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One  might expect the reliability of a distributed 
system to correspond directly to the reliability of 
its constituents, but this is not always the case. 
The mechanisms used to structure a distributed 
system and to implement cooperation between 
components play a vital role in determining 
the reliability of the system. Many  
contemporary distributed operating 
systems have placed emphasis on com- 
munication performance, overlooking 
the need for tools to integrate com- 
ponents into a reliable whole. The 
communication primitives supported 
give generally reliable behavior, but 
exhibit problematic semantics when 
transient failures or system config- 
uration changes occur. The resulting 
building blocks are, therefore, unsuit- 
able for facilitating the construction of 
systems where reliability is important. 

This article reviews 10 years of  
research on ISIS, a system that pro- 
vides tools to support the construc- 
tion of  reliable distributed software. 
The  thesis underlying ISIS is that 
development of  reliable distributed 
software can be simplified using pro- 
cess groups and group programming 
tools. This article describes the ap- 
proach taken, surveys the system, 
and discusses experiences with real 
applications. 

It will be helpful to illustrate 
group programming and ISIS in a 
setting where the system has found 
rapid acceptance: brokerage and 
trading systems. These systems inte- 
grate large numbers of  demanding 
applications and require timely reac- 
tion to high volumes of  pricing and 

trading information. 1 It is not un- 
common for brokers to coordinate 
trading activities across multiple 
markets. 

Trading strategies rely on accurate 
pricing and market-volatility data, 
dynamically changing databases giv- 
ing the firm's holdings in various 
equities, news and analysis data, and 
elaborate financial and economic 
models based on relationships be- 
tween financial instruments. Any dis- 
tributed system in support of  this 
application must serve multiple com- 
munities: the firm as a whole, where 
reliability and security are key con- 
siderations; the brokers, who depend 
on speed and the ability to customize 
the trading environment; and the 
system administrators, who seek uni- 
formity, ease of  monitoring and con- 
trol. A theme of  this article is that all 
of  these issues revolve around the 
technology used to "glue the system 
together." By endowing the corre- 
sponding software layer with pre- 
dictable, fault-tolerant behavior, the 
flexibility and reliability of  the over- 

IAl though this class o f  systems certainly de- 
mands  high per formance ,  there  are no real- 
time deadlines or  hard  time constraints,  such as 
in the FAA's Advanced  Automat ion  System 
[14]. This  issue is discussed fu r the r  in the sec- 
tion "ISIS and  O t h e r  Distributed Comput ing  
Technologies."  

all system can be greatly enhanced. 
Figure 1 illustrates a possible in- 

terface to a trading system. The dis- 
play is centered around the current 
position of  the account being traded, 
showing purchases and sales as they 
occur. A broker typically authorizes 
purchases or sales of  shares in a 
stock, specifying limits on the price 
and the number  of  shares. These in- 
structions are communicated to the 
trading floor, where agents of  the 
brokerage or bank trade as many 
shares as possible, remaining within 
this authorized window. The display 
illustrates several points: 

• Information backplane. The broker 
would construct such a display by in- 
terconnecting elementary widgets 
(e.g., graphical windows, computa- 
tional widgets) so that the output of  
one becomes the input to another. 
Seen in the large, this implies the 
ability to publish messages and sub- 
scribe to messages sent from program 
to program on topics that make up 
the "corporate information back- 
plane" of  the brokerage. Such a 
backplane would support a naming 
structure, communication interfaces, 
access restrictions, and some sort of  
selective history mechanism. For ex- 
ample, when subscribing to a topic, 
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an application will often need key 
messages posted to that topic in the 
past. 
• C u s t o m i z a t i o n .  The  display suggests 
that the system must be easily cus- 
tomized. The  information backplane 
must be organized in a systematic 
way (so that the broker  can easily 
track down the name of  communica- 
tion streams of  interest) and flexible 
(allowing the introduct ion of  new 
communicat ion streams while the 
system is active). 
• H i e r a r c h i c a l  s t r u c t u r e .  Although the 
t rader  will treat  the wide-area system 
in a seamless way, communicat ion 
disruptions are far more  common on 
wide-area links (say, from New York 
to Tokyo or  Zurich) than on local- 
area links. This gives the system a 
hierarchical structure composed of  
local-area systems which are closely 
coupled and rich in services, inter- 
connected by less reliable and 
higher-latency wide-area communi-  
cation links. 

What  about the reliability implica- 
tions of  such an architecture? In Fig- 
ure  1, the t rader  has g raphed  a com- 
puted index of  technology stocks 
against the price of  IBM, and it is 
easy to imagine that such customiza- 
tion could include computat ions crit- 
ical to the t rading strategy of  the 
firm. In Figure 2, the analysis pro- 
gram is '"shadowed" by addit ional 
copies, to indicate that it has been 
made fault- tolerant  (i.e., it would 
remain  available even if the broker 's  
workstation failed). A broker  is un- 
likely to be a sophisticated program-  
mer, so fault-tolerance such as this 
would have to be in t roduced by the 
sys tem-- the  t rader 's  only action 
being to request  it, perhaps  by speci- 
fying the degree  of  reliability needed 
for this analytic program.  This 
means the system must automatically 
replicate or  checkpoint  the computa-  
tion, placing the replicas on proces- 
sors that fail independent ly  from the 
broker 's  workstation, and activating a 
backup if the pr imary fails. 

The  requirements  of  modern  
t rading environments are not unique 
to the application. It is easy to re- 
phrase this example in terms of  the 
issues confronted  by a team of  seis- 
mologists cooperat ing to in terpret  
the results of  a seismic survey under  
way in some remote and inaccessible 

region, a doctor  reviewing the status 
of  patients in a hospital f rom a work- 
station at home, a design group col- 
laborat ing to develop a new product ,  
or  application programs cooperat ing 
in a factory-floor process control set- 
ting. The  software of  a modern  tele- 
communicat ions switching product  is 
faced with many of  the same issues, 
as is software implement ing a data- 
base that will be used in a large dis- 
t r ibuted selting. To build applica- 
tions for the networked envi- 
ronments  of  the future,  a technology 
is needed that will make it as easy to 
solve these types of  problems as it is 
to build graphical  user interfaces 
(GUIs) today. 

A central premise of  the 1SIS proj- 
ect, shared with several o ther  efforts 
[2, 14, 19, 22, 25] is that suppor t  for 
p rogramming  with d i s t r i b u t e d  g r o u p s  

o f  c o o p e r a t i n g  p r o g r a m s  is the key to 
solving problems such as the ones 
previously mentioned.  For  example,  
a fault- tolerant  data analysis service 
can be implemented  by a group of  
programs that adapt  t ransparent ly  to 
failures and recoveries. The  publica- 
tion/subscription style of  interaction 
involves an anonymous use of  pro- 
cess groups:  here, the group consists 
of  a set of  publishers and subscribers 
that vary dramatically as brokers 
change the instruments they trade. 
Each interacts with the group 
through a group name (the topic), 
but  the group membersh ip  is not 
t racked or  used within the computa-  
tion. Al though the processes publish- 
ing or  subscribing to a topic do not 
cooperate directly, when this struc- 
ture is employed,  the reliability of  the 
application will depend  on the reli- 
ability of  group communication.  It is 
easy to see how problems could arise 
if, for example,  two brokers  monitor-  
ing the same stock see different  pric- 
ing information.  

Process groups of  various kinds 
arise naturally th roughout  a distrib- 
uted system. Yet, cur rent  distr ibuted 
comput ing environments  provide lit- 
tle suppor t  for group communica-  
tion pat terns and programming.  
These  issues have been left to the 
application p rogrammer ,  and appli-  
cation p rogrammers  have been 
largely unable to respond to the chal- 
lenge. In short, contemporary  dis- 
t r ibuted comput ing environments  

prevent  users from realizing the po- 
tential of  the distr ibuted comput ing 
infrastructure on which their  appli-  
cations run. 

Process Groups 
Two styles of  process g roup  usage 
are seen in most ISIS applications: 

A n o n y m o u s  g r o u p s :  These arise 
when an application publishes data 
under  some "topic," and other  pro- 
cesses subscribe to that topic. For  an 
application to opera te  automatically 
and reliably, anonymous groups 
should provide certain propert ies:  

1. It should be possible to send mes- 
sages to the group using a g r o u p  a d -  

dress .  The  high-level p rog rammer  
should not be involved in expanding  
the group address  into a list of  desti- 
nations. 
2. I f  the sender  and subscribers 
remain operational ,  messages should 
be del ivered exactly once. I f  the 
sender  fails, a message should be de- 
livered to all or  none of  the subscrib- 
ers. The  application p rog rammer  
should not need to worry about mes- 
sage loss or  duplication. 
3. Messages should be del ivered to 
subscribers in some sensible order .  
For example,  one would expect  mes- 
sages to be delivered in an o rde r  con- 
sistent with causal dependencies:  if a 
message m is published by a p rogram 
that first received m]  . . . mi ,  then m 
might be dependen t  on these pr ior  
messages. I f  some other  subscriber 
will receive m as well as one or more  
of  these pr ior  messages, one would 
expect  them to be del ivered first. 
St ronger  order ing  propert ies  might  
also be desired,  as discussed later. 
4. It should be possible for a sub- 
scriber to obtain a history of  the 
g r o u p - - a  log of  key events and the 
o rde r  in which they were received. 2 
I f  n messages are posted and the first 
message seen by a new subscriber will 
be message mi,  one would expect  
messages m l  • • • m i - i  t o  be reflected 
in the history, and messages m i . . . 

m , ,  to all be del ivered to the new pro-  
cess. I f  some messages are missing 
from the history, or  included both in 

2 T h e  appl ica t ion i tself  wou ld  d i s t i ngu i sh  mes-  
sages  that  n e e d  to be r e t a ined  f r o m  those  that  
can be d i sca rded .  
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the history and in the subsequent 
postings, incorrect behavior might 
result. 

Explicit groups: A group is explicit 
when its members cooperate directly: 
they know themselves to be members 
of  the group, and employ algorithms 
that incorporate the list o f  members, 
relative rankings within the list, or in 
which responsibility for responding 
to requests is shared. 

Explicit groups have additional 
needs stemming from their use of  
group membership information: in 
some sense, membership changes are 
among the information being pub- 
lished to an explicit group. For ex- 
ample, a fault-tolerant service might 
have a primary member that takes 
some action and an ordered set of  
backups that take over, one by one, if 
the current primary fails. Here, 
group membership changes (failure 
of  the primary) trigger actions by 
group members. Unless the same 
changes are seen in the same order 
by all members, situations could arise 
in which there are no primaries, or 
several. Similarly, a parallel database 
search might be done by ranking the 
group members and then dividing 
the database into n parts, where n is 
the number  of  group members. Each 
member would do 1/n'th of  the work, 
with the ranking determining which 
member handles which fragment of  
the database. The members need 
consistent views of  the group mem- 
bership to perform such a search 
correctly; otherwise, two processes 
might search the same part of  the 
database while some other part re- 
mains unscanned, or they might par- 
tition the database inconsistently. 

Thus, a number  of  technical prob- 
lems must be considered in develop- 
ing software for implementing dis- 
tributed process groups: 

• Support for group communication, 
including addressing, failure atomic- 
ity, and message delivery ordering. 
• Use of group membership as an input. 
It should be possible to use the group 
membership or changes in member- 
ship as input to a distributed algo- 
rithm (one run concurrently by mul- 
tiple group members). 
• Synchronization. To obtain globally 
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correct behavior from group applica- 
tions, it is necessary to synchronize 
the order  in which actions are taken, 
particularly when group members 
will act independently on the basis of  
dynamically changing, shared infor- 
mation. 

The first and last of  these prob- 
lems have received considerable 
study. However, the problems cited 
are not independent: their integra- 
tion within a single framework is 
nontrivial. This integration issue 
underlies our virtual synchrony exe- 
cution model. 

Bui lding D is t r ibu ted  Services 
O v e r  C o n v e n t i o n a l  Techno log ies  
In this section we review the techni- 
cal issues raised in the preceding sec- 
tion. In each case, we start by de- 
scribing the problem as it might be 
approached by a developer working 
over a contemporary computing sys- 

Figure  1. Broker 's  t r a d i n g  sys tem 

Figure  2. Mak ing  an analyt ic  
service f a u l t - t o l e r a n t  

C S ~ S  ~ Primary 
Backup 

Figure  3. Inconsistent c o n n e c -  
t ion  states 
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tern, with. no special tools for group 
programming. Obstacles to solving 
the proh,lems are identified, and 
used to motivate a general approach 
to overcoming the problem in ques- 
tion. Where appropriate, the actual 
approach used in solving the prob- 
lem within ISIS is discussed. 

Conventional Message-Passing 
Technologies 
Contemporary operating systems 
offer three classes of communication 
services ['14]: 

• Unreliable datagrams: These services 
automatically discard corrupted mes- 
sages, but do little additional process- 
ing. Most messages get through, but 
under  some conditions messages 
might be lost in transmission, dupli- 
cated, or ,delivered out of order. 
• Remote ,procedure call: In this ap- 
proach, communication results from 
a procedure invocation that returns a 
result. RPC is a relatively reliable ser- 
vice, but when a failure does occur, 
the sender is unable to distinguish 
among many possible outcomes: the 
destination may have failed before or 
after receiving the request, or the 
network may have prevented or de- 
layed delivery of the request or the 
reply. 
• Reliable data streams: Here, commu- 
nication is performed over channels 
that provide flow control and reli- 
able, sequenced message delivery. 
Standard stream protocols include 
TCP, the ISO protocols, and TP4. 
Because of pipelining, streams gen- 
erally outperform RPC when an ap- 
plication sends large volumes of data. 
However, the standards also pre- 
scribe rules under  which a stream 
will be broken, using conditions 
based on timeout or excessive re- 
transmissions. For example, suppose 
that processes c, s] and s9 have con- 
nections with one another - -perhaps ,  
si and s2 are the primary and backup, 
respectively, for a reliable service of 
which c is a client. 

Now, consider the state of this sys- 
tem if the. connection from c to s 1 
breaks due to a communication fail- 
ure, while all three processes and the 
other two connections remain opera- 
tional (Figure 3). Much like the situa- 
tion after a failed RPC, c and Sl will 

now be uncertain regarding one an- 
other's status. Worse, s9 is totally un- 
aware of the problem. In  such a situ- 
ation, the application may easily 
behave in an inconsistent manner.  In 
our primary-backup example, c 
would cease sending requests to sl, 
expecting s2 to handle them. s2, how- 
ever, will not respond (it expects Sl to 
do so). 

In a system with more compo- 
nents, the situation would be greatly 
exacerbated. From this, one sees that 
a reliable data stream has guarantees 
little stronger than an unreliable one: 
when channels break, it is not safe to 
infer that either endpoint  has failed; 
channels may not break in a consis- 
tent manner ,  and data in transit may 
be lost. Because the conditions under  
which a stream break are defined by 
the standards, one has a situation in 
which potentially inconsistent behav- 
ior is unavoidable. 

These considerations lead us to 
make a collection of assumptions 
about the network and message com- 
munication in the remainder  of the 
article. First, we will assume the sys- 
tem is structured as a wide-area net- 
work (WAN) composed of local-area 
networks (LANs) interconnected by 
wide-area communication links. 
(WAN issues will not be considered 
in this article due to space con- 
straints.) We assume that each LAN 
consists of a collection of machines 
(as few as two or three, or as many as 
one or two hundred),  connected by a 
collection of high-speed, lowqatency 
communication devices. If  shared 
memory is employed, we assume it is 
not used over the network. Clocks 
are not assumed to be closely syn- 
chronized. 

Within a LAN, we assume mes- 
sages may be lost in transit, arrive out 
of order, be duplicated, or be dis- 
carded because of inadequate buf- 
fering capacity. We also assume that 
LAN communication partitions are 
rare. The algorithms described later 
in this article and the ISIS system it- 
self may pause (or make progress in 
only the largest partition) dur ing  
periods of partition failure, resum- 
ing normal operation only when nor- 
mal communication is restored. 

We will assume the lowest levels of 
the system are responsible for flow 
control and for overcoming message 

loss and unordered delivery. In ISIS, 
these tasks are accomplished using a 
windowed acknowledgement proto- 
col similar to the one used in TCP, 
but integrated with a failure-detec- 
tion subsystem. With this (nonstand- 
ard) approach, a consistent system- 
wide view of the state of components 
in the system and of the state of com- 
munication channels between them 
can be presented to higher layers of 
software. For example, the ISIS 
transport  layer will only break a com- 
munication channel to a process in 
situations in which it would also re- 
port to any application monitor ing 
that process that the process has 
failed. Moreover, if one channel to a 
process is broken, all channels are 
broken. 

Failure Model 
Throughout  this article, processes 
and processors are assumed to fail by 
halting, without initiating erroneous 
actions or sending incorrect mes- 
sages. This raises a problem: tran- 
sient problems--such as an unre- 
sponsive swapping device or a 
temporary communication ou tage - -  
can mimic halting failures. Because 
we will want to build systems guaran- 
teed to make progress when failures 
occur, this introduces a conflict be- 
tween "accurate" and "timely" failure 
detection. 

One way ISIS overcomes this 
problem is by integrating the com- 
munication transport  layer with the 
failure detection layer to make pro- 
cesses appear to fail by halting, even 
when this may not be the case: a fail- 
stop model [30]. To implement  such a 
model, a system uses an agreement 
protocol to maintain a system mem- 
bership list: only processes included 
in this list are permitted to partici- 
pate in the system, and nonrespon- 
sive or failed processes are dropped 
[12, 28]. If a process dropped from 
the list later resumes communication, 
the application is forced to either 
shut down gracefully or to run  a "re- 
connection" protocol. The message 
transport  layer plays an important  
role, both by breaking connections 
and by intercepting messages from 
faulty processes. 

In the remainder  of this article we 
assume a message transport  and 
failure-detection layer with the prop- 
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erties of the one used by ISIS. To 
summarize, a process starts execu- 
tion by joining the system, interacts 
with it over a period of time dur ing  
which messages are delivered in the 
order sent, without loss or duplica- 
tion, and then terminates (if it termi- 
nates) by halting delectably. Once a 
process terminates, we will consider 
it to be permanently gone from the 
system, and assume that any state it 
may have recorded (say, on a disk) 
ceases to be relevant. If  a process 
experiences a transient problem and 
then recovers and rejoins the system, 
it is treated as a completely new en- 
t i t y - n o  attempt is made to automat- 
ically reconcile the state of the system 
with its state prior to the failure (re- 
covery of this nature is left to higher 
layers of the system and applica- 
tions). 

Building Groups Over Conventional 
Technologies 
Group Addressing. Consider the 
problem of mapping a group address 
to a membership list, in an applica- 
tion in which the membership could 
change dynamically due to processes 
jo ining the group or leaving. The 
obvious way to approach this prob- 
lem involves a membership service [9, 
12]. Such a service maintains a map 
from group identifiers to member- 
ship lists. Deferring fault-tolerance 
issues, one could implement such a 
service using a simple program that 
supports remotely callable proce- 
dures to register a new group or 
group member, obtain the member- 
ship of a group, and perhaps for- 
ward a message to the group. A pro- 
cess could then transmit a message 
either by forwarding it via the nam- 
ing service, or by looking up the 
membership information, caching it, 
and transmitting messages directly. 3 
The first approach will perform bet- 
ter for one-time interactions; the sec- 
ond would be preferable in an appli- 
cation that sends a stream of 
messages to the group. 

This form of addressing also raises 
a scheduling question. The designer 
of a distributed application will want 

s In the latter case, one would also need a mech- 
anism for invalidating cached address ing infor- 
mation when the g r o u p  membersh ip  changes  
(this is not  a trivial problem, but  the need for  
brevity precludes discussing it in detail). 
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to send messages to all members of 
the group, under  some reasonable 
interpretation of the term "all." The 
question, then, is how to schedule the 
delivery of messages so that the de- 
livery is to a reasonable set of pro- 
cesses. For example, suppose that a 
process group contains three pro- 
cesses, and a process sends many 
messages to it. One would expect 
these messages to reach all three 
members, not some other set reflect- 
ing a stale view of the group compo- 
sition (e.g., including processes that 
have left the group). 

The solution to this problem fa- 
vored in our work can be understood 
by thinking of the group member- 
ship as data in a database shared by 
the sender of a multidestination mes- 
sage (a multicast4), and the algorithm 
used to add new members to the 
group. A multicast "reads" the mem- 
bership of the group to which it is 
sent, holding a form of read-lock 
until the delivery of the message oc- 
curs. A change of membership that 
adds a new member would be treated 
like a "write" operation, requiring a 
write-lock that prevents such an op- 
eration from executing while a prior 
multicast is under  way. It will now 
appear that messages are delivered 
to groups only when the membership 
is not changing. 

A problem with using locking to 
implement address expansion is cost. 
Accordingly, ISIS uses this idea, but 
does not employ a database or any 
sort of locking. And, rather than 
implement  a membership server, 
which could represent a single point 
of failure, ISIS replicates knowledge 
of the membership among the mem- 
bers of the group itself. This is done 
in an integrated manner ,  in order to 
perform address expansion with no 
extra messages or unnecessary delays 
and guarantee the logical instantane- 
ity property that the user expects. 
For practical purposes, any message 
sent to a group can be thought of as 
reaching all members at the same 
time. 

4 In this article the term multicast refers to send- 
ing a single message to the members  of  a pro- 
cess group. The  term broadcast, common in the 
literature, is sometimes confused with the hard- 
ware broadcast capabilities of  devices like 
Ethernet. While a multicast might make use of  
hardware broadcast, this would simply repre- 
sent one possible implementation strategy. 

O 
Logical time and causal depen- 

dency. The phrase "reaching all of its 
members at the same time" raises an 
issue that will prove to be fundamen-  
tal to message-delivery ordering. 
Such a statement presupposes a tem- 
poral model. What notion of time 
applies to distributed process group 
applications? 

In 1978, Leslie Lamport published 
a seminal paper that considered the 
role of time in distributed algorithms 
[21]. Lamport  asked how one might 
assign timestamps to the events in a 
distributed system to correctly cap- 
ture the order in which events oc- 
curred. Real time is not suitable for 
this: each machine will have its own 
clock, and clock synchronization is at 
best imprecise in distributed systems. 
Moreover, operating systems intro- 
duce unpredictable software delays, 
processor execution speeds can vary 
widely due to cache affinity effects, 
and scheduling is often unpredict- 
able. These factors make it difficult 
to compare timestamps assigned by 
different machines. 

As an alternative, Lamport sug- 
gested, one could discuss distributed 
algorithms in terms of the depen- 
dencies between the events making 
up the system execution. For exam- 
ple, suppose a process first sets some 
variable x to 3, and then sets y = x. 
The event corresponding to the lat- 
ter operation would depend on the 
former o n e - - a n  example of a local 
dependency. Similarly, receiving a 
message depends on sending it. This 
view of a system leads one to define 
the potential causality relationship be- 
tween events in the system. It is the 
irreflexive transitive closure of the 
message send-receive relation and 
the local dependency relation for 
processes in the system. If  event a 
happens before event b in a distrib- 
uted system, the causality relation 
will capture this. 

In  Lamport 's view of time, we 
would say that two events are concur- 
rent if they are not causally related: 
the issue is not whether they actually 
executed simultaneously in some run  
of the system, but whether the system 
was sensitive to their respective or- 
dering. Given an execution of a sys- 
tem, there exists a large set of equiva- 
lent executions arrived at by 
rescheduling concurrent  events 
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while retaining the event order ing  
constraints represented  by causality 
relation. The  key observation is that 
the causal ,event ordering captures all the 
essential ordering information needed to 
describe the execution: any two physical 
execution.s with the same causal 
event o rder ing  describe indistin- 
guishable runs of  the system. 

Recall our  use o f  the phrase 
"reaching all o f  its members  at the 
same time." Lampor t  has suggested 
that for a system described in terms 
of  a causal event order ing,  any set of  
concurrent  events, one per  process, 
can be thought  of  as represent ing a 
logical instant in time. Thus,  when 
we say that all members  of  a group 
receive a message at the same time, 
we mean that the message delivery 
events are concurrent  and totally 
o rdered  with respect to group mem- 
bership c]hange events. Causal de- 
pendency provides the fundamenta l  
notion of  t ime in a distr ibuted sys- 
tem, and plays an impor tant  role in 
the remainder  of  this section. 

Message delivery ordering. Con- 
sider Figure 4, part  (A), in which 
messages mb m2, m 3  and m 4 are sent 
to a group consisting of  processes Sl, 
s2, and ss. Messages ml and m~ are 
sent concurrently and are received in 
different  orders  by s2 and ss. In  many 
applications, s2 and ss would behave 
in an uncoordinated  or  inconsistent 
manner  if this occurred.  A designer 
must, therefore,  anticipate possible 
inconsistent message order ing.  For  
example,  one might  design the appli- 
cation to tolerate such mixups, or  
explicitly prevent  them from occur- 
r ing by delaying the processing of  ml 
and m 2 within the p rogram until an 
order ing  has been established. The  
real danger  is that a designer  could 
overlook tlhe whole i s sue- -a f te r  all, 
two simultaneous messages to the 
p rogram tlhat arrive in different  se- 
quences may seem like an improb-  
able scenar io- -y ie ld ing  an applica- 
tion that usually is correct, but may 
exhibit abnormal  behavior when un- 
likely sequences of  events occur, or  
under  periods of  heavy load. (Under  
load, multicast delivery latencies rise, 
increasing the probabili ty that con- 
cur rent  multicasts could overlap). 

This is only one of  several delivery 
order ing  problems illustrated in Fig- 
ure  4. Consider  the situation when s3 

receives message m3. Message ms was 
sent by s] after receiving m2, and 
might  refer  to or  depend  on m 2. For  
example,  m 2 might authorize a cer- 
tain broker  to t rade a part icular  ac- 
count, and m3 could be a t rade the 
broker  has initiated on behalf  of  that 
account. Our  execution is such that ss 
has not yet received m2 when ms is 
delivered. Perhaps m2 was discarded 
by the opera t ing  system due to a lack 
of  buffer ing space. It will be retrans- 
mitted, but  only after a br ief  delay 
dur ing  which ms might  be received. 

Why might  this matter? Imagine 
that ss is displaying buy/sell orders  on 
the t rading floor, ss will consider ms 
invalid, since it will not be able to 
confirm that the t rade was autho- 
rized. An application with this prob-  
lem might fail to carry out  valid trad- 
ing requests. Again, al though the 
problem is solvable, the question is 
whether  the application designer  will 
have anticipated the problem and 
p rog ra mme d  a correct mechanism to 
compensate  when it occurs. 

In  our  work on ISIS, this problem 
is solved by incl.uding a context rec- 
ord on each message. I f  a message 
arrives out  of  order ,  this record can 
be used to detect the condition, and 
to delay delivery until pr ior  messages 
arrive. The  context representat ion 
we employ has size l inear in the num- 
ber of  members  of  the g roup  within 
which the message is sent (actually, in 
the worst case a message might carry 
multiple such context records,  but  
this is extremely rare). However,  the 
average size can be greatly reduced 
by taking advantage of  repeti t ious 
communicat ion patterns,  such as the 
tendency of  a process that sends to a 
group to send multiple messages in 
succession [11]. The  imposed over- 
head is variable, but  on the average 
small. Other  solutions to this prob- 
lem are described in [9, 26]. 

Message m 4 exhibits a situation 
that combines several of  these issues. 
m 4 is sent by a process that previously 
sent m] and is concurrent  with m2, ms, 
and a membership  change of  the 
group.  One sees here a situation in 
which all of  the o rder ing  issues cited 
thus far arise simultaneously, and in 
which failing to address any of  them 
could lead to errors  within an impor-  
tant class of  applications. As shown, 
only the group  addressing proper ty  

proposed  in the previous section is 
violated: were m4 to tr igger a concur- 
rent  database search, process Sl 
would search the first third of  the 
database, while s~ searches the sec- 
ond ha/f- -one-s ixth  of  the database 
would not be searched. However,  the 
figure could easily be changed to 
simultaneously violate o ther  order -  
ing propert ies.  

State transfer. Figure 4, par t  (B) 
illustrates a slightly di f ferent  prob- 
lem. Here,  we wish to t ransfer  the 
state of  the service to process s3: per-  
haps ss represents  a p rogram that 
has restar ted after a failure (having 
lost pr ior  state) or  a server that has 
been added  to redistr ibute load. In- 
tuitively, the state of  the server will 
be a data structure reflecting the data 
managed by the service, as modif ied 
by the messages received pr ior  to 
when the new member  jo ined  the 
group.  However, in the execution 
shown, a message has been sent to 
the server concurrent  with the mem- 
bership change. A consequence is 
that ss receives a state which does not 
reflect message m4, leaving it incon- 
sistent with Sl and s2. Solving this 
problem involves a complex synchro- 
nization algori thm (not presented 
here), probably beyond the ability of  
a typical dis tr ibuted applications pro- 
grammer .  

Fault tolerance. Up to now, our  
discussion has ignored failures. Fail- 
ures cause many problems; here, we 
consider jus t  one. Suppose the 
sender  of  a message were to crash 
after  some, but not all, destinations 
receive the message. The  destina- 
tions that do have a copy will need to 
complete the transmission or  discard 
the message. The  protocol used 
should achieve "exactly-once deliv- 
ery" o f  each message to those desti- 
nations that remain  operational ,  with 
bounded  overhead and storage. 
Conversely, we need not be con- 
cerned with delivery to a process that 
fails dur ing  the protocol, since such a 
process will never be heard  f rom 
again (recall the fail-stop model). 

Protocols to solve this problem can 
be complex, but  a fairly simple solu- 
tion will illustrate the basic tech- 
niques. This protocol uses three 
rounds  of  RPCs as illustrated in Fig- 
ure 5. Dur ing the first round,  the 
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sender  sends the message to the des- 
tinations, which acknowledge re- 
ceipt. Al though the destinations can 
deliver the message at this point, they 
need to keep a copy: should the 
sender  fail dur ing  the first round,  
the destination processes that have 
received copies will need to finish the 
protocol on the sender 's behalf. In 
the second round,  if  no failure has 
occurred,  then the sender  tells all 
destinations that the first round  has 
finished. They acknowledge this 
message and make a note that the 
sender is enter ing the third round.  
During the third round,  each desti- 
nation discards all information about 
the message- -de le t ing  the saved 
copy of  the message and any other  
data it was maintaining. 

When a failure occurs, a process 
that has received a first- or second- 
round  message can terminate the 
protocol. The  basic idea is to have 
some member  of  the destination set 
take over the round  that the sender  
was running  when it failed; processes 
that have already received messages 
in that round  detect duplicates and 
respond to them as they responded  
after the original reception. The  pro- 
tocol is s traightforward,  and we leave 
the details to the reader.  

This three- round multicast proto-  
col does not obtain any form of  pipe- 
lined or  asynchronous data flow 
when invoked many times in succes- 
sion, and the use of  RPC limits the 
degree  of  communicat ion concur- 
rency dur ing  each round  (it would be 
better  to send all the messages at 
once, and to collect the replies in par- 
allel). These features make the pro- 
tocol expensive. Much better  solu- 
tions have been described in the 
l i terature (see [9, 11] for more detail 
on the approach used in ISIS, and 
for a summary of  other  work in the 
area). 

Recall that in the subsection "Con- 
ventional Message-Passing Technol- 
ogies," we indicated that systemwide 
agreement  on membership  was an 
impor tant  proper ty  of  our  overall 
approach.  It is interesting to realize 
that a protocol such as this is greatly 
simplified because failures are re- 
por ted  consistently to all processes in 
the system. If  failure detection were 
by an inconsistent mechanism, it 
would be very difficult to convince 
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oneself  that the protocol is correct 
(indeed, as stated, the protocol could 
deliver duplicates if failures are re- 
por ted  inaccurately). The  meri t  of  
solving such a problem at a low level 
is that we can then make use of  the 
consistency propert ies  of  the solution 
when reasoning about protocols that 
react to failures. 

Summary of issues. The  previous 
discussion pointed to some of  the 
potential pitfalls that confront  the 
developer  of  group software working 
over a conventional operat ing sys- 
tem: (1) weak suppor t  for reliable 
communication,  notably inconsis- 
tency in the situations in which chan- 
nels break, (2) group address expan- 
sion, (3) delivery order ing  for 
concurrent  messages, (4) delivery 
order ing  for sequences of  related 
messages, (5) state transfers, and 
(6) failure atomicity. This list is not 
exhaustive: we have overlooked 
questions involving real-time deliv- 
ery guarantees,  and persistent data- 

Figure 4. Message-order ing  
prob lems 

Figure S. T h r e e - r o u n d  rel iable 
mul t icast  
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bases and files. However,  our  work 
on ISIS treats process group issues 
under  the assumption that any real- 
time deadlines are long compared  to 
communicat ion latencies, and that 
process states are volatile, hence we 
view these issues as beyond the scope 
of  the current  article. 5 The  list does 
cover the major issues that arise in 
this more restrictive domain.  [5] 

At the beginning of  this section, 
we asserted that modern  opera t ing  

plexity associated with working out  
the solutions and integrat ing them in 
a single system will be a significant 
barr ier  to application developers. 
The  only practical approach is to 
solve these problems in the distrib- 
uted comput ing environment  itself, 
or in the opera t ing  system. This per- 
mits a solution to be engineered in a 
way that will give good, predictable 
per formance  and takes full advan- 
tage of  hardware  and opera t ing  sys- 

IS iS  TOOLS a t  P r o c e s s  Group  L e v e l  
Process groups: Create, delete, join (transferring state). 

Group multlcast: CBCAST, ABCAST, col lect ing 0, 1 QUORUM or  ALL replies (0 re- 
plies gives an asynchronous multicast). 

Synchronization: LoCking, with symbolic strings to represent locks. Deadlock 
detection or avoidance must be addressed at the application level. Token pass- 
ing. 

Replicated data: implemented by broadcasting updates to group having cop- 
Ies. Transfer values to processes that join using state transfer facility. Dynamic 
system reconfiguratlon using replicated configuration data. Checkpoint/update 
logging, spooling for state recovery after failure. 

Monltorlrtg facilities: Watch a process or site, trigger actions after failures and 
recoveries. Monitor changes to process group membership, site failures, and 
so f o r t h .  

Distributed execution facilities: Redundant computation (all take same action). 
Subdivided among multiple servers. Coordinator-cohort (primary/backup). 

Automated recovery: When a site recovers, Programs automatically restart. 
For the first site to recover, group state is restored from logs (or initialized by 
software). For other sites, a process group join and transfer state is initiated. 

WAN communication: Reliable long-haul message passing and file transfer facility. 

systems lack the tools needed to de- 
velop group-based software. This 
assertion goes beyond standards such 
as Unix to include next-generat ion 
systems such as NT, Mach, CHORUS 
and Amoeb;a. 6 A basic premise of  this 
article is that, a l though all of  these 
problems can be solved, the c o r n -  

5 These  issues can be addressed within the tools 
layer of  ISIS, and  in fact the cu r ren t  system in- 
cludes an optional  subsystem for managemen t  
of  persistent data.  

6Mach IPC provides s t rong guarantees  o f  reli- 
ability in its communica t ion  subsystem. How- 
ever, Mach may experience u n b o u n d e d  delay 
when a node  failure occurs.  C H O R U S  includes 
a po r t -g roup  mechanism,  but  with weak seman- 
tics, pa t te rned  .after earlier work on the V sys- 
tem [15]. Amoeba,  which initially lacked g r o u p  
suppor t ,  has recently been extended to a mech- 
anism apparen t ly  motivated by ou r  work on 
ISIS [19]. 

tem features. Fur thermore ,  provid- 
ing process groups as an under ly ing 
tool permits  the p rog ra mme r  to con- 
centrate on the problem at hand. I f  
the implementat ion of  process 
groups is left to the application de- 
signer, nonexper ts  are unlikely to 
use the approach.  The  brokerage  
application of  the introduct ion 
would be extremely difficult to build 
using the tools provided by a conven- 
tional opera t ing  system. 

V i r t u a l  S y n c h r o n y  
It was observed earl ier  in this article 
that integration of  g roup  program-  
ming mechanisms into a single envi- 
ronment  is also an impor tant  prob- 
lem. Our  work addresses this issue 
through an execution model  called 

virtual synchrony, motivated by pr io r  
work on transaction serializability. 
We will present  the approach  in two 
stages. First, we discuss an execution 
model  called close synchrony. This 
model  is then relaxed to arrive at the 
virtual synchrony model. A compari-  
son of  our  work with the serializabil- 
ity model  appears  in the section 
"ISIS and Other  Distr ibuted Com- 
put ing Technologies." The  basic idea 
is to encourage p rogrammers  to as- 
sume a closely synchronized style of  
distr ibuted execution [ 10, 31 ]: 

• Execution of  a process consists of  a 
sequence of  events, which may be 
internal  computat ion,  message trans- 
missions, message deliveries, or  
changes to the membersh ip  of  
groups that it creates or  joins. 
• A global execution of  the system 
consists of  a set o f  process execu- 
tions. At the global level, one can talk 
about messages sent as multicasts to 
process groups.  
• Any two processes that receive the 
same multicasts or  observe the same 
group membersh ip  changes see the 
cor responding  local events in the 
same relative order .  
• A multicast to a process group is 
del ivered to its full membership.  The  
send and delivery events are consid- 
ered to occur as a single, instanta- 
neous event. 

Close synchrony is a powerful  
guarantee.  In fact, as seen in Figure 
6, it eliminates all the problems iden- 
tified in the preceding section: 

• Weak communication reliability guar- 
antees: A closely synchronous com- 
munication subsystem appears  to the 
p rog ra mme r  as completely reliable. 
• Group address expansion: In a closely 
synchronous execution, the member-  
ship of  a process group is fixed at the 
logical instant when a multicast is 
delivered. 
• Delivery ordering for concurrent mes- 
sages: In a closely synchronous exe- 
cution, concurrent ly issued multi- 
casts are distinct events. They  would, 
therefore,  be seen in the same o rde r  
by any destinations they have in com- 
mon. 
* Delivery ordering for sequences of re- 
lated messages: In Figure 6, par t  (A), 
process Sl sent message ms after  re- 
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ceiving m2, hence m3 may be causally 
dependen t  on ms. Processes execut- 
ing in a closely synchronous model  
would never see anything inconsist- 
ent with this causal dependency  rela- 
tion. 
• State transfer: State transfer  occurs 
at a well-defined instant in time in 
the model. I f  a group member  
checkpoints the group state at the 
instant when a new member  is 
added,  or sends something based on 
the state to the new member ,  the 
state will be well def ined and com- 
plete. 
• Failure atomicity: The  close syn- 
chrony model  treats a multicast as a 
single logical event, and reports  fail- 
ures through group membership  
changes that are o rde red  with re- 
spect to multicast. The  all or  nothing 
behavior of  an atomic multicast is 
thus implied by the model. 

Unfortunately,  al though closely 
synchronous execution simplifies 
distr ibuted application design, the 
approach cannot be applied directly 
in a practical setting. First, achieving 
close synchrony is impossible in the 
presence of  failures. Say that pro- 
cesses s] and s2 are in group G and 
message m is multicast to G. Consider 
Sl at the instant before it delivers m. 
According to the close synchrony 
model, it can only deliver m if sz will 
do so also. But sl has no way to be 
sure that s2 is still operational,  hence 
s~ will be unable to make progress 
[36]. Fortunately,  we can finesse this 
issue: if s2 has failed, it will hardly be 
in a position to dispute the assertion 
that m was delivered to it first! 

A second concern is that maintain- 
ing close synchrony is expensive. The  
simplicity of  the approach stems in 
part  f rom the fact that the entire 
process group advances in lockstep. 
But, this also means that the rate of  
progress each group member  can 
make is limited by the speed of  the 
other  members,  and this could have a 
huge performance impact. What  is 
needed is a model  with the concep- 
tual simplicity of  close synchrony, but  
that is capable of  efficiently support-  
ing very high th roughput  applica- 
tions. 

In  distr ibuted systems, high 
th roughput  comes from asynchronous 
interactions: pat terns of  execution in 
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which the sender of  a message is per- 
mitted to continue executing without 
waiting for delivery. An asynchro- 
nous approach treats the communi-  
cations system like a bounded  buffer,  
blocking the sender only when the 
rate of  data  product ion exceeds the 
rate of  consumption,  or  when the 
sender  needs to wait for a reply or  
some other  input  (Figure 7). The  
advantage of  this approach is that the 
latency (delay) between the sender 
and the destination does not affect 
the data transmission r a t e - - t h e  sys- 
tem operates in a pipel ined manner ,  
permit t ing both the sender  and des- 
tination to remain  continuously ac- 
tive. Closely synchronous execution 
precludes such pipelining, delaying 
execution of  the sender until the 
message can be delivered. 

This motivates the virtual syn- 
chrony approach.  A virtually syn- 
chronous system permits asynchro- 
nous executions for which there 
exists some closely synchronous exe- 
cution indistinguishable from the 

Figure 6. ClOSely synchronous 
execution 

Figure 7. Asynchronous pipe- 
lining 
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asynchronous one. In general, this 
means that for each application, 
events need to be synchronized only 
to the degree that the application is 
sensitive to event ordering. In some 
situations, this approach will be iden- 
tical to close synchrony. In others, it 
is possible to deliver messages in dif- 
ferent orders at different processes, 
without the application noticing. 
When such a relaxation of order is 
permissible, a more asynchronous 
execution results. 

Order sensitivity in distributed sys- 
tems. We are led to a final technical 
question: "when can synchronization 
be relaxed in a virtually synchronous 
distributed system?" Two forms of 
ordering turn  out to be useful; one is 
"stronger" than the other, but also 
more costly to support. 

Consider a system with two pro- 
cesses, Sl and s2, sending messages 
into a group G with members g~ and 
g2. sl sends message m] to G and, con- 
currently, sz sends m 2. In a closely 
synchronous system, g] and g2 would 
receive these messages in identical 
orders. If, for example, the messages 
caused updates to a data structure 
replicated within the group, this 
property could be used to ensure 
that the replicas remain identical 
through tlhe execution of the system. 
A multicast with this property is said 
to achieve an atomic delivery ordering, 
and is denoted ABCAST. ABCAST 
is an easy primitive to work with, but 
costly to implement. This cost stems 
from the tollowing consideration: An 
ABCAST message can only be deliv- 
ered when it is known that no prior 
ABCAST remains undelivered. This 
introduce,; latency: messages ml and 
m2 must he delayed before they can 
be delivered to g] and g,2. Such a de- 
livery latency may not be visible to 
the application. But, in cases in which 
s~ and s2 need responses from gl and/ 
or g2, or where the senders and desti- 
nations are the same, the application 
will experience a significant delay 
each time an ABCAST is sent. The  
latencies involved can be very high, 
depending  on how the ABCAST 
protocol is. engineered. 

Not all applications require such a 
strong, costly, delivery ordering. 
Concurrent  systems often use some 
form of synchronization or mutual  

exclusion mechanism to ensure that 
conflicting operations are performed 
in some order. In a parallel shared-  
memory environment,  this is nor- 
mally done using semaphores 
around critical sections of code. In a 
distributed system, it would normally 
be done by using some form of lock- 
ing or token passing. Consider such a 
distributed system, having the prop- 
erty that two messages can be sent 
concurrently to the same group only 
when their effects on the group are inde- 
pendent. In the preceding example, 
either Sl and s2 would be prevented 
from sending concurrently (i.e., if ml 
and m 2 have potentially conflicting 

M1 

S~ S 2 

Figure 8. Causal ordering 

effects on the states of the members 
of G), or if they are permitted to send 
concurrently, the delivery orders 
could be arbitrarily interleaved, be- 
cause the actions on receiving such 
messages commute. 

It might seem that the degree of 
delivery ordering needed would be 
first-in, first-out, (FIFO). However, 
this is not quite right, as illustrated in 
Figure 8. Here we see a situation in 
which s], holding mutual  exclusion, 
sends message ml, but then releases 
its mutual exclusion lock to s2, which 
sends m 2. Perhaps, m] and m2 are 
updates to the same data item; the 
order of delivery could therefore be 
quite important.  Although there is 
certainly a sense in which ml was sent 
"first," notice that a FIFO delivery 
order would not enforce the desired 
ordering, since FIFO order is usually 
defined for a (sender, destination) 
pair, and here we have two senders. 
The ordering property needed for 
this example is that if mr causally pre- 
cedes m2, then ml should be deliv- 
ered before m2 at shared destina- 

tions, corresponding to a multicast 
primitive denoted CBCAST. Notice 
that CBCAST is weaker than AB- 
CAST, because it permits messages 
that were sent concurrently to be de- 
livered to overlapping destinations in 
different sequences. 7 

The major advantage of CBCAST 
over ABCAST is that it is not subject 
to the type of latency cited previ- 
ously. A CBCAST message can be 
delivered as soon as any prior mes- 
sages have been delivered, and all the 
information needed to determine 
whether any prior messages are out- 
standing can be included, at low 
overhead, on the CBCAST message 
itself. Except in unusual  cases where 
a prior message is somehow delayed 
in the network, a CBCAST message 
will be delivered immediately on re- 
ceipt. 

The ability to use a protocol such 
as CBCAST is highly dependent  on 
the nature of the application. Some 
applications have a mutual exclusion 
structure for which causal delivery 
ordering is adequate, while others 
would need to introduce a form of 
locking to be able to use CBCAST 
instead of ABCAST. Basically, 
CBCAST can be used when any con- 
flicting multicasts are uniquely or- 
dered along a single causal chain. In  
this case, the CBCAST guarantee is 
strong enough to ensure that all the 
conflicting multicasts are seen in the 
same order  by all recipients--  
specifically, the causal dependency 
order. Such an execution system is 
virtually synchronous, since the out- 
come of the execution is the same as 
if an atomic delivery order had been 
used. 

The CBCAST communication 
pattern arises most often in a process 
group that manages replicated (or 
coherently cached) data using locks 
to order  updates. Processes that up- 
date such data first acquire the lock, 
then issue a stream of asynchronous 
updates, and then release the lock. 

7The statement that CBCAST is "weaker" than 
ABCAST may seem imprecise: as we have 
stated the problem, the two protocols simply 
provide different forms of ordering. However,  
the ISIS version of  ABCAST actually extends 
the partial CBCAST ordering into a total one: it 
is a causal atomic muhicast primitive. An argu- 
ment  can be made that an ABCAST protocol 
that is not causal cannot be used asyuchro- 
nously, hence we see strong reasons for imple- 
menting ABCAST in this manner. 
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There  will generally be one update  
lock for each class of  related data 
items, so that acquisition of  the up- 
date lock rules out  conflicting up- 
dates. 8 However, mutual  exclusion 
can sometimes be inferred from 
other  propert ies  of  an algorithm, 
hence such a pat tern may arise even 
without an explicit locking stage. By 
using CBCAST for this communica- 
tion, an efficient, pipel ined data flow 
is achieved. In  particular,  there will 
be no need to block the sender  of  a 
multicast, even momentari ly,  unless 
the group membership  is changing at 
the time the message is sent. 

The  t remendous  performance 
advantage of  CBCAST over AB- 
CAST may not be immediately evi- 
dent.  However,  when one considers 
how fast modern  processors are in 
comparison with communication 
devices, it should be clear that any 
primitive that unnecessarily waits 
before delivering a message could 
introduce substantial overhead.  For  
example,  it is common for an appli- 
cation that replicates a table of  pend-  
ing requests within a group to multi- 
cast each new request, so that all 
members  can maintain identical cop- 
ies of  the table. In such cases, if the 
way that a request  is handled  is sensi- 
tive to the contents of  the table, the 
sender  of  the multicast must wait 
until the multicast is del ivered before 
acting on the request. Using AB- 
CAST the sender  will need to wait 
until the delivery o rde r  can be deter- 
mined. Using CBCAST, the update  
can be issued asynchronously, and 
applied immediately to the copy 
maintained by the sender.  The  
sender  thus avoids a potentially long 
delay, and can immediately continue 
computat ion or reply to the request. 
When a sender  generates bursts of  
updates,  also a common pattern,  the 
advantage of  CBCAST over AB- 
CAST is even greater,  because multi- 
ple messages can be buffered and 

s In ISIS applications, locks are used primari ly 
for  mutual  exclusion on  possibly conflicting 
operations,  such as updates  on related data  
items. In the case of  replicated data,  this results 
in an a lgor i thm similar to a pr imary  copy up- 
date in which the "pr imary"  copy changes  dy- 
namically. The  execution model  is nontransac-  
tional, and  there is no need for  read-locks or  for  
a two-phase locking rule. This  is discussed fur-  
ther  in the section "ISIS and  O t h e r  Distributed 
Comput ing  Technologies." 

sent in one packet, giving a pipelin- 
ing effect. 

The  distinction between causal 
and total event order ings (CBCAST 
and ABCAST) has parallels in other  
settings. Al though ISIS was the first 
distr ibuted system to enforce a causal 
delivery order ing  as part  of  a com- 
munication subsystem [7], the ap- 
proach draws on Lamport ' s  pr ior  
work on logical notions of  time. 
Moreover,  the approach was in some 
respects anticipated by work on pri- 
mary copy replication in database 
systems [6]. Similarly, close syn- 
chrony is related both to Lampor t  
and Schneider 's  state machine approach 
to developing distr ibuted software 
[32] and to the database serializability 
model,  to be discussed further.  Work 
on parallel  processor architectures 
has yielded a memory update  model  
called weak consistency [16, 35], which 
uses a causal dependency  principle to 
increase parallelism in the cache of  a 
parallel processor. And,  a causal cor- 
rectness proper ty  has been used in 
work on lazy update in shared mem- 
ory multiprocessors [1] and distrib- 
uted database systems [18, 20]. A 
more  detailed discussion of  the con- 
ditions under  which CBCAST can be 
used in place of  ABCAST appears  in 
[10, 31]. 

Summary of Benefits Due to Virtual 
Synchrony 
Brevity precludes a more detai led 
discussion of  virtual synchrony, or  
how it is used in developing distrib- 
uted algorithms within ISIS. I t  may 
be useful, however, to summarize the 
benefits of  the model: 

• Allows code to be developed as- 
suming a simplified, closely synchro- 
nous execution model; 
• Supports  a meaningful  notion of  
group state and state transfer,  both 
when groups manage replicated 
data, and when a computat ion is 
dynamically part i t ioned among 
group members;  
• Asynchronous,  pipel ined commu- 
nication; 
• Trea tment  of  communication,  pro- 
cess group membership  changes and 
failures th rough  a single, event- 
or iented execution model; 
• Failure handl ing through a consis- 
tently presented system membership  

list in tegrated with the communica- 
tion subsystem. This is in contrast to 
the usual approach  of  sensing fail- 
ures through timeouts and broken 
channels, which does not guarantee 
consistency. 

The  approach  also has limitations: 

• Reduced availability dur ing  LAN 
part i t ion failures: only allows prog- 
ress in a single parti t ion, and hence 
tolerates at most Ln/2J - 1 simulta- 
neous failures, if n is the number  of  
sites current ly operational;  
• Risks incorrectly classifying an 
operat ional  site or  process as faulty. 

The  virtual synchrony model  is 
unusual  in offer ing these benefits 
within a single framework. More- 
over, theoretical arguments  exist that 
no system that provides consistent 
distr ibuted behavior can completely 
evade these limitations. Our  experi-  
ence has been that the issues ad- 
dressed by virtual synchrony are en- 
countered  in even the simplest 
distr ibuted applications, and that the 
approach is general,  complete, and 
theoretically sound. 

The ISiS TOOlkit 
The  ISIS toolkit provides a collection 
of  higher-level mechanisms for 
forming and managing process 
groups and implement ing group- 
based software. This section illus- 
trates the specifics of  the approach 
by discussing the styles of  process 
groups suppor ted  by the system and 
giving a simple example of  a distrib- 
uted database application. 

ISIS is not  the first system to use 
process groups as a p rogramming  
tool: at the time the system was ini- 
tially developed,  Cheriton's  V system 
had received wide visibility [15]. 
More recently, group mechanisms 
have become common,  exemplified 
by the Amoeba system [19], the 
CHORUS opera t ing  system [26], the 
Psync system [29], a high availability 
system developed by Ladin and Lis- 
kov [20], IBM's AAS system [14], and 
Transis [3]. Nonetheless, ISIS was 
first to propose the virtual synchrony 
model  and to offer high-perfor-  
mance, consistent solutions to a wide 
variety of  problems through its tool- 
kit. The  approach is now gaining 
wide acceptance. 9 
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Figure S. S ty les  o f  g r o u p s  

Styles of Groups 
The efficiency of a distributed sys- 
tem is limited by the information 
available to the protocols employed 
for communication. This was a con- 
sideration in developing the ISIS 
process group interface, in which a 
trade-off had to be made between 
simplicity of the interface and the 
availability of accurate information 
about group membership for use in 
multicast address expansion. Conse- 
quently, the ISIS application inter- 
face introduces four styles of process 
groups that differ in how processes 
interact with the group, illustrated in 
Figure 9 (anonymous groups are not 
distinguished from explicit groups at 
this level of the system). ISIS is opti- 
mized to detect and handle each of 
these cases efficiently. The four 
styles of process groups are: 

Peer groups: These arise where a set 
of processes cooperate closely, for 
example, to replicate data. The 
membership is often used as an input  
to the algorithm used in handling 
requests, as for the concurrent  data- 
base search described earlier. 
Client-server groups: In ISIS, any pro- 
cess can communicate with any 
group given the group's name and 
appropriate permissions. However, 
if a nonmember  of a group will mul- 
ticast to it repeatedly, better perfor- 
mance is obtained by first registering 
the sender as a client of the group; 
this permits the system to optimize 

9At the time of this writing our group is work- 
ing with the Open Software Foundation on in- 
tegration of a new version of the technology 
into Mach (the OSF 1/AD version) and with 
Unix International, which plans a reliable 
group mechanism for UI Atlas. 

the group addressing protocol. 
Diffusion groups: A diffusion group is a 
client-server group in which the cli- 
ents register themselves but in which 
the members of the group send mes- 
sages to the full client set and the cli- 
ents are passive sinks. 
Hierarchical groups: A hierarchical 
group is a structure built from multi- 
ple component  groups, for reasons 
of scale. Applications that use the 
hierarchical group initially contact its 
root group, but are subsequently re- 
directed to one of the constituent 
"subgroups." Group data would nor- 
mally be partitioned among the sub- 
groups. Although tools are provided 
for multicasting to the full member- 
ship of the hierarchy, the most com- 
mon communication pattern involves 
interaction between a client and the 
members of some subgroup. 

There  is no requirement  that the 
members of a group be identical, or 
even coded in the same language or 
executed on the same architecture. 
Moreover, multiple groups can be 
overlapped and an individual pro- 
cess can belong to as many as several 
hundred  different groups, although 
this is uncommon.  Scaling is dis- 
cussed later in this article. 

The Toolkit Inter face 
As noted earlier, the performance of 
a distributed system is often limited 
by the degree of communication 
pipelining achieved. The develop- 
ment  of asynchronous solutions to 
distributed problems can be tricky, 
and many ISIS users would rather 
employ less efficient solutions than 
risk errors. For this reason, the tool- 
kit includes asynchronous imple- 
mentations of the more important  
distributed programming para- 

digms. These include a synchroniza- 
tion tool that supports a form of 
locking (based on distributed to- 
kens), a replication tool for manag- 
ing replicated data, a tool for fault- 
tolerant primary-backup server de- 
sign that load-balances by making 
different group members act as the 
primary for different requests, and 
so forth (a partial list appears in the 
sidebar "ISIS Tools at a Process 
Group Level)," Using these tools, 
and following programming exam- 
ples in the ISIS manual,  even non- 
experts have been successful in de- 
veloping fault-tolerant, highly asyn- 
chronous distributed software. 

Figures 10 and 11 show a com- 
plete, fault-tolerant database server 
for maintaining a mapping from 
names (ascii strings) to salaries (inte- 
gers). The  example is in the C 
programming language. The server 
initializes ISIS and declares the pro- 
cedures that will handle update and 
inquiry requests. The isis_rrlsX.nloop 
dispatches incoming messages to 
these procedures as needed (other 
styles of main loop are also sup- 
ported). The formatted-I/O style of 
message generation and scanning is 
specific to the C interface, where 
type information is not available at 
run  time. 

The "state transfer" routines are 
concerned with sending the current  
contents of the database to a server 
that has just  been started and is join- 
ing the group. In this situation, ISIS 
arbitrarily selects an existing server 
to do a state transfer, invoking its 
state sending procedure. Each call 
that this procedure makes to 
xfer_out will cause an invocation of 
rcv_state on the receiving side; in 
our example, the latter simply passes 
the message to the update procedure 
(the same message format is used by 
sen6__state and update).  Of  course, 
there are many variants on this basic 
scheme. For example, it is possible to 
indicate to the system that only cer- 
tain servers should be allowed to 
handle state transfer requests, to re- 
fuse to allow certain processes to join,  
and so forth. The client program 
does a pg_looRup to find the server. 
Subsequently, calls to its query and 
update procedures are mapped into 
messages to the server. The  BCAST 
calls are mapped to the appropriate 
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Figure 10. A simple database 
server 

Figure 11. A cl ient of the  simple 
database service 

default  for the g r o u p - - A B C A S T  in 
this case. 

The  database server of  Figure 10 
uses a r edundan t  style of  execution 
in which the client broadcasts each 
request and will receive multiple, 
identical replies from all copies. In 
practice, the client will wait for the 
first reply and ignore all others. Such 
an approach provides the fastest pos- 
sible reaction to a failure, but  has the 
disadvantage of  consuming n times 
the resources of  a fault- intolerant  
solution, where n is the size of  the 
process group. An alternative would 
have been to subdivide the search so 
that each server performs 1/n'th of  
the work. Here,  the client would 
combine responses from all the serv- 
ers, repeat ing the request  if a server 
fails instead of  replying, a condit ion 
readily detected in ISIS. 

ISIS interfaces have been devel- 
oped for C, C+ +, Fortran,  Common 
Lisp, Ada and Smalltalk, and ports of  
ISIS exist for Unix workstations and 
mainframes from all major vendors,  
as well as for Mach, CHORUS, ISC 
and SCO Unix, the DEC VMS sys- 
tem, and Honeywell 's Lynx operat-  
ing system. Data within messages is 
represented  in the binary format  
used by the sending machine, and 
converted to the format  of  the desti- 
nation on receipt  (if necessary), auto- 
matically and transparently.  

Who Uses ISIS, and How? 
Brokerage 
A number  of  ISIS users are con- 
cerned with financial comput ing sys- 
tems such as the one cited at the be- 
ginning of  this article. Figure 12 
illustrates such a system, now seen 
from an internal perspective in 
which groups under lying the services 
employed by the broker  become evi- 
dent.  A client server architecture is 
used, in which the servers filter and 
analyze streams of  data. Fault-toler- 
ance here refers to two very different  
aspects of  the application. First, fi- 
nancial systems must rapidly restart  
failed components  and reorganize 
themselves so that service is not in- 
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t e r rupted  by software or hardware  
failures. Second, there are specific 
system functions that require fault- 
tolerance at the level of  files or  data- 
base, such as a guarantee that after 
rebooting,  a file or  database manager  
will be able to recover local data files 
at low cost. ISIS was designed to ad- 
dress the first type of  problem, but  
includes several tools for solving the 
latter one. 

The  approach  generally taken is to 
represent  key services using process 
groups,  replicating service state in- 
formation so that even if one server 
process fails the other  can respond to 
requests on its behalf. Dur ing peri- 
ods when n service programs are 
operational ,  one can often exploit  
the redundancy  to improve response 
time; thus, ra ther  than asking how 
much such an application must pay 
for fault-tolerance, more appropr i -  
ate questions concern the level of  
replication at which the overhead 
begins to outweigh the benefits of  
concurrency, and the minimum ac- 
ceptable per formance  assuming k 
component  failures. Fault-tolerance 
is something of  a side effect of  the 
replication ;approach. 

A significant theme in financial 
comput ing is use of  a subscription/ 
publication style. The  basic ISIS 
communicat ion primitives do not 
spool messages for future replay, 
hence an application runn ing  over 
the system, the NEWS facility, has 
been developed to suppor t  this func- 
tionality. 

A final aspect of  brokerage  sys- 
tems is that they require  a dynami-  
cally varying collection of  services. A 
firm may work with dozens or  hun- 
dreds  of  financial models, predict ing 
market  behavior for the financial in- 
s truments  being t raded under  vary- 
ing market  conditions. Only a small 
subset of  these services will be 
needed  at any time. Thus,  systems of  
this sort generally consist of  a proces- 
sor pool on which services can be 
started as necessary, and this creates 
a need to suppor t  an automatic re- 
mote execution and load balancing 
mechanism. The  heterogeneity of  
typical networks complicates this 
problem, by' in t roducing a pattern- 
matching aspect (i.e., certain pro- 
grams may be subject to licensing 
restrictions, or  require  special pro- 

cessors, or  may simply have been 
compiled for some specific hardware  
configuration).  This problem is 
solved using the ISIS network re- 
source manager ,  an application de- 
scribed later. 

Database Replication and Triggers 
Although the ISIS computat ion 
model  differs from a transactional 
model  (see also the section "ISIS and 
Other  Distributed Comput ing  Tech- 
nologies"), ISIS is useful in con- 
structing distr ibuted database appli- 
cations. In fact, as many as half  of  the 
applications with which we are famil- 
iar are concerned with this problem. 

Typical uses of  ISIS in database 
applications focus on replicating a 
database for fault-tolerance or  to 
suppor t  concurrent  searches for 
improved per formance  [2]. In such 
an architecture, the database system 
need not be aware that ISIS is pres- 
ent. Database clients access the data- 
base through a layer of  software that 
multicasts updates  (using ABCAST) 
to the set of  servers, while issuing 
queries directly to the least loaded 
server. The  servers are supervised by 
a process group that informs clients 
of  load changes in the server pool, 
and supervises the restart  of  a failed 
server from a checkpoint  and log of  
subsequent updates.  It is interesting 
to realize that even such an unsophis- 
ticated approach to database replica- 
tion addresses a widely perceived 
need among database users. In the 
long run,  of  course, comprehensive 
suppor t  for applications such as this 
would require  extending ISIS to sup- 
por t  a transactional execution model  
and to implement  the XA/XOpen 
standards.  

Beyond database replication, ISIS 
users have developed WAN data- 
bases by placing a local database sys- 
tem on each LAN in a WAN system. 
By moni tor ing the update  traffic on 
a LAN, updates  of  importance to 
remote users can be intercepted and 
distr ibuted through the ISIS WAN 
architecture. On each LAN, a server 
monitors  incoming updates  and ap- 
plies them to the database server as 
necessary. To avoid a costly concur- 
rency control  problem, developers of  
applications such as these normally 
part i t ion the database so that the 
data associated with each LAN is di- 

rectly upda ted  only from within that 
LAN. On remote LANs, such data 
can only be quer ied and could be 
stale, but  this is still sufficient for 
many applications. 

A final use of  ISIS in database set- 
tings is to implement  database trig- 
gers. A tr igger  is a query that is incre- 
mentally evaluated against the 
database as updates  occur, causing 
some action immediately if a speci- 
fied condit ion becomes true. For  
example,  a broker  might  request  that 
an alarm be sounded if the risk asso- 
ciated with a financial position ex- 
ceeds some threshold.  As data enters 
the financial database maintained by 
the brokerage,  such a query would be 
evaluated repeatedly.  The  role of  
ISIS is in providing tools for reliably 
notifying applications when such a 
t r igger  becomes enabled,  and for 
developing programs capable of  tak- 
ing the desired actions despite fail- 
ures. 

Major ISiS-based Utilities 
In the preceding subsection, we al- 
luded to some of  the fault- tolerant  
utilities that have been built over 
ISIS. The re  are current ly  five such 
systems: 

• NEWS: This application supports  
a collection o f  communicat ion topics 
to which users can subscribe (obtain- 
ing a replay of  recent postings) or  
post messages. Topics are identif ied 
with file-system style names, and 
it is possible to post to topics on a 
remote  network using a "mail ad- 
dress" notation; thus, a Swiss broker-  
age firm might post some quotes to 
"~GENEVA~QUOTES~IBM@NEW-YORK." 
The  application creates a process 
group for each topic, monitoring 
each such group to maintain a his- 
tory of  messages posted to it for re- 
play to new subscribers, using a state 
t ransfer  when a new member  joins. 
• NMGR: This p rogram manages 
batch-style jobs and per forms load 
sharing in a dis tr ibuted setting. This 
involves moni tor ing candidate ma- 
chines, which are collected into a 
processor pool, and then scheduling 
jobs on the pool. A pat tern-matching 
mechanism is used for job  place- 
ment. I f  several machines are suit- 
able for a given job,  criteria based on 
load and available memory  are used 
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to select one (these criteria can read- 
ily be changed). When employed to 
manage critical system services (as 
opposed to running  batch-style jobs), 
the program monitors  each service 
and automatically restarts failed 
components.  Parallel make is an ex- 
ample of  a distr ibuted application 
p rogram that uses NMGR for job  
placement:  it compiles applications 
by farming out compilation subtasks 
to compatible machines. 
• DECEIT: This system [33] pro- 
vides fault-tolerance NFS-compatible 
file storage. Files are replicated both 
to increase per formance  (by support-  
ing parallel reads on different  repli- 
cas) and for fault tolerance. The  level 
of  replication is varied depending  on 
the style of  access detected by the sys- 
tem at run time. After  a failed node 
recovers, any files it managed are 
automatically brought  up to date. 
The  approach conceals file replica- 
tion from the user, who sees an NFS- 
compatible file-system interface. 
• META/LOMITA:  META is an ex- 
tensive system for building fault- 
tolerant reactive control applications 
[24, 37]. I t  consists of  a layer for in- 
s t rument ing a distr ibuted application 
or  environment,  by defining s e n s o r s  

and actuators. A sensor is any typed 
value that can be polled or  moni- 
tored by the system; an actuator is 
any entity capable of  taking an action 
on request. Built-in sensors include 

the load on a machine, the status of  
software and hardware  components  
of  the system, and the set of  users on 
each machine. User-def ined sensors 
and actuators extend this initial set. 

The  "raw" sensors and actuators 
of  the lowest layer are mapped  to ab- 
stract sensors by an intermediate  
layer, which also supports  a simple 
database-style interface and a trig- 
gering facility. This layer supports  an 
entity-relation data model  and con- 
ceals many of  the details of  the physi- 
cal sensors, such as polling frequency 
and fault tolerance. Sensors can be 
aggregated,  for example by taking 
the average load on the servers that 
manage a replicated database. The  
interface supports  a simple tr igger 
language, that will initiate a prespeci- 
fled action when a specified condi- 
tion is detected. 

Running over META is a distrib- 
uted language for specifying control 
actions in high-level terms, called 
LOMITA.  LOMITA code is embed-  
ded  into the Unix CSH command 
interpreter .  At run time, LOMITA 
control statements are expanded  into 
distr ibuted finite state machines trig- 
gered by events that can he sensed 
local to a sensor or  system compo- 
nent; a process group is used to im- 
plement  aggregates, per form these 
state transitions, and to notify appli- 
cations when a moni tored  condition 
arises. 

Figure 12. Process group archi- 
tec ture  of brokerage system 

• SPOOLER/LONG-HAUL FACIL- 
ITY: This subsystem is responsible 
for wide-area communicat ion [23] 
and for saving messages to groups 
that are only active periodically. It 
conceals link failures and presents an 
exactly-once communication inter- 
face. 

Other ISiS Applications 
Although this section covered a vari- 
ety of  ISIS applications, brevity pre- 
cludes a systematic review of  the full 
range of  software that has been de- 
veloped over the system. In addit ion 
to the problems cited, ISIS has been 
appl ied to telecommunications 
switching and "intelligent network- 
ing" applications, military systems, 
such as a proposed  replacement  for 
the AEGIS aircraft  tracking and 
combat engagement  system, medical 
systems, graphics and virtual reality 
applications, seismology, factory au- 
tomation and product ion control, 
reliable management  and resource 
scheduling for shared comput ing 
facilities, and a wide-area weather 
predict ion and storm tracking system 
[2, 17, 35]. ISIS has also proved pop- 
ular for scientific comput ing at labo- 
ratories such as CERN and Los Ala- 
mos, and has been appl ied to such 

C O M M U N i C A T I O N S O F T H i A C M  December 1993/Vol.36, No.12 S ~  



problems as a programming envi- 
ronment for automatically introduc- 
ing parallelism into data-flow appli- 
cations [4], a beam focusing system 
for a partic][e accelerator, a weather- 
simulation that combines a highly 
parallel ocean model with a vec- 
torized atmospheric model and dis- 
plays output  on advanced graphics 
workstations, and resource manage- 
ment software for shared supercom- 
puting facilities. 

It should also be noted that al- 
though this article has focused on 
LAN issues, ISIS also supports a 
WAN architecture and has been used 
in WANs composed of  up to 10 
LANs. a° Many of  the applications 
cited are structured as LAN solutions 
interconnected by a reliable, but less 
responsive, WAN layer. 

ISIS and Otl~er Distributed 
Computing Technologies 
Our discussion has overlooked the 
types of  real-time issues that arise in 
the Advanced Automation System, a 
next-generation air-traffic control 
system being; developed by IBM for 
the FAA [13, 14], which also uses a 
process-group-based computing 
model. Similarly, one might wonder 
how the ISIS execution model com- 
pares with transactional database 
execution models. Unfortunately, 
these are complex issues, and it 
would be difficult to do justice to 
them without a lengthy digression. 
Briefly, a technology like the one 
used in AAS differs from ISIS in 
providing strong real-time guaran- 
tees provided that timing assump- 
tions are respected. This is done by 
measuring timing properties of  the 
network, ha::dware, and scheduler 
on which the system runs and de- 
signing protocols to have highly pre- 
dictable behavior. Given such infor- 
mation about the environment, one 
could undertake a similar analysis of  
the ISIS protocols, although we have 
not done so. As noted earlier, experi- 
ence suggests that ISIS is fast enough 

~°The WAN archi tecture o f  ISIS is similar to 
the LAN structure,  but  because WAN partit ions 
are more  common,  encourages  a more  asyn- 
ch ronous  p r o g r a m m i n g  style. WAN communi-  
cation and  link state is logged to disk files (un- 
like LAN communicat ion) ,  which enables ISIS 
to re t ransmit  messages lost when  a WAN parti- 
tion occurs and  to suppress duplicate messages. 
WAN issues are discussed in more  detail in [23]. 

for even very demanding applica- 
tions. 1 

The relationship between ISIS 
and transactional systems originates 
in the fact that both virtual syn- 
chrony and transactional serializabil- 
ity are order-based execution models 
[6]. However, where the "tools" of- 
fered by a database system focus on 
isolation of  concurrent transactions 
from one another, persistent data 
and rollback (abort) mechanisms, 
those offered in ISIS are concerned 
with direct cooperation between 
members of  groups, failure han- 
dling, and ensuring that a system can 
dynamically reconfigure itself to 
make forward progress when partial 
failures occur. Persistency of  data is a 
big issue in database systems, but 
much less so in ISIS. For example, 
the commit problem is a form of  reli- 
able multicast, but a commit implies 
serializability and permanence of  the 
transaction being committed, while 
delivery of  a multicast in ISIS pro- 
vides much weaker guarantees. 

Conclusions 
We have argued that the next gener- 
ation of  distributed computing sys- 
tems will benefit from support for 
process groups and group program- 
ming. Arriving at an appropriate 
semantics for a process group mech- 
anism is a difficult problem, and 
implementing those semantics would 
exceed the abilities of  many distrib- 
uted application developers. Either 
the operating system must imple- 
ment these mechanisms or the reli- 
ability and performance of  group- 
structured applications is unlikely to 
be acceptable. 

The ISIS system provides tools for 
programming with process groups. 
A review of  research on the system 
leads us to the following conclusions: 

I1A process that  experiences a t iming fault  in 
the protocols on which the AAS was originally 
based could receive messages that  o ther  pro-  
cesses reject, or  reject messages others  accept, 
because the criteria for  accept ing or  rejecting a 
message uses the value o f  the local clock [13]. 
This  can lead to consistency violations. More- 
over, i f a  fault  is t ransient  (e.g., the clock is sub- 
sequently resynchronized with o ther  clocks), 
the inconsistency o f  such a process could spread  
if it initiates new multicasts, which o ther  pro-  
cesses will accept. However,  this p rob lem can be 
overcome by chang ing  the protocol,  and  the 
au thor  unders tands  this to have been done  as 
par t  o f  the implementat ion o f  the AAS system. 

• Process groups should embody 
strong semantics for group member- 
ship, communication, and synchroni- 
zation. A simple and powerful model 
can be based on closely synchronized 
distributed execution, but high per- 
formance requires a more asynchro- 
nous style of  execution in which com- 
munication is heavily pipelined. The 
virtual synchrony approach combines 
these benefits, using a closely syn- 
chronous execution model, but de- 
riving a substantial performance 
benefit when message ordering can 
safely be relaxed. 
• Efficient protocols have been de- 
veloped for supporting virtual syn- 
chrony. 
• Nonexperts find the resulting sys- 
tem relatively easy to use. 

This article was written as the first 
phase of  the ISIS effort approached 
conclusion. We feel the initial system 
has demonstrated the feasibility of  a 
new style of  distributed computing. 
As reported in [11], ISIS achieves 
levels of  performance comparable to 
those afforded by standard technolo- 
gies (RPC and streams) on the same 
platforms. Looking to the future, we 
are now developing an ISIS "micro- 
kernel" suitable for integration into 
next-generation operating systems 
such as Mach, NT, and CHORUS. 
This new system will also incorporate 
a security architecture [26] and a 
real-time communication suite. The 
programming model, however, will 
be unchanged. 

Process group programming 
could ignite a wave of  advances in 
reliable distributed computing, and 
of  applications that operate on dis- 
tributed platforms. Using current 
technologies, it is impractical for typ- 
ical developers to implement high- 
reliability software, self-managing 
distributed systems, to employ repli- 
cated data or  simple coarse-grained 
parallelism, or  to develop software 
that reconfigures automatically after 
a failure or recovery. Consequently, 
although current networks embody 
tremendously powerful computing 
resources, the programmers  who 
develop software for these environ- 
ments are severely constrained by a 
deficient software infrastructure. By 
removing these unnecessary obsta- 
cles, a vast groundswell of  reliable 
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distributed application development 
can be unleashed. 
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