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Overview

some of the transparencies are based on
lectures by Peter Marwedel, Dortmund.  

• StateCharts
• Motivation
• State hierarchy
• Representing computations
• Semantics
• Tools

• Petri nets
• Definition
• Token game
• Examples
• Extensions
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Motivation

• Deficits of finite automata for modeling:
• only one sequential process, no concurrency
• no hierarchical structuring capabilities

• Extension: 
• StateCharts-Model von D. Harel [1987].
• StateCharts introduces hierarchy, concurrency and 

computation.
• Model is used in many tools for the specification, analysis and 

simulation of discrete event systems, e.g. Matlab-Stateflow, 
UML, Rhapsody, Magnum.

• Complicated semantics: We will only cover some basic 
mechanisms.
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Introducing hierarchy

superstate

substates

FSM will be in exactly one 
of the substates of S if S is 
active
(either in A or in B or ..)
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Definitions
• Current states of FSMs are also called active states.
• States which are not composed of other states are called basic 

states.
• States containing other states are called super-states.
• For each basic state s, the super-states containing s are called 

ancestor states.
• Super-states S are called OR-super-states, if exactly one of the 

sub-states of S is active whenever S is active.

ancestor state of E
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Concurrency
Convenient ways of describing concurrency are required.
AND-super-states: FSM is in all (immediate) sub-states of a 
super-state.
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Entering and leaving AND-super-states

incl.
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Tree representation of state sets
basic
state
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Computation of state sets

• Computation of state sets by traversing the tree from 
leaves to root:
• basic states: state set = state
• OR-super-states: state set  = Cartesian product of children
• AND-super-states: state set = union of children

A
B E

C D F M

G H

I K L
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Representation of computations

• Besides states, arbitrary many other variables can be 
defined. This way, not all states of the system are 
modeled explicitly.

• These variables can be changed as a result of a state 
transition (“action”). State transitions can be dependent 
on these variables (“condition” ).

condition

action unstructured
state space

variables
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General form of edge labels

Event:
Events exist only until the next evaluation step of the model
Can be either internally or externally generated

Condition:
Refer to values of variables that keep their value until they are 
reassigned.

State transition:
Transition is enabled if event exists and condition evaluates to

true
Reaction:

Can be assignments for variables (“action”) and/or creation of 
events

event [condition] / reaction
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Events and actions
• “event” can be composed of several events:

• (e1 and e2) : event that corresponds to the simultaneous 
occurrence of e1 and e2.

• (e1 or e2) : event that corresponds to the occurrence of either 
e1 or e2 or both.

• (not e) : event that corresponds to the absence of event e.

• „action“ can also be composed:
• (a1; a2) : actions a1 und a2 are executed sequentially.

• All events, states and actions are globally visible.
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Example

e:
a1:
a2:

c:

x y z
e/a1 [c]/a2

e:
a1:
a2:

c:

true
false

true
false
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The StateCharts simulation phases

How are edge labels evaluated in one ‘simulation’ step?

Three phases:

1. Effect of changes on events and conditions is evaluated,

2. The set of transitions to be made in the current step and right 
hand sides of assignments are computed,

3. Transitions become effective, variables obtain new values.
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Example

In phase 2, variables a and b are assigned to temporary 
variables. 
In phase 3, these are assigned to a and b. 
As a result, variables a and b are swapped.



16Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory  

Steps
Execution of a model consists of a sequence of (status, step) 
pairs.

Status= values of all variables + set of events + current time
Step = execution of the three phases

Status phase 2

phase 3

phase 1
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More on semantics of StateCharts
• Unfortunately, there are several time-semantics of 

StateCharts in use. This is one possibility:
• A step is executed in arbitrarily small time.
• Internal (generated) events exist only within the next step.
• External events can only be detected after a stable state 

has been reached.

external events

steptransport of internal events

stable
state

stable
state

t
state 
transitions
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Examples

state diagram:
stable state



19Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory  

Example
• Non-determinism

A C

B D

E G

F H

a

a a

a

A,B C,D
E,H

F,G

a

a

a
state diagram:
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Example

F H

G I

d c/da d

C
A

B

D E

a/c

bb

a

state diagram (only 
stable states are 
represented):

B

G,H

F,H a or b

b

a and b
_

a or b
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Summary
• Advantages of hierarchical state machines:

• Simple transformation into efficient hardware and software 
implementations.

• Efficient simulation.
• Basis for formal verification (usually via symbolic model 

checking), if in reactions only events are generated. 
• Disadvantages:

• Intricate for large systems, limited re-usability of models.
• No formal representation of operations on data.
• Large part of the system state is hidden in variables. This 

limits possibilities for efficient implementation and formal 
verification.
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Example UML
• UML (unified modeling language) is used for the 

specification of large software systems and embedded (real-
time) systems. The dynamics of a system are modeled using 
StateCharts and ActivityCharts (similar to Petri Nets).
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StateFlow

• Part of
Matlab-
Simulink

• Combines
discrete
event and
continuous
models
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Petri nets - Motivation

• In contrary to hierarchical state machines, state 
transitions in Petri nets are asynchronous. The ordering 
of transitions is partly uncoordinated; it is specified by a 
partial order.

• Therefore, Petri nets can be used to model concurrent 
distributed systems.

• There are many models of computation in use that are 
variants or specializations of Petri nets, e.g.
• activity charts (UML)
• data flow graphs and marked graphs

• Finite state machines can be modeled in Petri nets.
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Net graph
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Net graph - example

• The net-graph is a bipartite graph.
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Petri net - definition

• The state of a Petri net is its marking M. 
• M(s) denotes the marking of a place s. Usually, we say 

that place S contains M(s) token. In other words, the 
distribution of tokens on places defines the state of a Petri 
net.

• The dynamics of a Petri net is defined by a ‘token game’.
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Token game of Petri nets
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Example 

initial token

producer consumerfinite length buffer

s1

s2

s3

s4

s5t1

t2 t3

• Initial state represented as state vector: M0 = (1,0,0,2,1)
• Activated transitions: t2
• After firing t2: M = (0,1,1,1,1) .
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Example continued
s1

s2

s3

s4

s5t1

t2 t3

• Activated transitions: t1, t3 . 
• Non-deterministically, one of them is chosen for firing, 

e.g. t3. Then we obtain as new state M = (0,1,0,2,1).
• We can see the ‘properties’ of Petri nets: Asynchronous

firing of activated transitions, possibility to model 
distributed systems.
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Example continued

• If the number of token in the network is bounded, we can 
determine a finite state transition graph.

(1,0,0,2,1)

(0,1,0,2,1)

t1

t2

(1,0,1,1,1)

(0,1,2,0,1)

t2
t3

(1,0,2,0,1)
t1 t3

t1

(0,1,1,1,1)

t3
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Modeling capabilities
• But we can also systems with unbounded state set!

producer consumerbuffer

s1

s2

s3
s5t1

t2 t3

• And we can model basic scenarios such as

conflict fork join/synchronization
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Common model extensions
• Associating weights W to edges:

• Transition t is enabled if there are at least W(s1,t) token in 
s1.

• If transition t fires, then W(t,s2) token are added to place s2
and W(s1,t) token are removed from s1.

s1 s2
t s1 s2

t
2 3 32

• Adding time to transitions:
• Specification of discrete event systems with time!
• One possibility: A transition fires iff it was continuously 

activated for a certain time period.



34Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory  

Common model extensions

• Individual tokens:
• Tokens can ‘carry’ data.
• Transitions operate on data of input tokens and associate 

data to output token.
• The activation of a transition can be dependent on data of 

token in places of its pre-set.
a b

c error

6 2

[b≠0] / c := a:b [b=0] / error := ‘div0’

c error

a b

3
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What can we do with Petri nets?
• We can model (timed, distributed) discrete event systems.
• We can simulate them using tools, e.g. MOSES.
• We can analyze their timing properties. Methods exist, if 

the delays of token are constant or even determined by 
stochastic processes.

• We can answer questions like:
• What is the maximum number of tokens in a specific place?
• Is the Petri net bounded (bounded number of tokens under 

any firing sequence)?
• Does the Petri net eventually enter a state where no transition 

is activated (deadlock) ?
• Several methods are available to answer these questions (not 

part of this lecture).
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Example MOSES

Component
hierarchy

Component
hierarchy

Petri netPetri net

Petri net
component

Petri net
component


