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5 Worst-Case Event Systems

In many application domains events are not Poisson distributed. For some applications it even makes
sense to (more or less) assume that events are distributed in the worst possible way (e.g. in networks,
packets often arrive in bursts). In this Section we study systems from a worst-case perspective. In
particular, we analyze the price of not being able to foresee the future. This is a phenomenon that
often occurs in discrete event systems (such as the Internet), but also in our daily life. This area of
research is often referred to as Online Algorithms.

5.1 Ski Rental

We start out with a seasonal “toy example,” ski rental. Imagine that you want to start a new hobby
(e.g. skiing, skateboarding, having a boy- or girlfriend), but you don’t yet know whether you will like
it. The equipment is expensive, therefore you decide to first rent it a few times, before you buy (or get
married!). When dealing with this problem, we (informally speaking) assume that Murphy’s law will
strike: as soon as you buy, you will lose interest in the subject. Arguments like “I rented skis 17 times,
and like it so much that I will go skiing for at least 1717 more times” do not count in Murphy’s world.
Instead, once you buy skis you can be sure to meet new friends, and they think that skiing is for losers,
and snowboarding or whatever is the new hip thing.

We first radically simplify the problem (to make it mathematically more elegant and tractable):

Definition 5.1 (Ski Rental) The ski rental problem consists of two values:

� Input: a real number �, representing the time a skier will end up skiing (� � �), chosen by
an adversary.

� Algorithm: a real number �, at which the algorithm will stop renting skis, and instead buys
skis for price 1.

Remarks:

� The algorithm does not know the input �.

� The algorithm is represented by a single value. This is rather unusual.

The cost of the algorithm with value � on input � is ��������:

�������� �

�
� if � � �

� � � if � � �

The goal is to develop an algorithm � that is good for any input �. We compare the cost of the algorithm
with the cost of an optimal clairvoyant (“offline”) algorithm:
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���������� �

�
� if � � �
� if � � �

�
� ��	��� ��	

Definition 5.2 (Competitive Analysis) An online algorithm 
 is c-competitive if for all finite input
sequences �

�������� � � � ���������� � ��

where ���� is the cost function of the algorithm 
 and the optimal offline algorithm, respectively,
and � is a constant independent of the input. If � � �, then the online algorithm is called strictly
c-competitive.

Theorem 5.3 Ski rental is strictly 2-competitive. The best algorithm is � � �.

Proof. When looking at strictly competitive ski rental algorithms, we can equivalently ask for

��������

����������
� �

Let us investigate � � � in the ski rental algorithm. Then,

��������

����������
�

Cases � � � � � � � � � �

� � � �
�

impossible
� � � impossible ���

�

Thus, the worst case is � � � � �, and the competitive ratio is 
.

Is this optimal?

� Let’s try � � �: In this case the adversary might/will choose � � � � 
. Then, the cost ratio is

��������

����������
�

� � �

�
� 
	

� If � � � then the adversary will choose � between � and �, closer to �, for example � �
��� � �����. Then

��������

����������
�

� � �

�
�

�

�
�

�

�
� 
	

��

Remark:

� Everything solved?!? It seems that the algorithm has a big handicap. We assume that the ad-
versary knows every bit about the algorithm (similar to the models used in cryptography). The
adversary can always present an input which is worst-case for the algorithm. The only hope for
the algorithm is to make random decisions, and thus make the game harder for the adversary.
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5.2 Randomized Ski Rental

Let’s look at an algorithm 
 that chooses randomly between two values, �� and �� (with �� � ��), with
probabilities �� and �� � �� ��. Then,

�������� �

���
��

� if � � ��
�� � ��� � �� � �� � � if �� � � � ��
�� � ��� � �� � �� � ��� � �� if �� � �

The adversary, being very evil, will still choose the worst possible inputs. Convince yourself that only
�� � �� � 
 and �� � �� � 
 are sensible. Since the adversary does not see the random coin flip of
the algorithm, it as well has to choose its inputs randomly, with probabilities �� and ��, respectively.
The situation is equivalent to game theory – if you’re ambitious you might want to compute the Nash
equilibrium for this game...
For the sake of simplicity, we will assign the algorithm the values

�� � ��
� �� � �� �� � 
��� �� � 
��	

We have ����� �

����� �� ��

�� �� � � ��
�� �� � � �� � �

In short,
����� � ����� � �� � ������� � ����� � ���	

Using the values from above,

����� �



�
�




�
����
 � 
��� �

�

�
��� ���
�	

And, ������� �

������� �� ��

�� �� ��
�� �� ��

Hence,
������� � �� � ��
 � �� � � � �� ���
	

Therefore,
�����
�������

�
�

�
	

In other words, for this particular randomized algorithm, the expected competitive ratio is �	� only,
below the best possible deterministic algorithm. Mind, however, that this new bound is in expectation
only!
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Figure 1: Choosing more than two values

Maybe one can do even better by allowing the algorithm to choose more than two values... Maybe
even infinitely many values?!? The scenario is in Figure 1.

Then, the expected competitive ratio is

���� �
�



�
� �

�

� �

�

� � �

�
���� � 	 	 	 � �	��	

Was that a valid argument? Why yes, why no?

We assumed that the adversary chooses � with uniform distribution. This is not OK. In this specific
example, an adversary can cause much more harm by choosing values close to 1. In addition, it was
not correct to sum up the ratios of the costs, instead we should compute the ratio of the expected costs.

Instead, we should rather solve

���� �

�
�

�

� �
� �� � ���������������

�
�

�

�
�

� �������������� �
�

� �
� �������������

�

where ���� is the probability distribution of the algorithm, and ���� is the probability distribution of
the adversary, with

�
���� �

�
���� � �. The adversary chooses its distribution ���� such that it

maximizes the expected competitive ratio ����, and the algorithm chooses its distribution ���� such
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that it minimizes ����.

This is a very hard task. However, we can tackle it by making the problem independent of the adver-
sarial distribution. How does this work?!?

The idea is as follows: if the adversary chooses a value � with � � � then it occurs an optimal cost
���������� � �. If we want our algorithm to be strictly �-competitive, all we have to do is to incur
a cost less than � � � when being offered input �, for all �. In other words, we have to choose the
algorithm’s probability function ���� such that �������� � � � �.

Recall that the algorithm’s cost is

�������� �

�
� if � � �

� � � if � � �
(1)

Again, it seems natural to restrict the algorithm to values between � and �. Also the adversary can
restrict itself to values between � and �, because, if a value higher than � is presented, the adversary
and the algorithm infer exactly the same cost as if the value � was presented. Therefore,

� �

�

�� � �������� �
� �

�
� � ������ � � � �� with

� �

�

������ � �	

Having a hunch that the best probability function will probably be an equality, we immediately try

� �

�

�� � �������� � �
�

�

�
������ � � � �� with

�
�

�

������ � �	

We first differentiate with respect to �, getting

��� ������ �
� �

�
������ � � � ������� � ���� �

� �

�
������ � �	

We again differentiate with respect to �, and get

Æ����

Æ�
� ���� � ��

Æ����

Æ�
� ����	

That’s one of the few differential equations everybody knows:

���� � � � ��	

In order to reveal � we use
� �
� ������ � �:

� �
� �

�

����� � ���� � ���� � �
�

�� �
	

In other words, ���� � ��

���
	 We insert ���� into the first differentiation:

� � ���� �
� �

�
������ �

��

�� �
�

�� � ��

�� �
�

�

�� �
	

Note that also for inputs � � � the inequality �������� � � � ���������� � � � � holds.

Theorem 5.4 In other words, with ���� � ��

���
we have an algorithm that is �

���
-competitive in expec-

tation.
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Remark:

� The big question remains: Can we get any better?!?

5.3 Lower Bounds

Time to think about lower bounds. Lower bounds for randomized algorithms often use the Von Neu-
mann / Yao Principle, which we state and use without proof:

Theorem 5.5 (Von Neumann / Yao Principle) Choose a distribution over problem instances (for
ski rental, e.g. ����). If for this distribution all deterministic algorithms cost at least �, then � is a
lower bound for the best possible randomized algorithm.

For ski rental we are in the lucky situation that we can easily parameterize all possible deterministic
algorithms by � � �. Now we have to choose a distribution of inputs, with ���� � � and

�
���� � �.

For example, ���� � ��
 for � � � � � and ��“	”� � ��
.
Example algorithms:

� � � � (immediate buy): incurs a constant cost � for all possible input distributions: Therefore
������������� � �.

� � � � (worst-case deterministic algorithm): incurs the same cost as the optimal offline algorithm
for small � but cost 
 for � �	 which happens with probability ��
; when summing up we see
that ������������� � ���	

More formally, the cost of the optimal offline algorithm is

������������� �
�




� �

�

����
�



� � �




�
	

For general � � � the cost of the algorithm is

����� �
�




	� �

�

����
� �

�
�� � ����



�

�



�� � ��

�
�




�
��



� �� � ����� �� � �� � ��

�
� � �

�



�

��

�
� �	

For general � � � the cost of the algorithm is

����� �
�




�
�

�

����
�



�� � �� �

�

�
�

� � �



� ���	

Using ������������� � 
�� we conclude that the competitive ratio � is at least ��
 � �	

.

Remarks:

� Note that for distribution ���� indeed � � � is the best algorithm.

� The lower bound of �	

 and the upper bound of �	�� do not match.
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� As argued above, the immediate buy algorithm is worst with very small �. In order to make our
lower bound stronger it could therefore be beneficial to tune the input distribution such that it
contains more small � values.

� Guessing the right input distribution is indeed hard. However, similarly to the upper bound, it
can be derived using differential equations. The worst input distribution is ���� � ����, for
� � � � �, and ��“	”� � ���.

� Next, let us study some online problems in the Internet (“Web”) context. We will discover
surprising connections to ski rental.

5.4 The TCP Acknowledgement Problem

TPC is a layer 4 networking protocol of the Internet. It features, among other things:

� An error handling mechanism which tackles transmission errors and disordering of packets,
using sequence numbers and acknowlegdements.

� A “friendly” exponential slow start mechanism such that new connections do not overload the
network.

� Flow Control: A sliding window sender/receiver buffer that simplifies handling and prevents the
receiver buffer from overload.

� Congestion Control: A backoff mechanism that should prevent network overloading.

In this first part we study the TCP Acknowledgement Problem. We study a single sender/receiver
pair, where the sender sends packets and the receiver acknowledges them (without sending packets
itself). There are several TCP implementations available, with various acknowledgement-procedures.
In order to save resources, no implementation sends acknowledgements right away.1 Instead these
implementations send cumulative acknowledgements (“I received all packets up to packet x”). This
mechanism is the subject of this subsection.

At the receiver side, the situation looks like in Figure 2.

Definition 5.6 (TCP Acknowledgement Problem) The receiver’s goal is a scheme which minimizes
the number of acknowledgements plus the sum of the latencies for each packet, where the latency of a
packet is the time difference from arrival to acknowledgement. More formally, we have

� � packet arrivals, at times: ��, ��, . . . , ��

� � acknowledgements, at times: ��, ��, . . . , �	

� And we want to minimize:

��	� �
�



��

����������� with ���������� � �� � �
� where � such that ���� � �
 � ��	

1One version of Solaris, for example, always waits 50ms before acknowledging in order to support multiple acknowl-
edgements in a single message. In one version of BSD, TCP-Ack has a 200ms heartbeat, and acknowledges all packets
received so far.
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Received packets

time

Packs
Acks

Figure 2: TCP ACK problem

Remarks:

� Note that in Figure 2 the total latency is exactly the area between the two curves.

� Clearly, we are comparing apples with oranges when comparing the number of acknowledge-
ments with the sum of latencies. However, when scaling the time accordingly, this should not be
a big problem.

� There are quite a few technical exceptions. In many implementations, signaling packets are
usually acknowledged faster (e.g. SYN, FIN); also TCP standard wants implementations to
acknowledge packets within 500ms. Since the receiver is usually also sender, it might also delay
its own sending packets.

� In our studies we do not learn the future from the past. A machine learning approach could give
a totally different perspective.

Algorithm 5.7 (� � � Algorithm) The � � � algorithm is sketched in Figure 3. Whenever a rect-
angle with area � � � does fit between the two curves, the receiver sends an acknowledgement,
acknowledging all previous packets.

Lemma 5.8 The optimal algorithm sends an ACK between any pair of consecutive ACKs by algorithm
with � � �.

Proof. For the sake of contradiction, assume that, among all algorithms who achieve the minimum
possible cost, there is no algorithm which sends an ACK between two ACKs of the � � � algorithm.
We propose to send an additional ACK at the beginning (left side) of each � � � rectangle. Since this
ACK saves latency �, it compensates the cost of the extra ACK. That is, there is an optimal algorithm
who chooses this extra ACK. ��

Theorem 5.9 The � � � algorithm is 
-competitive
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Received packets

time

Packs

z = 1

z = 1

z 
=

 1

Alg

Figure 3: The � � � algorithm

Proof. We have ������� � ���� � ���������� and ������� � ���� � ����������	
Since the optimal algorithm sends at least one ACK between any two consecutive ACKs of 
���

(previous Lemma), we know ���� � ����.

Received packets

time

Packs

opt

z = 1

Figure 4: 
��� vs. the optimal algorithm

Also, by definition (see Figure 4),

���������� � ���������� � ��������� � � without ����� ����������� without � � ��

� ���������� � ��������� � � without ����	

Using ��������� � � without ���� � ���� � � (if any of these rectangles were of size � or larger, 
���

would have ACKed earlier) we get:
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������� � ���� � ����������

� ���� � ���������� � ��������� � � without ����

� ���� � ���������� � ���� � �

� 
 � ���� � ���������� � 
 � �������

��

Remarks:

� It’s no coincidence that we called the algorithm � � �. Similarly to ski rental, it is possible to
choose any �. In fact, if you really think about it, the TCP ACK problem is in fact very much
like ski rental! Indeed, if you wait for a rectangle of size � with probability ���� � ��

���
, you end

up with a randomized TCP ACK solution which is �
���

competitive in expectation.

� Many other problems are also just like ski rental! That’s why we studied it in the first place.
E.g. the Halbtax-Problem (originally known as the Bahncard problem). Buying a Halbtax-Card
which reduces each trip by � is �

�����
competitive.

5.5 The TCP Congestion Control Problem

As a next example we study the sender side of TCP. We ask: How many segments (or packets, or
bytes) per second can a sender inject into the network without overloading it? The problem is that a
sender does not know the current bandwidth between itself and the receiver. And, more importantly,
this bandwidth might change over time with other connections starting up, or closing down.

Here’s our model:

� We divide the time into periods (or slots).

� In each period � there is an unknown threshold ��, where �� is the number of packets (or seg-
ments, or bytes) that could successfully be transmitted from sender to receiver, without over-
loading the network.

� In period �, the sender chooses to transmit �� packets.

� If �� � �� we are fine. In a possible cost model we could define the cost as the difference of the
two values; in other words the number of packets that additionally could had been transmitted,
thus, ����� � �� � ��.

� If �� � ��, we are not fine. We are overloading the channel. There are several cost models
possible. In a severe cost model, nothing gets transmitted (����� � ��), in a less severe cost
model, some fraction of the packets might get dropped (e.g. ����� � ���� � ���).
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5.6 The Static Model

We start out with the simplest possible model, where the bandwidth is constant over time, that is,
�� � �. The problem is then to find the correct bandwidth � (with something like binary search); once
the sender found the correct bandwidth, there will be no more cost. We assume first that � is an integer,
and that � � � � �, that is, there is an upper bound � for the bandwidth.

Possible algorithms:

� Plain old binary search needs ���� search steps. For a worst-case choice of � the algorithm will
often inject too many packets, and (in a severe cost model) have cost � � ���� in most steps,
thus the total cost is ��� �����.

� A standard TCP congestion control mechanism is usually following the AIMD (Additive In-
crease Multiplicative Decrease) paradigm: Once TCP sends so many packets that the network
becomes overloaded, routers will start dropping packets. The sender can witness this (with miss-
ing ACKs), and consequently decreases its transmission rate (for example by a factor 
, thus in
a multiplicative way). Then the sender starts increasing its transmission rate again, but slowly,
to approach the “right” bandwidth again (for example by �, in an additive way). In our model,
if the real bandwidth is � � � � �, such an algorithm will clearly be very much off the right
bandwidth � most of the time. Since approaching � takes ���� steps, and in the severe cost
model most steps costs �� �� � ����, the cost of the AIMD algorithm is �����.

� The obvious question: Can we do better?!?

Algorithm 5.10 (Shrink) The algorithm operates on a pinning interval ��� ��, originally ��� �� �
��� ��. The algorithm has two phases:

� Phase 1: Find the right power-of-two-upper bound, that is, find � such that 
	 � � � 
	��

by testing 
	 � �. If 
	 � � � � goto phase 2, else set ��� �� � ��� 
	� and stay in phase 1.

� Phase 2: We are given ��� �� with 
��� � � � � � � � 
�. Now we test

� ����

�
��


�


����

�

with � being the largest integer such that � � � � ��

��
� . Then adapt ��� �� accordingly.

Remarks:

� It can be shown (using standard methods) that the cost of the Shrink algorithm is ��� ��� �����.
We won’t do this in class since the techniques are rather standard.

� For large �, it is remarkable that the vast majority of increase steps are increments by just �. And
almost all decrease steps are substantial. In other words, the algorithm is an AIMD algorithm.

� If � is not known, we can find an upper bound of � quickly by a repeated squaring technique
first, that is, test 
, then 
� � �, then �� � ��, then ��� � 
��� 	 	 	. It can be shown that the total
cost is ��� ��� �����.
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� There is a lower bound of ��� ��� ��� �� ��� ��� �����. Hence the Shrink algorithm is asymp-
totically almost optimal.

� However, this was only an warm-up example. What we are really interested in are dynamic
models.

5.7 The Dynamic Model

In this section the sequence 
��� is chosen by the adversary. Again the adversary knows the strategy
of the algorithm who chooses the sequence of 
��� of probes/tests. As before we are in the realm of
online algorithms and competitive analysis.

We have postulated that �����
���� � � � ����������. The problem is that an optimal algorithm who
knows the input (as in ski rental or TCP ACK) can always play �� � ��, though having ������� � �.
No algorithm will be competitive.

The solution is to look at gain (or profit) instead of cost. We update our definition from ski rental as
follows:

Definition 5.11 (Competitive Analysis) An online algorithm 
 is strictly c-competitive if for all
finite input sequences �

�������� � � � ����������� or

� �  ������� �  ���������	

Remark:

� Note that in both cases � � �. The closer � is to �, the better is an algorithm.

For a severe cost model it is therefore natural to define  ��� as follows:

 ��������� �

�
�� if �� � ��

� if �� � ��

Still the adversary is too strong because (knowing the algorithm) it can always present an �� � �� (or,
if �� � �, any ��). The total gain of the algorithm (given as

�
�  ����
����) is �. We therefore need to

further restrict the power of the adversary. Possible meaningful restriction are:

� �� � ��� !�

� ���" � ���� � " � ��

� �� � � � ���� � �� � �

5.8 Bandwidth is upper and lower bounded

We start out by letting the adversary choose �� � ��� !�. The algorithm is aware of upper bound ! and
lower bound �. We first restrict ourselves to deterministic algorithms. In this case, note the following:
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� If the deterministic algorithm plays �� � � in round �, then the adversary plays �� � �.

� Therefore the algorithm must play �� � � in each round in order to have at least  ��� � �.

� The adversary knows this, and will therefore play �� � !

� Therefore,  ����
� � �,  ������ � !, competitive ratio � � !��.

As usually, we ask whether randomization might help! Let’s try the ski rental trick immediately! In
particular, for all possible inputs � � ��� !� we want the same competitive ratio:

� �  ����
���� �  ��������� � �	

From the deterministic case we know that it might make sense to treat the case � � � individually. (If
we do not, then the probability to choose � � � will be infinitesimally small, and the adversary only
needs to present � � �� 
 all the time, and our algorithm is in trouble since it never makes any gain.)

Algorithm 5.12 We choose � � � with probability ��, and any value in � � ��� !� with probability
density function ����, with �� �

� �
� ������ � �.

Theorem 5.13 There is an algorithm that is �-competitive, with � � � � �	 �
�
, “�	” being the natural

logarithm.

Proof. Setting up the ski rental trick, we have

� �
	
�� � � �

� �

�
���� � ���



� �	

Then we differentiate with respect to �, and get,

Æ

Æ�
� � � ���� � � � �� ���� �

�

��
	

We plug this back into the differential equation, and get

� �
	
�� � ��

� �

�

�

��
��


� ���� � ��� �� � �� ����� � �� � �� �� � ���	

To figure out �, we use that all probabilities must sum up to �:

� � �� �
� �

�
������ �

�

�
�

�

�

� �

�

�

�
��� � � �	 !� �	 � � �	

��

What about the lower bound? We use the Von Neumann / Yao Principle:

Theorem 5.14 There is no randomized algorithm which is better than �-competitive, with � � ���	 �
�
.
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Proof. Let a little fairy tell us the right input distribution: We choose ! with probability � � � ��!, and
select � � ��� !� with probability density ���� � ����. The input is OK because

�� �
� �

�

�

��
�� �

�

!
� �

� �

�

�

��
�� �

�

!
� �

	
��

!
�
��

�



� �	

The gain of the optimal algorithm on this input is:

 ������ � ! � �� �
� �

�
� � ������ � !

�

!
�
� �

�
� �

�

��
�� � � � �

� �

�

�

�
�� � ��� � �	�!����	

The gain of a deterministic algorithm choosing � on this input is:

 ���� � � � �� �
� �

�
� � ������ � �

�

!
� ��

� �

�

�

��
�� � ���

�

!
� �

��

!
�
��

�
�� � �	

Hence,
 ������

 ����

�
��� � �	�!����

�
� � � �	�!���	

��

Remarks:

� Great, upper and lower bound are tight!

� Didn’t we ask for �� � being integers? In this case, � � ��#� �#�, where #� is the harmonic
number � defined as #� �

��

�� ��� 
 �	�	

� Now let’s turn to the more realistic cases where the bandwidth smoothly changes over time, and
does not jump up and down like crazy.

5.9 Bandwidth is a Markov Process

Now the adversary must choose �� such that ���" � ���� � " � ��. The algorithm knows the maximal
possible change factor " per period. We assume that the algorithm also knows the initial threshold ��.
Think of " as being a value such that the bandwidth changes a few percents only per period.

If the adversary keeps raising � as fast as possible (���� � " � �� for several rounds), then it seems
reasonable that the algorithm does the same. In particular, if the algorithm chooses ���� � ��� 
�"��
then

���
���

��

��
�

"�

��� 
�� � "�
�		

Therefore, if there was a successful transmission in period �, the algorithm chooses ���� � "��. On
the other hand, if �� was not successful, ���� � $��. We will set $ � ��"�. The idea is that at least
every other round is successful.

Lemma 5.15 After a non-successful round there is always a successful round.
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Proof. Since we know ��, the algorithm can choose �� � ��, and have a success. Our invariant is that
every non-successful round is followed by a successful round. Assume, for the sake of contradiction,
that round � � � is the first non-successful round which follows after a non-successful round �, which
(by induction hypothesis) follows a successful round �� � (note that �
�� � �
��). Since �� � �����"
for all � we have �
�� � �
���"

�. On the other hand, we have �
�� � $�
 � $"�
�� � �
���"
�.

Therefore,
�
�� � �
���"

� � �
���"
� � �
���

hence round � � � is a success. We have a contradiction, which proves that there can be only one
non-successful round in a row. ��

Lemma 5.16 A successful round is "�-competitive.

Proof.

� If a successful round �� � follows a successful round �, round � � � is at least as competitive as
round � since the algorithm set �
�� � "�
.

� If a successful round � � � follows a non-successful round � (�
 � �
), then, since �
�� � $�

and �
�� � "�
 we have

�
�� � $�
 � $�
 � $�
���" � �
���"
�	

��

Theorem 5.17 The algorithm is "� � "�-competitive.

Proof. The gain in non-successful (“fail”) rounds can only be a factor " higher than in successful
rounds for the optimal offline algorithm, that is,

 ������������� �  �������%���� �  ������������ � �� � "� ������������	

We have

 ����
�������� �  ����
������� �  �������������"
� �  ����������������� � "�"��	

��

Remark:

� The original algorithm/proof in Karp et al. is �"-competitive. For realistic " (e.g. " � � � ��
)
our analysis is better. It is also much simpler.

� Notice that our algorithm is an AIMD algorithm, since the success increase of " is much smaller
than the non-success decrease of "�.
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