
Analysis of Link Reversal
Routing Algorithms for Mobile
Ad Hoc Networks

Seminar of Distributed Computing WS 04/05
ETH Zurich, 1.2.2005

Nicolas Born
nborn@student.ethz.ch

2

Paper

Analysis of Link Reversal Routing
Algorithms for Mobile Ad Hoc Networks
Costas Busch, Srikanth Surapaneni, Srikanta Tirthapura;
SPAA 2003

3

Overview

Link Reversal Routing Algorithms
Full Reversal
Partial Reversal

Equivalence of Executions
Performance Analysis
Results
Conclusion

4

Link Reversal Routing Algorithms

 Introduced by Gafni and Bertsekas (1981)
Routing in mobile ad hoc networks
Adaptive, self-stabilizing

Contribution of the paper: first
performance analysis

5

Model
Link Reversal Routing Algorithms

Ad-Hoc Network
Network connectivity is assumed
Each node has an unique id

Suited for networks with “average mobility”

Link
ReversalShortest Path Flooding

Fixed Network High Mobility

6

Underlying Communication Graph
Link Reversal Routing Algorithms

Convert the ad-hoc network to a
destination oriented graph

7

Notation
Link Reversal Routing Algorithms

 Destination
 Good nodes: nodes with

at least one directed
path to the destination

 Bad nodes: nodes with
no directed path to the
destination

 Sinks: nodes with only
incoming links

8

Routing
Link Reversal Routing Algorithms

 When a node receives a packet, it forwards the
packet on any outgoing link. The packet will
eventually reach the destination.

0

1

d

2

9

Route Maintenance
Link Reversal Routing Algorithms

 If a node loses its route to the destination, the
algorithm reacts by performing link reversals.

 Node finds out that it has become a sink -> it
reverses the directions of some or all incoming
links.

0

1

d

2

0

1

d

2

10

Work and Time
Link Reversal Routing Algorithms

Work: number of reversals until
stabilization.

Time: number of parallel time steps until
stabilization.

11

Overview

Link Reversal Routing Algorithms
Full Reversal
Partial Reversal

Equivalence of Executions
Performance Analysis
Results
Conclusion

12

Full Reversal Algorithm

When a node becomes a sink, it reverses
the directions of all its links.

13

Implementation
Full Reversal Algorithm

 Idea: analogy to a river. Water flows from
bigger height to lower height.

=> Implemented with heights
Height of node vi: hi
hd = 0
Ni: neighborhood of vi
Height of vi after reversal:

max{ hj | vj ∈ Ni } + 1
3

2

0

13

2

14

Example
Full Reversal Algorithm

Node that reverses

1,0 2,0 3,0

d,0

4,0 5,0 6,0

Reversals:
Time:

7
4

1,0 2,0 3,0

d,0

4,0 5,0 6,1

1,0 2,0 3,2

d,0

4,0 5,2 6,1

1,0 2,3 3,2

d,0

4,0 5,2 6,3

1,4 2,3 3,4

d,0

4,0 5,2 6,3

x

15

Overview

Link Reversal Routing Algorithms
Full Reversal
Partial Reversal

Equivalence of Executions
Performance Analysis
Results
Conclusion

16

Partial Reversal Algorithm

 If a node v becomes a sink, it reverses the
links to those neighbors that have not
reversed their links into v.

 If every neighbor node has a reversed link
to v, it reverses every link.

17

Implementation
Partial Reversal Algorithm

Also implemented using heights
Height of node vi: hi
hd = 0
Height of vi after reversal:

min{ hj | vj ∈ Ni } + 1
Every node v keeps a list of its neighboring

nodes that have reversed their links into v.

18

Example
Partial Reversal Algorithm

Node that reverses
Reversals:
Time:

5
4

1,0 2,0 3,0

d,0

4,0 5,0 6,0

[]

[]

[] []

[] []x

1,0 2,0 3,0

d,0

4,0 5,0 6,1

[]

[6]

[] [6]

[] []

1,0 2,0 3,1

d,0

4,0 5,1 6,1

[3,5]

[6]

[] [6]

[5] []

1,0 2,1 3,1

d,0

4,0 5,1 6,1

[3,5]

[6]

[2] [6]

[5] []

1,1 2,1 3,1

d,0

4,0 5,1 6,1

[3,5]

[6]

[2] [6]

[1,5] []

19

Overview

Link Reversal Routing Algorithms
Full Reversal
Partial Reversal

Equivalence of Executions
Performance Analysis
Results
Conclusion

20

Equivalence of Executions

There are many different reversal
schedules.

Goal: show that any two executions of a
deterministic reversal algorithm starting
from the same initial state are equivalent.

21

 Execution R=r1,...,rk
 Directed edge from ri to rj, iff

o vi is neighbor of vj
o rj is first reversal of vj after ri in execution R

Dependency Graph
Equivalence of Executions

1,0 2,0 3,0

Dest,0

4,0 5,0 6,06,1

3,2

5,2

2,3 3,41,4

6,3

6,0 3,0

5,0 2,0

1,0

6,1

3,2

Dependency Graph

22

Main Theorem
Equivalence of Executions

 Two executions are equivalent, if they have the
same dependency graph.

 Theorem: Any two executions of a deterministic
reversal algorithm starting from the same initial
state are equivalent.

23

Conclusions
Equivalence of Executions

For all executions of a deterministic
reversal algorithm starting from the same
initial state:
Final state is the same
Number of reversals of each node is the same

The depth of the dependency graph is a
lower bound for the time complexity of
execution of a deterministic reversal
algorithm.

24

Overview

Link Reversal Routing Algorithms
Full Reversal
Partial Reversal

Equivalence of Executions
Performance Analysis
Results
Conclusion

25

Full Reversal Algorithm
Performance Analysis

Goal: lower and upper bound on the
performance of the full reversal algorithm

26

Question
Full Reversal Algorithm

 For any reversal algorithm starting from any
initial state, a good node never reverses till
stabilization.

 But how many times do the bad nodes reverse?
 Idea: Group the bad nodes in layers!

27

Layers
Full Reversal Algorithm

 Bad node v is in layer i, iff
there is an incoming link to v from a node in layer i-1, or
there is an outgoing link from v to a node in layer i.

1 2 3 4 5Layer

28

Schematic View
Full Reversal Algorithm

29

Execution E1 (Step 1)
Full Reversal Algorithm

 There exists an execution E1 which brings the
system from state I to state I’, such that every bad
node reverses exactly one time.

1 2 3 4 5Layer

30

Execution E1 (Step 2)
Full Reversal Algorithm

1 2 3 4 5Layer

31

Execution E1 (Step 3)
Full Reversal Algorithm

1 2 3 4 5Layer

32

Execution E1 (Step 4)
Full Reversal Algorithm

1 2 3 4 5Layer

33

Execution E1 (Step 5)
Full Reversal Algorithm

1 2 3 4 5Layer

34

End of Execution E1
Full Reversal Algorithm

1 2 3 4 5Layer

35

After Execution E1
Full Reversal Algorithm

 At the end of this execution, all the bad nodes of
layer 1 have become good, while all the bad nodes
in the other layers stay bad.

1 2 3 4 5Layer

36

Lemma
Full Reversal Algorithm

Lemma: At the end of an execution Ei, all
the bad nodes of layer i become good,
while all the bad nodes in layers j>i, remain
bad.

37

Proof
Full Reversal Algorithm

Any bad node not adjacent to a good node
will remain in the same (bad) node-state
after execution Ei.
Node-state: directions of its incident links

v
d

Each neighbor node is bad in state I
⇒ Each of them reverses in Ei
⇒ v also reverses in Ei
⇒ Reversals leave the directions the same

38

Proof:
Bad nodes of layer i become good:

Proof
Full Reversal Algorithm

Nodes connected with an
incoming link to a good node
Nodes connected with an
outgoing link to another node
in layer i

Layer i

39

Proof
Full Reversal Algorithm

Bad nodes in layers j>i remain bad.

40

Lemma
Full Reversal Algorithm

Lemma: Layer j+1 becomes layer j after
execution Ei (in the new state).

Proof:
All bad nodes of layer i become good and bad

nodes in other layers remain bad.
All bad nodes in layers j>i remain in the same

node-state.

41

Back to our example
Full Reversal Algorithm

After execution E1

Layer 1 2 3 4

Reversals per node 1 1 1 1 1

42

Back to our example
Full Reversal Algorithm

After execution E2

Layer 1 2 3

Reversals per node 1 2 2 2 2

43

Back to our example
Full Reversal Algorithm

After execution E3

Layer 1 2

Reversals per node 1 2 3 3 3

44

Back to our example
Full Reversal Algorithm

After execution E4

Layer 1

Reversals per node 1 2 3 4 4

45

Back to our example
Full Reversal Algorithm

After execution E5

Reversals per node 1 2 3 4 5

46

Number of Reversals
Full Reversal Algorithm

Back to our question: how many times do
the bad nodes reverse?

Reversals per node 1 2 3 4 5

1 2 3 4 5Layer

47

Number of Reversals
Full Reversal Algorithm

Every bad node reverses in each execution
exactly one time.

Each node in layer 1 became good after 1
reversal. Each node in layer 2 needed 2 reversals.

=> Each node in layer i needs i reversals before it
becomes a good node.

Graph has n bad nodes
Layer i has ni nodes

48

Number of Reversals
Full Reversal Algorithm

⇒Number of reversals: n1·1 + n2·2 + n3·3 + n4·4 + n5·5
⇒Trivial upper bound for n bad nodes: O(n2)

Reversals per node 1 2 3 4 5

1 2 3 4 5Layer

Nodes per layer n1 n2 n3 n4 n5

49

Upper Bound
Full Reversal Algorithm

 We get an upper bound for the number of
reversals in the full reversal algorithm:

For any graph with an initial state with n bad
nodes, the full reversal algorithm requires at
most O(n2) work and time till stabilization.

 We will now show that these bounds are tight

50

Lower Bound
Full Reversal Algorithm

There is a graph with an initial state
containing n bad nodes such that the full
reversal algorithm requires
Ω(n2) work until stabilization.

d

1 2 3 4 5

Each node in layer i will reverse i times
sum of all reversals is 1+2+3+...+n = n(n+1)/2 = Ω(n2)

Layer

51

Lower Bound
Full Reversal Algorithm

 There is a graph with an initial state containing n
bad nodes such that the full reversal algorithm
requires Ω(n2) time until stabilization.

d

1 2 3 4 5Layer

n/2+1 layers
First n/2 layers contain 1 node each

last layer contains n/2 nodes
sum of all reversals is 1+2+...+ n/2+ (n/2+1)·n/2 = Ω(n2)

52

Partial Reversal Algorithm
Performance Analysis

One might expect that the partial reversal
algorithm needs less reversals in the worst
case than the full reversal algorithm.
Is this true?

 Idea: group the bad nodes in levels.

53

Levels
Partial Reversal Algorithm

1 2 3 4 5Level

Bad node v is in level i, if the shortest
undirected path from v to a good node has
length i.

hmax hmin

54

Some Reversals later
Partial Reversal Algorithm

1 2 3 4 5Level

hmax +1 +2 +3 +4 +5
Upper bound on height

55

Number of Reversals
Partial Reversal Algorithm

1 2 3 4 5Level

hmax - hmin = h* +1 +2 +3 +4 +5
Upper bound on number of reversals

Each reversal increases the height by at least 1.

56

Upper Bound
Partial Reversal Algorithm

A bad node needs in the worst case h*+n
reversals.

We have n bad nodes:
=> O(n·h*+n2)

57

Upper Bound
Partial Reversal Algorithm

For any initial state with n bad nodes, the
partial reversal algorithm requires at most
O(n·h*+n2) work and time until the network
stabilizes.
Problem: h* (= hmax - hmin) may be arbitrarily

large

58

Lower Bound
Partial Reversal Algorithm

There is a graph with an initial state
containing n bad nodes, such that the
partial reversal algorithm requires
Ω(n·h*+n2) work (time) until stabilization.

59

Deterministic Reversal Algorithms
Definition

Defined by a “height increase” function g.
Heights of different nodes are unique
Node v is sink with height hv and adjacent

nodes v1,v2,...,vd with heights h1,h2,...,hd
-> v’s height after reversal is g(h1,h2,...,hv)

=> Full and partial reversal algorithms are
deterministic

60

Bounds
Deterministic Reversal Algorithms

There is a graph with an initial state
containing n bad nodes such that any
deterministic reversal algorithm requires
Ω(n2) work (time) until stabilization.

=> Full reversal algorithm is optimal in the
worst case, while the partial reversal
algorithm is not!

61

Overview

Link Reversal Routing Algorithms
Full Reversal
Partial Reversal

Equivalence of Executions
Performance Analysis
Results
Conclusion

62

Results
 Full reversal algorithm requires O(n2) work and

time (n = nodes which have lost the routes to the
destination)

 Partial reversal algorithm requires O(n·h*+n2)
work and time (h* = nonnegative integer)

 For every deterministic link reversal algorithm,
there are initial states which require Ω(n2)

63

Overview

Link Reversal Routing Algorithms
Full Reversal
Partial Reversal

Equivalence of Executions
Performance Analysis
Results
Conclusion

64

Conclusion
 Full reversal outperforms partial reversal algorithm in the

worst case.
 Full reversal is optimal while the partial reversal

algorithm is not.
 Number of reversals only depends on the number of bad

nodes.
 Is there a variation of the partial reversal algorithm with

O(n2) in the worst case?
 Partial reversal better in the average case?
 Analysis of non-deterministic algorithms (TORA)
 Algorithms only suited for connected graphs
 What about >1 destinations?

65

?
Thanks for your attention!

Questions

