Chapter 3
Specification
Models

Lothar Thiele
Discrete Event Systems
Winter 2004/2005

Swiss Federal
Institute of Technology

Overview

o StateCharts

e Motivation
State hierarchy
Representing computations
Semantics
Tools
e Petri nets

e Definition

« Token game

 Examples

e Extensions

some of the transparencies are based on
lectures by Peter Marwedel, Dortmund.

m Swiss Federal 2 Computer Engineering #
Institute of Technology and Networks Laboratory

Motivation

e Deficits of finite automata for modeling:
« only one sequential process, no concurrency
* no hierarchical structuring capabilities

e Extension:
o StateCharts-Model von D. Harel [1987].

« StateCharts introduces hierarchy, concurrency and
computation.

 Model is used in many tools for the specification, analysis and
simulation of discrete event systems, e.g. Matlab-Stateflow,
UML, Rhapsody, Magnum.

e Complicated semantics: We will only cover some basic
mechanisms.

m Swiss Federal 3 Computer Engineering
Institute of Technology and Networks Laboratory

Introducing hierarchy

FSM will be in exactly one
of the substates of SIf S iIs
active

(eitherin AorinBor..)

m RRETREN
é) substates
Computer Engineering

m Swiss Federal 4
Institute of Technology and Networks Laboratory

Definitions

e Current states of FSMs are also called active states.

« States which are not composed of other states are called basic
states.

« States containing other states are called super-states.

« For each basic state s, the super-states containing s are called
ancestor states.

o Super-states S are called OR-super-states, if exactly one of the
sub-states of S is active whenever S is active.

e
-
==
—
-
-

{ : | _ } ancestor state of E
E /) |«

m Swiss Federal 5 Computer Engineering
Institute of Technology and Networks Laboratory

Concurrency

Convenient ways of describing concurrency are required.

AND-super-states: FSM is In all (immediate) sub-states of a
super-state.

answering—machine

-

on

key—monitoring (excl. on/off) A

T
|
|
ring | key pressed
. | -
|
|
|
|
|
|

. line—monitoring

1 hangup ﬁ done

(caller)

N S

.

m Swiss Federal 5 Computer Engineering
Institute of Technology and Networks Laboratory

Entering and leaving AND-super-states

answering—machine

on

line—monitoring key—monitoring (incl. on/off)

ring key pressed

hangup
ﬁ (caller)

m Swiss Federal 7 Computer Engineering #
Institute of Technology and Networks Laboratory

Tree representation of state sets

basic
state

) -

OR-super-state

)
O

_

F

{G

®
(m)

/

1
m Swiss Federal
Institute of Technology

AN D-super—sta/e

[lis)

Computation of state sets

« Computation of state sets by traversing the tree from
leaves to root:

* basic states: state set = state
 OR-super-states: state set = Cartesian product of children

 AND-super-states: state set = union of childr?{,é:}\
@é B é@
Qp=CQ, Qg =QrURKk

Qr = Qo X Q. Qe = QcUQp éG “
®

QE=QrUQ)y, Qa4 =0 X QE
QA= (QcUQp) x (QuU(QrUlg) X Qr))

m Swiss Federal 9 Computer Engineering
Institute of Technology and Networks Laboratory

Representation of computations

 Besides states, arbitrary many other variables can be
defined. This way, not all states of the system are
modeled explicitly.

 These variables can be changed as a result of a state
transition (“action”). State transitions can be dependent

on these variables (“condition”).

action unstructured

state space

variables

condition

m Swiss Federal 1 Computer Engineering #
Institute of Technology 0 and Networks Laboratory

General form of edge labels

Q event [condition] / reaction Q
Event:

Events exist only until the next evaluation step of the model
Can be either internally or externally generated

Condition:
Refer to values of variables that keep their value until they are
reassigned.

State transition:
Transition is enabled if event exists and condition evaluates to

true

Reaction:
Can be assignments for variables (“action™) and/or creation of
events

m Swiss Federal 1 Computer Engineering
Institute of Technology and Networks Laboratory

Events and actions

e “event” can be composed of several events:

* (el and e2) : event that corresponds to the simultaneous
occurrence of el and e2.

* (el or e2): event that corresponds to the occurrence of either
el or e2 or both.

e (not e) : event that corresponds to the absence of event e.

e ,action” can also be composed:
e (al; a2) : actions al und a2 are executed sequentially.

« All events, states and actions are globally visible.

m Swiss Federal 12 Computer Engineering
Institute of Technology and Networks Laboratory

Example

—) elal [c]/a2 D
Qo X > y > 7
e: T
al: !
az: !
. frue
C. false
e: T
al: !
az: !
. frue
C. false

m Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

13

The StateCharts simulation phases

How are edge labels evaluated in one ‘simulation’ step?

Three phases:
1. Effect of changes on events and conditions is evaluated,

2. The set of transitions to be made in the current step and right
hand sides of assignments are computed,

3. Transitions become effective, variables obtain new values.

m Swiss Federal 14 Computer Engineering
Institute of Technology and Networks Laboratory

Example

swap

/a:=1; b:=0

e/a:=b e/b:=a

In phase 2, variables a and b are assigned to temporary
variables.

In phase 3, these are assigned to a and b.
As a result, variables a and b are swapped.

m Swiss Federal 15 Computer Engineering
Institute of Technology and Networks Laboratory

Steps

Execution of a model consists of a sequence of (status, step)
pairs.

Status Step Status Step Status Step Status
O---------2 =>0O- - - - - ——— - = >0----—-—-——= =0

Status= values of all variables + set of events + current time
Step = execution of the three phases

prese =
phase 2
Phasg 3

m Swiss Federal 16 Computer Engineering
Institute of Technology and Networks Laboratory

More on semantics of StateCharts

« Unfortunately, there are several time-semantics of
StateCharts in use. This is one possibility:

« A step is executed in arbitrarily small time.
 Internal (generated) events exist only within the next step.

* External events can only be detected after a stable state
has been reached.

external events

h‘ stable \1‘ stable
State State State
transitions{ 1 1 f 1 14 f > {

transport of internal events stepf

m Swiss Federal 17 Computer Engineering
Institute of Technology and Networks Laboratory

Examples

N A 4 ‘ ™
| |
ol © | @
a/a’ | c/c’ a/ba: b
| |
| |
B) & (82 B) 1 (82
" ! y, — :)

state diagram:
stable state

11 A2 Ai AZ
ac/;/ l \{:/a’ / \

A1,B2 ac/a’c’ pq a7 A1,B2 a/b
aﬁa\’\ l A‘/c/c’ a/}g l
B1,B2 B1,B2

Computer Engineering

m Swiss Federal
Institute of Technology and Networks Laboratory

Example

e Non-determinism

state diagram:

AB -~ CD

m Swiss Federal 19 Computer Engineering
Institute of Technology and Networks Laboratory

Example

ﬂ D E \\ state diagram (only

C P - o stable states are
F : H
| 5 represented):

m Swiss Federal 20 Computer Engineering
Institute of Technology and Networks Laboratory

Summary

 Advantages of hierarchical state machines:

e Simple transformation into efficient hardware and software
Implementations.

o Efficient simulation.

» Basis for formal verification (usually via symbolic model
checking), if in reactions only events are generated.

 Disadvantages:
* Intricate for large systems, limited re-usability of models.
* No formal representation of operations on data.

e Large part of the system state is hidden in variables. This
limits possibilities for efficient implementation and formal
verification.

m Swiss Federal 21 Computer Engineering
Institute of Technology and Networks Laboratory

Exampl

e UML

« UML (unified modeling language) is used for the
specification of large software systems and embedded (real-
time) systems. The dynamics of a system are modeled using

FEile Edi: - Miew Biowse Hepolt Tn

ol Addlns Wlndow Help

Logcal Wiew
-3 Peoplelnfomatlon

Course Inform
Altributes and
<<Entity>> Co

e % addstude
i % addProf

i Statz Diac
© 0 L.F Catalog
L [::E Interfeces
T ha

bzt

|=hule]« ok o]z 7’51

|

Initial zatizn

Ndd sudent f Eet
do: Initialize course count=0
[——————

Canzel course

Tanmellad

do: S=nd cencellation notices

o |

Far Help, presz F1

Swiss Federal

Institute of Technology

e

.-'—""'_fﬂ’—'-

[

Registration

Add sudent] Count < 10]

Open
eqtny: Register student

[Cannt= 40] A%ares
Report.Create report

Clazed

—

anty: Finalize coursa
exit “CourseRoster. Craate mster

StateCharts and Act|V|tyCharts (S|m|Iar to Petri Nets).

demo.mdl - [Activity Diagram: Buy Products / Buy a product] M=l E3
Huery Toolz Addlne Window Help _|E|5|
SEF G REE=E]
—_ |- Customer eCashier Credit Li
=& e B
_AiC | Select a product
= to buy
Acte _
=
=
>
© Calculat
- alculate
B =
ot 0
= [Credit card]
Furchase)
_l arfehedk] |'\ via credit
| =dit &
Je;; ? Charge and
ndis_|||=2 Dispense
|
Receive
| merchandise
| mer’
s :
4 [l 2

[NoM[

22

Computer Engineering
and Networks Laboratory

StateFlow

Part of
Matlab-
Simulink

Combines
discrete
event and
continuous
models

Swiss Federal
Institute of Technology

= sf_car o ||
File Edit Sirulation Forrmat Tools
impeller ol
=f_car.mdl Impeller fobaue a0 4nn-ARrEe Choose Start from
{ *achedule ; ;
Ti the Simulation menu
e e) to run the zimulation,
40:15 100;1 I throthe engine FiF M " T
| .
throttle Engine -] =) guar v
schecule -
mout Tout output torque bl
thratte Uihicle wehicle
T transmission spued
vehicle_speed fransmission speed wehicle mph
(el
shift_logic & throttle %
g 1
g

File Edit Simulation Shle Tools Add Help

gear_state

Create Transition

Petri nets - Motivation

 In contrary to hierarchical state machines, state
transitions in Petri nets are asynchronous. The ordering
of transitions is partly uncoordinated; it is specified by a
partial order.

 Therefore, Petri nets can be used to model concurrent
distributed systems.

 There are many models of computation in use that are
variants or specializations of Petri nets, e.g.

e activity charts (UML)
« data flow graphs and marked graphs

Finite state machines can be modeled in Petri nets.

m Swiss Federal 24 Computer Engineering
Institute of Technology and Networks Laboratory

Net graph

A net graph is a tupel N = (S,T,F) with SN
T = (. The elements s € S and t € T are
denoted as places and transitions, respectively,
and define the nodes of the net. The relation
FC((SxT)u(T x S) defines the edges of the

net.

The pre-set and post-set of a place or transi-
tion x are defined as

ox ={ycSUT : (y,x) € F}
ze ={ye SUT : (x,y) € F'}

m Swiss Federal 25 Computer Engineering
Institute of Technology and Networks Laboratory

Net graph - example
 The net-graph is a bipartite graph.

3] g pre-set of §3

m Swiss Federal 26 Computer Engineering
Institute of Technology and Networks Laboratory

Petri net - definition

A tupel (S, T,F,M,Mgy) denotes a Petri net.
Then (S,T,F) is a net-graph, the marking M
is a function M : S — Z>g and Mgy denotes
the initial marking.

« The state of a Petri net is its marking M.

* M(s) denotes the marking of a place s. Usually, we say
that place S contains M(s) token. In other words, the
distribution of tokens on places defines the state of a Petri
net.

 The dynamics of a Petri net is defined by a ‘token game’.

m Swiss Federal 97 Computer Engineering
Institute of Technology and Networks Laboratory

Token game of Petri nets

A marking M activates a transition t € T iff
M(s) > 1 for all s € ot. If a transition ¢t
IS activated by M, then a state transition to
the marking M’ happens eventually. The as-
sociated state transition function with M’ =

f(M,t) is
[M(s) —1 if scet)\te
M'(s) = M(s)+1 if scte\ et
- M(s) otherwise

Computer Engineering

m Swiss Federal 28
Institute of Technology and Networks Laboratory

Example

producer finite length buffer consumer

Initial token

* Initial state represented as state vector: M, = (1,0,0,2,1)
 Activated transitions: t,
« After firing t,: M =(0,1,1,1,1) .

m Swiss Federal 29 Computer Engineering
Institute of Technology and Networks Laboratory

Example continued

 Activated transitions: t,, t; .

* Non-deterministically, one of them is chosen for firing,
e.g. t;. Then we obtain as new state M = (0,1,0,2,1).

 We can see the ‘properties’ of Petri nets: Asynchronous
firing of activated transitions, possibility to model
distributed systems.

m Swiss Federal 30 Computer Engineering
Institute of Technology and Networks Laboratory

Example continued

e |f the number of token in the network is bounded, we can
determine a finite state transition graph.

(0,1,2,0,1)

(1,0,2,0,1)

(0,1,0,2,1)

m Swiss Federal 31 Computer Engineering
Institute of Technology and Networks Laboratory

Modeling capabillities

e But we can also systems with unbounded state set!

producer buffer consumer
S1
t, s, ts
S,

 And we can model basic scenarios such as

<> L L

conflict fork join/synchronization

m Swiss Federal 32 Computer Engineering
Institute of Technology and Networks Laboratory

Common model extensions

» Associating weights W to edges:
« Transition tis enabled if there are at least W(s,,t) token in
S;.
« If transition t fires, then W(t,s,) token are added to place s,
and W(s,,t) token are removed from s;.

Sy

L |£| 3 2 Lo |£| 3
@ =|_| :O |:> @ =|_| (O

« Adding time to transitions:
« Specification of discrete event systems with time!

* One possibility: A transition fires iff it was continuously
activated for a certain time period.

m Swiss Federal 33 Computer Engineering
Institute of Technology and Networks Laboratory

Common model extensions

* Individual tokens:
 Tokens can ‘carry’ data.

e Transitions operate on data of input tokens and associate
data to output token.

e The activation of a transition can be dependent on data of
token in places of its pre-set.
a b a b

6 2
[b=0]/c := m [b=0] / error := ‘div0’
| >
3

C error C error

m Swiss Federal 34 Computer Engineering
Institute of Technology and Networks Laboratory

What can we do with Petri nets?

« We can model (timed, distributed) discrete event systems.
 We can simulate them using tools, e.g. MOSES.

 We can analyze their timing properties. Methods exist, if
the delays of token are constant or even determined by
stochastic processes.

« We can answer questions like:
 What is the maximum number of tokens in a specific place?

 Is the Petri net bounded (bounded number of tokens under
any firing sequence)?

* Does the Petri net eventually enter a state where no transition
Is activated (deadlock) ?

e Several methods are available to answer these questions (not
part of this lecture).

m Swiss Federal 35 Computer Engineering
Institute of Technology and Networks Laboratory

Example MOSES

Moses 1.00+ [31-8-2001)

moses.runtime_ GenerichModelinterpreter

Component | & 15
h ierarchy i mus.runtime.GenericM [= ’
Function: next = new HOC(L, 103, I(13])

: Moses.untime, S Guard: (a = 0) &2 instanceof(l, java.util List)
moses. runtim]

\ i moses.runtime.

Function: next = new HOC{[t, r(0), r{13])

; r Guard: (a = 1) && instanceof(r, java.util List)
e StringCal r . [[next B
. o o i
B moses mntime. / q — I =

1=
Feq
|f'\:|'ITE'I11'3‘l'I'i'ITg—l

I moses.untime.

i moses.runtimea.

i moses.runtime]
Stringcm;@/ Display
Req

Petri net rr—aet (1
component —

Out

Function: next = new HDC([t, t{07, t(11])
Guard: (a = 1) &% ~ instanceofir, java.util List)

!
Petri net

m Swiss Federal Computer Engineering
Institute of Technology 36 and Networks Laboratory

