
Analysis of Link Reversal
Routing Algorithms for Mobile
Ad Hoc Networks

Seminar of Distributed Computing WS 04/05
ETH Zurich, 1.2.2005

Nicolas Born
nborn@student.ethz.ch

2

Paper

Analysis of Link Reversal Routing
Algorithms for Mobile Ad Hoc Networks
Costas Busch, Srikanth Surapaneni, Srikanta Tirthapura;
SPAA 2003

3

Overview

Link Reversal Routing Algorithms
Full Reversal
Partial Reversal

Equivalence of Executions
Performance Analysis
Results
Conclusion

4

Link Reversal Routing Algorithms

 Introduced by Gafni and Bertsekas (1981)
Routing in mobile ad hoc networks
Adaptive, self-stabilizing

Contribution of the paper: first
performance analysis

5

Model
Link Reversal Routing Algorithms

Ad-Hoc Network
Network connectivity is assumed
Each node has an unique id

Suited for networks with “average mobility”

Link
ReversalShortest Path Flooding

Fixed Network High Mobility

6

Underlying Communication Graph
Link Reversal Routing Algorithms

Convert the ad-hoc network to a
destination oriented graph

7

Notation
Link Reversal Routing Algorithms

 Destination
 Good nodes: nodes with

at least one directed
path to the destination

 Bad nodes: nodes with
no directed path to the
destination

 Sinks: nodes with only
incoming links

8

Routing
Link Reversal Routing Algorithms

 When a node receives a packet, it forwards the
packet on any outgoing link. The packet will
eventually reach the destination.

0

1

d

2

9

Route Maintenance
Link Reversal Routing Algorithms

 If a node loses its route to the destination, the
algorithm reacts by performing link reversals.

 Node finds out that it has become a sink -> it
reverses the directions of some or all incoming
links.

0

1

d

2

0

1

d

2

10

Work and Time
Link Reversal Routing Algorithms

Work: number of reversals until
stabilization.

Time: number of parallel time steps until
stabilization.

11

Overview

Link Reversal Routing Algorithms
Full Reversal
Partial Reversal

Equivalence of Executions
Performance Analysis
Results
Conclusion

12

Full Reversal Algorithm

When a node becomes a sink, it reverses
the directions of all its links.

13

Implementation
Full Reversal Algorithm

 Idea: analogy to a river. Water flows from
bigger height to lower height.

=> Implemented with heights
Height of node vi: hi
hd = 0
Ni: neighborhood of vi
Height of vi after reversal:

max{ hj | vj ∈ Ni } + 1
3

2

0

13

2

14

Example
Full Reversal Algorithm

Node that reverses

1,0 2,0 3,0

d,0

4,0 5,0 6,0

Reversals:
Time:

7
4

1,0 2,0 3,0

d,0

4,0 5,0 6,1

1,0 2,0 3,2

d,0

4,0 5,2 6,1

1,0 2,3 3,2

d,0

4,0 5,2 6,3

1,4 2,3 3,4

d,0

4,0 5,2 6,3

x

15

Overview

Link Reversal Routing Algorithms
Full Reversal
Partial Reversal

Equivalence of Executions
Performance Analysis
Results
Conclusion

16

Partial Reversal Algorithm

 If a node v becomes a sink, it reverses the
links to those neighbors that have not
reversed their links into v.

 If every neighbor node has a reversed link
to v, it reverses every link.

17

Implementation
Partial Reversal Algorithm

Also implemented using heights
Height of node vi: hi
hd = 0
Height of vi after reversal:

min{ hj | vj ∈ Ni } + 1
Every node v keeps a list of its neighboring

nodes that have reversed their links into v.

18

Example
Partial Reversal Algorithm

Node that reverses
Reversals:
Time:

5
4

1,0 2,0 3,0

d,0

4,0 5,0 6,0

[]

[]

[] []

[] []x

1,0 2,0 3,0

d,0

4,0 5,0 6,1

[]

[6]

[] [6]

[] []

1,0 2,0 3,1

d,0

4,0 5,1 6,1

[3,5]

[6]

[] [6]

[5] []

1,0 2,1 3,1

d,0

4,0 5,1 6,1

[3,5]

[6]

[2] [6]

[5] []

1,1 2,1 3,1

d,0

4,0 5,1 6,1

[3,5]

[6]

[2] [6]

[1,5] []

19

Overview

Link Reversal Routing Algorithms
Full Reversal
Partial Reversal

Equivalence of Executions
Performance Analysis
Results
Conclusion

20

Equivalence of Executions

There are many different reversal
schedules.

Goal: show that any two executions of a
deterministic reversal algorithm starting
from the same initial state are equivalent.

21

 Execution R=r1,...,rk
 Directed edge from ri to rj, iff

o vi is neighbor of vj
o rj is first reversal of vj after ri in execution R

Dependency Graph
Equivalence of Executions

1,0 2,0 3,0

Dest,0

4,0 5,0 6,06,1

3,2

5,2

2,3 3,41,4

6,3

6,0 3,0

5,0 2,0

1,0

6,1

3,2

Dependency Graph

22

Main Theorem
Equivalence of Executions

 Two executions are equivalent, if they have the
same dependency graph.

 Theorem: Any two executions of a deterministic
reversal algorithm starting from the same initial
state are equivalent.

23

Conclusions
Equivalence of Executions

For all executions of a deterministic
reversal algorithm starting from the same
initial state:
Final state is the same
Number of reversals of each node is the same

The depth of the dependency graph is a
lower bound for the time complexity of
execution of a deterministic reversal
algorithm.

24

Overview

Link Reversal Routing Algorithms
Full Reversal
Partial Reversal

Equivalence of Executions
Performance Analysis
Results
Conclusion

25

Full Reversal Algorithm
Performance Analysis

Goal: lower and upper bound on the
performance of the full reversal algorithm

26

Question
Full Reversal Algorithm

 For any reversal algorithm starting from any
initial state, a good node never reverses till
stabilization.

 But how many times do the bad nodes reverse?
 Idea: Group the bad nodes in layers!

27

Layers
Full Reversal Algorithm

 Bad node v is in layer i, iff
there is an incoming link to v from a node in layer i-1, or
there is an outgoing link from v to a node in layer i.

1 2 3 4 5Layer

28

Schematic View
Full Reversal Algorithm

29

Execution E1 (Step 1)
Full Reversal Algorithm

 There exists an execution E1 which brings the
system from state I to state I’, such that every bad
node reverses exactly one time.

1 2 3 4 5Layer

30

Execution E1 (Step 2)
Full Reversal Algorithm

1 2 3 4 5Layer

31

Execution E1 (Step 3)
Full Reversal Algorithm

1 2 3 4 5Layer

32

Execution E1 (Step 4)
Full Reversal Algorithm

1 2 3 4 5Layer

33

Execution E1 (Step 5)
Full Reversal Algorithm

1 2 3 4 5Layer

34

End of Execution E1
Full Reversal Algorithm

1 2 3 4 5Layer

35

After Execution E1
Full Reversal Algorithm

 At the end of this execution, all the bad nodes of
layer 1 have become good, while all the bad nodes
in the other layers stay bad.

1 2 3 4 5Layer

36

Lemma
Full Reversal Algorithm

Lemma: At the end of an execution Ei, all
the bad nodes of layer i become good,
while all the bad nodes in layers j>i, remain
bad.

37

Proof
Full Reversal Algorithm

Any bad node not adjacent to a good node
will remain in the same (bad) node-state
after execution Ei.
Node-state: directions of its incident links

v
d

Each neighbor node is bad in state I
⇒ Each of them reverses in Ei
⇒ v also reverses in Ei
⇒ Reversals leave the directions the same

38

Proof:
Bad nodes of layer i become good:

Proof
Full Reversal Algorithm

Nodes connected with an
incoming link to a good node
Nodes connected with an
outgoing link to another node
in layer i

Layer i

39

Proof
Full Reversal Algorithm

Bad nodes in layers j>i remain bad.



40

Lemma
Full Reversal Algorithm

Lemma: Layer j+1 becomes layer j after
execution Ei (in the new state).

Proof:
All bad nodes of layer i become good and bad

nodes in other layers remain bad.
All bad nodes in layers j>i remain in the same

node-state.



41

Back to our example
Full Reversal Algorithm

After execution E1

Layer 1 2 3 4

Reversals per node 1 1 1 1 1

42

Back to our example
Full Reversal Algorithm

After execution E2

Layer 1 2 3

Reversals per node 1 2 2 2 2

43

Back to our example
Full Reversal Algorithm

After execution E3

Layer 1 2

Reversals per node 1 2 3 3 3

44

Back to our example
Full Reversal Algorithm

After execution E4

Layer 1

Reversals per node 1 2 3 4 4

45

Back to our example
Full Reversal Algorithm

After execution E5

Reversals per node 1 2 3 4 5

46

Number of Reversals
Full Reversal Algorithm

Back to our question: how many times do
the bad nodes reverse?

Reversals per node 1 2 3 4 5

1 2 3 4 5Layer

47

Number of Reversals
Full Reversal Algorithm

Every bad node reverses in each execution
exactly one time.

Each node in layer 1 became good after 1
reversal. Each node in layer 2 needed 2 reversals.

=> Each node in layer i needs i reversals before it
becomes a good node.

Graph has n bad nodes
Layer i has ni nodes

48

Number of Reversals
Full Reversal Algorithm

⇒Number of reversals: n1·1 + n2·2 + n3·3 + n4·4 + n5·5
⇒Trivial upper bound for n bad nodes: O(n2)

Reversals per node 1 2 3 4 5

1 2 3 4 5Layer

Nodes per layer n1 n2 n3 n4 n5

49

Upper Bound
Full Reversal Algorithm

 We get an upper bound for the number of
reversals in the full reversal algorithm:

For any graph with an initial state with n bad
nodes, the full reversal algorithm requires at
most O(n2) work and time till stabilization.

 We will now show that these bounds are tight

50

Lower Bound
Full Reversal Algorithm

There is a graph with an initial state
containing n bad nodes such that the full
reversal algorithm requires
Ω(n2) work until stabilization.

d

1 2 3 4 5

Each node in layer i will reverse i times
sum of all reversals is 1+2+3+...+n = n(n+1)/2 = Ω(n2)

Layer

51

Lower Bound
Full Reversal Algorithm

 There is a graph with an initial state containing n
bad nodes such that the full reversal algorithm
requires Ω(n2) time until stabilization.

d

1 2 3 4 5Layer

n/2+1 layers
First n/2 layers contain 1 node each

last layer contains n/2 nodes
sum of all reversals is 1+2+...+ n/2+ (n/2+1)·n/2 = Ω(n2)

52

Partial Reversal Algorithm
Performance Analysis

One might expect that the partial reversal
algorithm needs less reversals in the worst
case than the full reversal algorithm.
Is this true?

 Idea: group the bad nodes in levels.

53

Levels
Partial Reversal Algorithm

1 2 3 4 5Level

Bad node v is in level i, if the shortest
undirected path from v to a good node has
length i.

hmax hmin

54

Some Reversals later
Partial Reversal Algorithm

1 2 3 4 5Level

hmax +1 +2 +3 +4 +5
Upper bound on height

55

Number of Reversals
Partial Reversal Algorithm

1 2 3 4 5Level

hmax - hmin = h* +1 +2 +3 +4 +5
Upper bound on number of reversals

Each reversal increases the height by at least 1.

56

Upper Bound
Partial Reversal Algorithm

A bad node needs in the worst case h*+n
reversals.

We have n bad nodes:
=> O(n·h*+n2)

57

Upper Bound
Partial Reversal Algorithm

For any initial state with n bad nodes, the
partial reversal algorithm requires at most
O(n·h*+n2) work and time until the network
stabilizes.
Problem: h* (= hmax - hmin) may be arbitrarily

large

58

Lower Bound
Partial Reversal Algorithm

There is a graph with an initial state
containing n bad nodes, such that the
partial reversal algorithm requires
Ω(n·h*+n2) work (time) until stabilization.

59

Deterministic Reversal Algorithms
Definition

Defined by a “height increase” function g.
Heights of different nodes are unique
Node v is sink with height hv and adjacent

nodes v1,v2,...,vd with heights h1,h2,...,hd
-> v’s height after reversal is g(h1,h2,...,hv)

=> Full and partial reversal algorithms are
deterministic

60

Bounds
Deterministic Reversal Algorithms

There is a graph with an initial state
containing n bad nodes such that any
deterministic reversal algorithm requires
Ω(n2) work (time) until stabilization.

=> Full reversal algorithm is optimal in the
worst case, while the partial reversal
algorithm is not!

61

Overview

Link Reversal Routing Algorithms
Full Reversal
Partial Reversal

Equivalence of Executions
Performance Analysis
Results
Conclusion

62

Results
 Full reversal algorithm requires O(n2) work and

time (n = nodes which have lost the routes to the
destination)

 Partial reversal algorithm requires O(n·h*+n2)
work and time (h* = nonnegative integer)

 For every deterministic link reversal algorithm,
there are initial states which require Ω(n2)

63

Overview

Link Reversal Routing Algorithms
Full Reversal
Partial Reversal

Equivalence of Executions
Performance Analysis
Results
Conclusion

64

Conclusion
 Full reversal outperforms partial reversal algorithm in the

worst case.
 Full reversal is optimal while the partial reversal

algorithm is not.
 Number of reversals only depends on the number of bad

nodes.
 Is there a variation of the partial reversal algorithm with

O(n2) in the worst case?
 Partial reversal better in the average case?
 Analysis of non-deterministic algorithms (TORA)
 Algorithms only suited for connected graphs
 What about >1 destinations?

65

?
Thanks for your attention!

Questions

