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Link Reversal Routing Algorithms

 Introduced by Gafni and Bertsekas (1981)
Routing in mobile ad hoc networks
Adaptive, self-stabilizing

Contribution of the paper: first
performance analysis



5

Model
Link Reversal Routing Algorithms

Ad-Hoc Network
Network connectivity is assumed
Each node has an unique id

Suited for networks with “average mobility”

Link
ReversalShortest Path Flooding

Fixed Network High Mobility
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Underlying Communication Graph
Link Reversal Routing Algorithms

Convert the ad-hoc network to a
destination oriented graph
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Notation
Link Reversal Routing Algorithms

 Destination
 Good nodes: nodes with

at least one directed
path to the destination

 Bad nodes: nodes with
no directed path to the
destination

 Sinks: nodes with only
incoming links
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Routing
Link Reversal Routing Algorithms

 When a node receives a packet, it forwards the
packet on any outgoing link. The packet will
eventually reach the destination.
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Route Maintenance
Link Reversal Routing Algorithms

 If a node loses its route to the destination, the
algorithm reacts by performing link reversals.

 Node finds out that it has become a sink -> it
reverses the directions of some or all incoming
links.
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Work and Time
Link Reversal Routing Algorithms

Work: number of reversals until
stabilization.

Time: number of parallel time steps until
stabilization.
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Full Reversal Algorithm

When a node becomes a sink, it reverses
the directions of all its links.
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Implementation
Full Reversal Algorithm

 Idea: analogy to a river. Water flows from
bigger height to lower height.

=> Implemented with heights
Height of node vi: hi
hd = 0
Ni: neighborhood of vi
Height of vi after reversal:

max{ hj | vj ∈ Ni } + 1
3
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Example
Full Reversal Algorithm

Node that reverses

1,0 2,0 3,0

d,0

4,0 5,0 6,0

Reversals:
Time:

7
4

1,0 2,0 3,0

d,0

4,0 5,0 6,1

1,0 2,0 3,2

d,0

4,0 5,2 6,1

1,0 2,3 3,2

d,0

4,0 5,2 6,3

1,4 2,3 3,4

d,0

4,0 5,2 6,3
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Partial Reversal Algorithm

 If a node v becomes a sink, it reverses the
links to those neighbors that have not
reversed their links into v.

 If every neighbor node has a reversed link
to v, it reverses every link.
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Implementation
Partial Reversal Algorithm

Also implemented using heights
Height of node vi: hi
hd = 0
Height of vi after reversal:

min{ hj | vj ∈ Ni } + 1
Every node v keeps a list of its neighboring

nodes that have reversed their links into v.
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Example
Partial Reversal Algorithm

Node that reverses
Reversals:
Time:

5
4

1,0 2,0 3,0

d,0

4,0 5,0 6,0

[]

[]

[] []

[] []x
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d,0

4,0 5,0 6,1

[]

[6]

[] [6]

[] []
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[3,5]

[6]

[] [6]

[5] []

1,0 2,1 3,1

d,0

4,0 5,1 6,1

[3,5]

[6]

[2] [6]

[5] []

1,1 2,1 3,1

d,0

4,0 5,1 6,1

[3,5]

[6]

[2] [6]

[1,5] []
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Equivalence of Executions

There are many different reversal
schedules.

Goal: show that any two executions of a
deterministic reversal algorithm starting
from the same initial state are equivalent.
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 Execution R=r1,...,rk
 Directed edge from ri to rj, iff

o vi is neighbor of vj
o rj is first reversal of vj after ri in execution R

Dependency Graph
Equivalence of Executions

1,0 2,0 3,0

Dest,0

4,0 5,0 6,06,1

3,2

5,2

2,3 3,41,4

6,3

6,0 3,0

5,0 2,0

1,0

6,1

3,2

Dependency Graph
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Main Theorem
Equivalence of Executions

 Two executions are equivalent, if they have the
same dependency graph.

 Theorem: Any two executions of a deterministic
reversal algorithm starting from the same initial
state are equivalent.
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Conclusions
Equivalence of Executions

For all executions of a deterministic
reversal algorithm starting from the same
initial state:
Final state is the same
Number of reversals of each node is the same

The depth of the dependency graph is a
lower bound for the time complexity of
execution of a deterministic reversal
algorithm.
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Full Reversal Algorithm
Performance Analysis

Goal: lower and upper bound on the
performance of the full reversal algorithm
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Question
Full Reversal Algorithm

 For any reversal algorithm starting from any
initial state, a good node never reverses till
stabilization.

 But how many times do the bad nodes reverse?
 Idea: Group the bad nodes in layers!
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Layers
Full Reversal Algorithm

 Bad node v is in layer i, iff
there is an incoming link to v from a node in layer i-1, or
there is an outgoing link from v to a node in layer i.

1     2        3          4  5Layer
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Schematic View
Full Reversal Algorithm
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Execution E1 (Step 1)
Full Reversal Algorithm

 There exists an execution E1 which brings the
system from state I to state I’, such that every bad
node reverses exactly one time.

1     2        3          4  5Layer
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Execution E1 (Step 2)
Full Reversal Algorithm

1     2        3          4  5Layer
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Execution E1 (Step 3)
Full Reversal Algorithm

1     2        3          4  5Layer
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Execution E1 (Step 4)
Full Reversal Algorithm

1     2        3          4  5Layer
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Execution E1 (Step 5)
Full Reversal Algorithm

1     2        3          4  5Layer
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End of Execution E1
Full Reversal Algorithm

1     2        3          4  5Layer
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After Execution E1
Full Reversal Algorithm

 At the end of this execution, all the bad nodes of
layer 1 have become good, while all the bad nodes
in the other layers stay bad.

1     2        3          4  5Layer
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Lemma
Full Reversal Algorithm

Lemma: At the end of an execution Ei, all
the bad nodes of layer i become good,
while all the bad nodes in layers j>i, remain
bad.
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Proof
Full Reversal Algorithm

Any bad node not adjacent to a good node
will remain in the same (bad) node-state
after execution Ei.
Node-state: directions of its incident links

v
d

Each neighbor node is bad in state I
⇒ Each of them reverses in Ei
⇒ v also reverses in Ei
⇒ Reversals leave the directions the same
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Proof:
Bad nodes of layer i become good:

Proof
Full Reversal Algorithm

Nodes connected with an
incoming link to a good node
Nodes connected with an
outgoing link to another node
in layer i

Layer i
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Proof
Full Reversal Algorithm

Bad nodes in layers j>i remain bad.


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Lemma
Full Reversal Algorithm

Lemma: Layer j+1 becomes layer j after
execution Ei (in the new state).

Proof:
All bad nodes of layer i become good and bad

nodes in other layers remain bad.
All bad nodes in layers j>i remain in the same

node-state.


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Back to our example
Full Reversal Algorithm

After execution E1

Layer 1     2        3           4

Reversals per node 1     1        1            1  1
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Back to our example
Full Reversal Algorithm

After execution E2

Layer 1     2        3

Reversals per node 1     2        2            2  2
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Back to our example
Full Reversal Algorithm

After execution E3

Layer 1     2

Reversals per node 1     2        3            3  3
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Back to our example
Full Reversal Algorithm

After execution E4

Layer 1

Reversals per node 1     2        3            4 4
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Back to our example
Full Reversal Algorithm

After execution E5

Reversals per node 1     2        3            4 5
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Number of Reversals
Full Reversal Algorithm

Back to our question: how many times do
the bad nodes reverse?

Reversals per node 1     2        3            4 5

1     2        3          4  5Layer
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Number of Reversals
Full Reversal Algorithm

Every bad node reverses in each execution
exactly one time.

Each node in layer 1 became good after 1
reversal. Each node in layer 2 needed 2 reversals.

=> Each node in layer i needs i reversals before it
becomes a good node.

Graph has n bad nodes
Layer i has ni nodes
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Number of Reversals
Full Reversal Algorithm

⇒Number of reversals: n1·1 + n2·2 + n3·3 + n4·4 + n5·5
⇒Trivial upper bound for n bad nodes: O(n2)

Reversals per node 1             2    3     4       5

1  2    3            4              5Layer

Nodes per layer n1           n2    n3     n4       n5
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Upper Bound
Full Reversal Algorithm

 We get an upper bound for the number of
reversals in the full reversal algorithm:

For any graph with an initial state with n bad
nodes, the full reversal algorithm requires at
most O(n2) work and time till stabilization.

 We will now show that these bounds are tight
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Lower Bound
Full Reversal Algorithm

There is a graph with an initial state
containing n bad nodes such that the full
reversal algorithm requires
Ω(n2) work until stabilization.

d

1 2 3 4 5

Each node in layer i will reverse i times
sum of all reversals is 1+2+3+...+n = n(n+1)/2 = Ω(n2)

Layer
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Lower Bound
Full Reversal Algorithm

 There is a graph with an initial state containing n
bad nodes such that the full reversal algorithm
requires Ω(n2) time until stabilization.

d

1 2 3 4 5Layer

n/2+1 layers
First n/2 layers contain 1 node each

last layer contains n/2 nodes
sum of all reversals is 1+2+...+ n/2+ (n/2+1)·n/2 = Ω(n2)
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Partial Reversal Algorithm
Performance Analysis

One might expect that the partial reversal
algorithm needs less reversals in the worst
case than the full reversal algorithm.
Is this true?

 Idea: group the bad nodes in levels.
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Levels
Partial Reversal Algorithm

1     2        3          4  5Level

Bad node v is in level i, if the shortest
undirected path from v to a good node has
length i.

hmax hmin
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Some Reversals later
Partial Reversal Algorithm

1     2        3          4  5Level

hmax +1 +2 +3 +4 +5
Upper bound on height
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Number of Reversals
Partial Reversal Algorithm

1     2        3          4  5Level

hmax - hmin = h* +1 +2 +3 +4 +5
Upper bound on number of reversals

Each reversal increases the height by at least 1.
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Upper Bound
Partial Reversal Algorithm

A bad node needs in the worst case h*+n
reversals.

We have n bad nodes:
=> O(n·h*+n2)
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Upper Bound
Partial Reversal Algorithm

For any initial state with n bad nodes, the
partial reversal algorithm requires at most
O(n·h*+n2) work and time until the network
stabilizes.
Problem: h* (= hmax - hmin) may be arbitrarily

large
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Lower Bound
Partial Reversal Algorithm

There is a graph with an initial state
containing n bad nodes, such that the
partial reversal algorithm requires
Ω(n·h*+n2) work (time) until stabilization.
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Deterministic Reversal Algorithms
Definition

Defined by a “height increase” function g.
Heights of different nodes are unique
Node v is sink with height hv and adjacent

nodes v1,v2,...,vd with heights h1,h2,...,hd
-> v’s height after reversal is g(h1,h2,...,hv)

=> Full and partial reversal algorithms are
deterministic
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Bounds
Deterministic Reversal Algorithms

There is a graph with an initial state
containing n bad nodes such that any
deterministic reversal algorithm requires
Ω(n2) work (time) until stabilization.

=> Full reversal algorithm is optimal in the
worst case, while the partial reversal
algorithm is not!
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Results
 Full reversal algorithm requires O(n2) work and

time (n = nodes which have lost the routes to the
destination)

 Partial reversal algorithm requires O(n·h*+n2)
work and time (h* = nonnegative integer)

 For every deterministic link reversal algorithm,
there are initial states which require Ω(n2)
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Conclusion
 Full reversal outperforms partial reversal algorithm in the

worst case.
 Full reversal is optimal while the partial reversal

algorithm is not.
 Number of reversals only depends on the number of bad

nodes.
 Is there a variation of the partial reversal algorithm with

O(n2) in the worst case?
 Partial reversal better in the average case?
 Analysis of non-deterministic algorithms (TORA)
 Algorithms only suited for connected graphs
 What about >1 destinations?
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?
Thanks for your attention!

Questions


