) di-

ameter k(n)?

2, What is the smallest j(n) such that

there is a deterministic distributed algo-

rithm that runs on any n-vertex graph

in polylog(n) time and produces a j(n)-

decomposition with weak diameter j(n).

Of course, the functions j(n) and k(n) an-

swering these questions satisfy j(n) > k(n).

What we’d like is that j(n) is O(polylog(n)),

in which case we could use the [AGLP] ap-

proach to get an MIS algorithm with the de-

sired time complexity.

As it happens, it is not hard to show that

k(n)= O(logn), using a simple but powerful

constructive technique that was introduced by

Awerbuch ([A]) and modified by Awerbuch

and Peleg ( [AP]) to solve some graph covering

theorems closely related to the decomposition

problem. This technique provides a sequen-

tial way to build the decomposition one block

at a time and enables us to give a determinis-

tic sequential algorithm that, for any n-vertex

graph G and any parameter p c (O, 1) pro-

duces a }-decomposition with A <
*

and strong (and hence also weak) diameter

at most 210 n

-

For ~ s log n, this im-Oglp”
plies that the ecomposition has diameter at

most (2nl/~ log n). In particular, the function

k(n) referred to in the first question above is

O(logn).
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On the other hand, we can show that

the trade-off given by this construction is

nearly tight; precisely we show that for each

A= O(log n,) there is a graph S with at most

n vertices such that any ~-decomposition has

weak diameter (and hence strong diameter)

at least Q(nl/~). The graph S is simple:

Choose m to be the greatest integer such that

(n~~) < n. The vertex set of S consists of all

vectors z = (zo, . . .,z A) where ~~; = m, and

all z~ are nonnegative integers. Vertices Z, J

are adjacent iff Z – v c {–1,0, 1}~+1. (This

graph is the standard triangulation of the A-

dimensional simplex). The lower bound on the

diameter of any A-decomposition is deduced

from a well known lemma in combinatorial

topology due to Sperner. For A substantially

greater than log n, it is easy to see that the

upper bound is tight for expander graphs with

the appropriate parameters. Another class of

graphs where the tradeoff cannot be improved

has vertices all vectors ~ = (z ~, ,.., a ~) where

z, y are adjacent iff their difference z – v is in

either {O, 1}~ or {O, –1}’1, The proof depends

this time on Tucker’s lemma in combinatorial

top Ology.

Most interesting from the point of view of

distributed computation, we give a random-

ized distributed algorithm that runs in ex-

pected time O(nl/~polylog(n)) and produces a

A-decomposition with weak diameter O (nl/~)

and degree < A. We note that we do not know

how to make a similar guarantee on the strong

diameter.

Our results fall short of the original goal;

for this we would need to replace the random-

ized algorithm by a deterministic one. We be-

lieve that careful study of the randomized al-

gorithm may lead to a deterministic one, or

alternatively, suggest why no deterministic al-

gorithm is possible. Furthermore, as discussed

in [AGLP] and [AP], low diameter decompo-

sitions have a variety of potential applications

and a fast randomized distributed algorithm is

itself a potentially useful tool for replacing se-

rialization by randomness in distributed com-
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puting. For instance, in [A], a graph decompo-

sition is used as a data structure for providing

a way to force synchrony in an asynchronous

network. The construction given there is se-

rial, and our randomized algorithm can be

used to give a fast distributed construction.

(Awerbuch [personal communication] has an

alternative randomized algorithm wit h similar

properties).

All logarithms in this paper are to base ‘2

unless otherwise specified.

2 Existence of low diameter

A-decompositions

The first result of this section is:

Theorem 2.1 Let p be a real number between

O and 1, G an n– vertex graph and A =

*. Then there is a A-decomposition

of G with strong diameter at most
%%-7”

By analyzing the above theorem for the two

ranges of A depending on whether it is less

than or greater than log n we obtain the fol-

lowing corollaries:

Corollary 2.2 For A < log n, every n vertez

graph has a A-decomposition with strong diam-

eter at most 2n11A log n.

Corollary 2.3 For A > log n, every n vertez

graph has a A-decomposition with strong diam-

eter at most
2 log n

l+log~–loglogn “

In particular, when p = 1/2 we get J < log n

and strong diameter at most 2 log n.

The proof of theorem 2.1 is based on a tech-

nique of Awerbuch and is implicit in the work

of Awerbuch and Peleg [AP].

Proof: For two vertices z, y in a graph If let

d(z, y) = d~(z, y) be their distance in H. For

an integer r let 13r (z) be the ball of radius r

around z in H, i.e., {y ~ V(H) : dM(z, Y) <

r}. Whenever the need arises the graph H will

be mentioned explicitly.

Fix p between O and 1 and call an integer r a

safe radius for a vertex z if ph.(z) < B,–l (z).

Note that if 1, . . . . r are all unsafe for z, then

necessarily ll~(z) > (1/p)~ for all 1 < .j < r,

and in particular n ~ (I/p)’. In other words,

every vertex z has a safe radius not exceeding
10 n

*
Oglp”

e construct a A-decomposition one block

at a time. The construction of VI is performed

iteratively. Pick any vertex z 1 in G1 = G and

let rl be the smallest safe radius for z 1. Add

all of the vertices in B.l -1 (xl) to VI and de-

fine G2 to be the graph obtained by deleting

Br,(xl) from G1. Select X2 in G2 and let rz

be the smallest safe radius for X2 (in the graph

G2). Add the vertices of BT,_1(z2) (restricted

to G2) to VI and define G3 to be G2 \ 13T,(xa).

Continue this process constructing sequences

{z;} of vertices {ri} of radii and {G~} of graphs

and enlarging VI at each stage. The construc-

tion of VI is complete when Gi is empty.

Each remaining block Vi of the decompo-

sition is constructed by applying an identical

process to the graph G \ (VI U V2 U . . . U V~_I).

The construction of the first (and each sub-

sequent) block guarantees that its strong di-

ameter is at most twice the largest radius of

any of the selected balls. Since these radii are

bounded by & we obtain:

log n
SD(H) s 210g(l/p)“

Since the ratio of Bri_l(x~) to B,i is always

at least p for each selected ball, the fraction of

vertices of G; that are not assigned to Vi is at

most l-p,and the number of vertices in G~+l

is at most l-p times the number in G~. Thus

the number of blocks of the decomposition is

bounded as follows:

log n

A < log(l/(1 - p)) “

9

Remark: The above proof provides a poly-

nomial time sequential algorithm for con-

structing the decomposition.
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3 Tightness of the existence

theorem

Our existence theorem cannot be significantly

improved for A > log n. A graph of chro-

matic number k and girth g cannot have

a ((k — 1)/2)-decomposition of diameter less

than g, since in such a decomposition each

block would be a forest and thus, by two color-

ing each block we would have a k – 1 coloring

of the graph. Since graphs of chromatic num-

ber k and girth g = Q(logn/ logk) exist for

k = O(logn) (see [B]) this shows that corol-

lary 2.2 is essentially tight.

3.1 Simplex graphs

To show that corollary 2.1 is nearly tight re-

quires a more substantial argument, and this

is done in the following theorem:

Theorem 3.1 For any integers n and A,

there exists a graph G with at most n vertices

such that any A-decomposition of G has weak

(and strong) diameter at least ~n~l~.

We define a family of graphs S(m, A), for

positive integers m and A. The vertices of

S(m, A) are all vectors E = (zo,. . .,zJ) where

x; are nonnegative integers and ~ xi = m.

Vertices z and v are adjacent iff all coordi-

nates in 5 – ~ are in {–1,0,1}.

Lemma 3.2 Any A-decomposition of S(m, A)

has weak diameter at least m/A.

To deduce theorem 3.1 from this lemma,

note first that S(m, A) has (n~~) vertices.

Thus given n and A select m to be the integer

such that (~+~–1) ~ n < (m~~). Note that

for A > logs n the theorem is vacuous, and

that for A < logs n the relationship between

m, A and n implies that ( *)J z n, whence

y>$, as claimed.

Thus it remains to prove the lemma, which

we will do by some basic geometric-topological

considerations. Let X be the A –dimensional

simplex embedded in A + 1 dimensional real

space consisting of all vectors with nonneg-

ative coordinates that sum to m. X has

A + 1 extreme points, the i– th vertex of X has

Zi = m and all other coordinates O. The facet

{~ c X :x; = O} opposite to the i-th vertex

is called the i– th facet of X. Consider the set

of all simplices each of whose vertex sets are

of the form z + eo, . . .,z + e~, where ej is the

unit vector in the j–th direction and z is any

vector with nonnegative coordinates that sum

to m – 1. It is easily verified that these sim-

plices have disjoint interiors and their union is

X and thus they comprise a triangulation T of

X. Note that the vertices of S(m, A) are the

lattice points in X, and furthermore the graph

S(m, A) is the l–skeleton of this triangulation.

We will need the following fundamental lemma

of Sperner:

Lemma 3.3

(Sperner) Let the A-dimensional simplex X

be triangulated. Let the vertices of the trian-

gulation be assigned labels from {O,..., A} so

that vertex i is labeled by i and no vertex ly-

ing in the i–th facet is labeled i. Then there

is a simplex in the triangulation all vertices

of which are labeled differently (a full-colored

simplex).

The derivation of lemma 3.2 is easy now:

Consider any decomposition II of S(m, A) into

~ blocks.

Claim: Some block has a connected com-

ponent that meets all facets.

Suppose not. Define a labeling of the ver-

tices: each vertex is labeled by the least i such

that the connected component of II that con-

tains it misses facet i. This labeling satisfies

the conditions of Sperner’s lemma, and thus

there is a full-colored simplex. But there are

A + 1 vertices in the simplex, so two are in

the same block (and hence the same connected

component) of II and must have the same la-

bel, contradicting the fact that the simplex is

full-colored.

So there is a connected component of II that

meets all facets of X. Let z be a vertex of the
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component that lies on the O–th facet. Since

the coordinates sum to m, for some j > 0, zj

is at least m/~. There is a point ? of the

component that lies on the j–th facet and the

distance in S(m, A) from z to any such point

is at least ,zj.

Remarks:

1.

2.

3.2

We do not know that lemma 3.2 is tight; it

is possible that m,/A could be replaced by

something as large as Q(m), which would

improve the lower bound of the theorem

by a factor of ~.

Note that the proof implies a slightly

stronger result, namely, when the ver-

tices of S(m, A) are decomposed into con-

nected regions of diameter < ~, there

will be A + 1 of these regions any two of

which are adjacent (i.e., for regions .R1, li?2

there are neighboring vertices Z1, 22 with

Z1 E R1, X2 E R2.) This readily implies

that no proper A coloring of the regions is

possible, as claimed.

Grid graphs

In what follows we exhibit another class of

graphs for which the trade-off in the existence

theorem is tight. These are obtained from grid

graphs in real space by adding some diagonals.

In the context of the present paper these re-

sults add nothing new beyond what was shown

for the triangulation of the simplex. However,

since grid graphs come up in many combina-

torial and computational problems, and since

the proof involves a different geometric tool

(Tucker’s lemma) we considered it worthwhile

to present these results as well.

Consider the graph C(m, k) (m, k inte-

gers) with vertex set {1, 2,..., m} k where

(xl,..., $k) is a neighbor of (yl, . . .,yk) iff

z~–y~ C {0,1} for everyi orx~–y~ E {0,–1}

for every i, We show:

Theorem 3.4 Let m ~ 3 and k > 2 be in-

tegers. Then any k-decomposition of C’(m, k)

has weak diameter (and hence also strong di-

ameter) at least m.

In what follows we view a k-decomposition

as a coloring of the vertices of C’ = C(m, k)

by k colors. Say that color c spans dimension

i if there is a path all vertices of which are

colored c, where one endpoint satisfies ~ ~ = 1

and the other x; = m. Theorem 3.4 follows

easily from:

Lemma 3.5 Let the vertices of C = C(m, k)

be colored with k colors. Then there is an in-

dex i such that color i spans dimension i.

The proof of this lemma makes use of a

lemma of Tucker in combinatorial topology.

(See [We] for an accessible proof of the gen-

eral statement of the lemma and [FT] for a

history of the lemma and its applications.)

Here one is concerned with triangulations of

the k–dimensional cube X = [– 1, I]k, and

not the simplex, as in Sperner’s lemma. As

usual a point ~ ~ X is said to be a boundary

point if it has at least one coordinate which

equals either – 1 or 1. A triangulation T of X

is said to be face antipodal, if whenever x is a

vertex of T and x is boundary point, then – x

is a vertex of ‘Y as well. In Tucker’s lemma

we will also be concerned with colorings of the

graph (= l-skeleton) of triangulations. Given

that T is a face-antipodal triangulation of X,

and given a mapping @ from the vertices of

T to the integers, we say that (T, ~) is face-

antipodal, if O( –z ) = –+(x) for every vertex

z which lies on the boundary of X. Here is

the statement of Tucker’s lemma:

Lemma 3.6 (Tucker) Let X be the

k–dimensional cube [–1, l]k, let ‘Y be a trian-

gulation of X and let ~ be a mapping jrom the

vertices of T to {–k, . ..1.1, l,k}., k} such

that (T, #) is face untipodal. Then there is

an edge (l-dimensional simplex), say [y, z] of

T for which ~(y)+ +(z) = O.

In keeping with the above terminology, we

say that a vertex of C = C(m, k) is a boundary
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vertex if at least one of its coordinates is in

{1, m}, and that the vertex y is antipodal to x

if z; + yi = m + 1 for every i. The following is

thus a special case of Tucker’s lemma:

Lemma 3.7 Let

f be a vertex coloring of C = C’(m, k) with

colors from {–k, . . .,–1, 1,. ... k} such that if

x is a boundary vertex and y is antipodal to

z, then f(y) = –f(z). Then there ezz’st two

adjacent vertices V, u’ with f(u’) = –f(u).

To derive lemma 3.5 we argue as follows:

Define a graph C on the vertex set {O,.,., m+

I}k and the same adjacency relationship as C,

viz. x is adjacent to ~+e for every e 6 {O, I}k.

Lemma 3.7 is to be applied to ~, with the

understanding that being a boundary vertex

means having a coordinate which equals ei-

ther O or m + 1, and that vertices z and y are

antipodal in C if $i + yi = m + 1 for all i.

Now suppose we are given a vertex coloring of

C with colors in {1,..., k}. A coloring of C

by{–k,..., –l,l,..., k} is induced as follows:

For a boundary vertex x of O let j be the first

index for which Xj E {O, m + 1}. If Zj = O,

color x by –j, and if Xj = m + 1, color it j.

Now each vertex u with no O or m + 1 is also a

vertex of C and thus has a color j; if there is a

path consisting of j-colored vertices connect-

ing u to the set {z : Xj = O} then recolor u by

–j, otherwise u’s color remains unchanged.

Obviously, there cannot be two adjacent

vertices colored j and –j, because the rule

for sign change calls for replacing the j by –j.

Lemma 3.7 may be invoked now to conclude

that in this coloring of C there are two antipo-

dal vertices whose colors do not sum to zero.

Therefore some boundary vertex must have

been recolored in the above recoloring process,

which means that for some 1 ~ j ~ d there is

a path of j colored vertices in C connecting

a vertex with X3 = 1 to one with Xj = m, as

required. ■

Keeping the dimension k fixed and letting m

tend to infinity, the following geometric theo-

rem is derived:

Corollary 3.8 Let the

be covered by k closed

a connected component
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k– dimensional cube

sets. Then there is

of one of these sets

which intersects with two opposite facets of the

cube.

It would be reasonable to assume that this

result is known to geometers/topologists, but

we could not find it in the literature. If the

closed sets are also assumed to be homotopi-

cally trivial, this corollary follows from the

concept of category for topological spaces (cf.

[~Pl).

4 A fast randomized dis-

tributed algorithm for low

diameter decompositions

4.1 The algorithm

We would like to replace the sequential algo-

rithm of section 2 by a fast distributed one.

The sequential algorithm constructs the blocks

iteratively, one at a time. The time that the

algorithm takes is O (At(n)) where t(n) is the

worst case time for one iteration. In the algo-

rithm as described t(n) could be linear in n.

In this section we show how to use random-

ization to replace the serial algorithm for the

construction of a single block by a parallel dis-

tributed one which achieves the same trade-off

as the serial algorithm between weak diameter

and A. The time to construct one block is re-

duced to O(log D) where D is the weak diame-

ter, and thus we achieve total running time of

O(DA). In particular, when we balance D and

A, we produce a O(log n)-decomposition with

weak diameter O (log n) that runs in O (log2 n)

time.

To construct a single block quickly, we’d

like to parallelize the selection of safe radii.

However, if we allow many vertices to choose

a safe radius simultaneously the balls around

the vertices may overlap significantly. In that

case, there is no longer an obvious criterion for

deciding which vertices are to be placed in the
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block in such a way that the resulting block

is guaranteed both to have small weak diam-

eter and to contain a substantial fraction of

the vertices. It is this difficulty that we must

resolve.

We make the usual assumption that each

vertex x has a unique integer Illc. of course,

if such Ill’s are not provided then each vertex

can select an Ill uniformly at random from,

for example, {1 2, ,... ,n 2, which guarant ees that

the Ill’s are unique with high probability; the

algorithm can be modified to work under this

assumption.

The algorithm for selecting a block out of a

graph G, is called Construct_Block. First each

vertex y selects an integer radius TV at random

(according to a distribution (given below) that

is approximately geometric). It then broad-

casts (Illy, ry) to all vertices that are within

distance ~V of it. After collecting all such mes-

sages from other vertices, each vertex y selects

the vertex C(’) of highest ID from among the

vertices whose broadcast it received in the first

round (including itself ), and joins the current

block if d(y, C(Y)) < rc(u) (note that it is nec-
essarily the case that d(Y, c(y)) < ~c(v)).

The distribution by which each vertex x se-

lects its radius rz is a truncated geometric dis-

tribution, which is defined in terms of two pa-

rameters, p and B:

F’?’(?-z = j) = #(l – p)

forj=o, . . ..ll. andnd

Pr(T’z = B) = p~.

While the above algorithm is conceptually

quite simple, there are some subtleties in-

volved in implementing the above algorithm

efficiently in an asynchronous distributed net-

work, i.e., accomplishing the broadcast in such

a way that each vertex knows when it has re-

ceived all the broadcasts that it will get and

can thus select C(y). This can be done using

standard synchronizat ion techniques, which

are discussed in the final subsection of this sec-

tion.

4.2 Proof of correctness

The key properties of this algorithm are sum-

marized by:

Lemma 4. I Suppose Construct_Block is ap-

plied to a graph G with at most n vertices. Let

S be the set of vertices comprising the block

selected. Then:

1. The set of selected vertices has weak di-

ameter at most 2B.

2. For each vertex y of G, the probability that

it belongs to S is at least p(l – pB)n.

If we apply Construct_Block iteratively to

decompose the entire graph (using the same

values of p and B at each iteration), then the

first part of the lemma guarantees that the

weak diameter of the resulting decomposition

is at most 2B. The second part of the lemma

implies that if q = p( 1 –pB)n then for each ver-

tex r, the probability that z is not assigned to

one of the first i blocks is at most (1 – q) i and

thus the probability that some vertex is unas-

signed after i iterations is at most n(l – q) i.

By selecting B to be
w

where w is any

function tending to infinity with n, it is easily

verified that q = p(l + O(1)) where the lit-

tle oh term depends only on the choice of u.

Thus with high probability, the number of it-

erations (and hence the number of colors) does

not exceed (1 + O(1)) -Y. The result is

a A-decomposition with diameter D where the

expressions for ~ and D in terms of p and n

are essentially the same as obtained for the se-

quential algorithm, and therefore the trade-off

is the same.

It remains to prove the lemma. The first

part of the lemma follows easily from:

Claim. For each connected subset T of S,

C(y) is the same vertex z for ally E T.

By the claim, any two vertices in T are at

distance at most 1? from z and thus at most

2B from each other.

We prove the claim by contradiction; if it

is false then there are two adjacent vertices
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y and z belonging to S with C(g) # C(z).

Without loss of generality, the ID of C(y) ex-

ceeds that of C(z). By the definition of S,

y is in S implies Tctv) > d(C(y), y). Since g

and z are neighbors, rc(v) 2 d(C(Y), z) and

thus z received the broadcast sent by C(y) in

the first round. This contradicts the fact that

C(z) is the vertex of highest ID whose broad-

cast reached z.

We now proceed to the proof of the second

part of the lemma. We fix a vertex y and esti-

mate the probability that it is assigned to S.

We can bound this probability y as follows:

P?’(y c s) >

~ P.(g E Slc(’y)= .)P.(c(y) = z)
Zld(z,y)<l?

For a given vertex .z, define the following

three events:

D. :7’. > d(z’, y)

E, : ?-. > d(z, y]

FZ : For every vertex w with ID

higher than z, rc[~) < d(w, !J)-

Then for z such that d(z, y) < 1? we can

rewrite P7-(y C S\C(y) = z) as:

~T(~2 A ~’[1), A F.)

= l%(EZ A FZ)/l%(DZ A Fz)

= Pr(E2)/I’7’(Dz)

= P,

where the first equality follows from the fact

that Dz implies E., the second equality fol-

lows from the fact that Fz is independent of

both D= and E,, and the third follows from

the definition of the distribution on selected

radii which implies that Pr(EZ) = p~(z’v)+l

and Pr(Dz) = p~(z’g). Thus,

P?-(y c s) > p ~ R’(c(y) = z)

Zld(z,y)<l?
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~ pl+’(d(c(y), y) < 1?)

~ pPr(rZ # B, Vz)

~ p(l – p~)”.

4.3 Implementation details

Implementing the above algorithm requires

that each vertex y send (lDY, ry) to every ver-

tex .Z that is within distance ry of y and also

that each vertex y be able to detect that it has

received all such messages that are intended

for it (so that it can correctly select C(y). Be-

low we sketch how to use a standard synchro-

nization technique to achieve this. The result-

ing algorithm has the disadvantage that it re-

quires that nodes send very long messages. We

will then indicate how to modify the algorithm

to eliminate this disadvantage.

To synchronize the network we require that

each node proceed in a sequence of communi-

cation steps. During the step i, the node sends

one message to each of its neighbors and re-

ceives one message from each of its neighbors.

The node can not send out any step i + 1 mes-

sages until it has sent and received all of its

step i messages. Notice that not all nodes will

begin step 1 at the same time, and, indeed, a

node may not begin step 1 until after it has re-

ceived some step 1 message from another node.

However, this method ensures that two neigh-

boring nodes are never more than one step

apart.

The algorithm works by having each node y

build a sequence of sets S[i]y, for O S i S B,

where S[i]U consists of all pairs (Illz, rz) for

nodes z for which d(.z, y) = i < r,. These

sets are constructed in -B steps, with the set

S[i]v being constructed during the it~ step of

the algorithm. Before step 1, S[0] ~ consists of

the singleton (Illv, ry). Having constructed

set S[i — l]Y prior to step i, node y defines

T’[i]y to be the subset of S[i – l]V consisting of

those pairs (Illz, r.) with r. ~ i and sends the

set T[z]Y to each of its neighbors during step

i. Once it has received Z’[i]z from each of its

neighbors z, it defines S[i]y to be the union of
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T[i]. over all its neighbors z, minus the union

of S[j]g over all j < i. It is easy to show bY

induction that the sets S[i] ~ are as required.

After E steps, the node then selects C(g) to

be the node of maximum Ill among all of the

sets S[i]Y.

The drawback to this algorithm is that the

sets T[i]Y transmitted in step i can grow very

large, requiring very large messages. One way

to reduce the message size is to realize that if

two pairs (lDX, ~.) and (lDW, ~W) are both in

S[i–l]g and r. = Tw, then y need only put the

one with the larger Ill (say Ill.) in T[i – 1] ~.

Thus at each step, the message sent by a node

contains at most l? pairs, one for each possible

value of r.. It can be shown easily by induc-

tion that the maximum element in the union

of S[j]v over j < i in the modified algorithm

is the same as in the unmodified algorithm.

Finally, the messages can be shortened fur-

ther by modifying the algorithm as follows.

At any time, node y remembers only the pair

(lDZ, ~.) for which Illx is maximum among

all pairs that it has received thus far. At step

i, the node sends this pair to each of its neigh-

bors if ~Z ~ i, otherwise it sends a null mes-

sage to its neighbors. The node C(y) is then

the node stored after step B.

This algorithm does not produce the same

result as the algorithms presented above, i.e.,

C(y) is not necessarily the vertex of maximum

ID such that TC(Y) > d(C(y), Y). Instead,

C(y) is the vertex of maximum lD such that

there is a path of length at most TC(V) from

C(y) to y such that for each vertex w on the

path, C(y) is the vertex of highest Ill in the

ball of radius d(w, C(y)) around w. The proof

of lemma 4.1 can be easily modified to work

for this definition of C(y).
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