Location Services

Otmar Caduff

The papers

- A Scalable Location Service for Geographic Ad Hoc Routing
 J. Li, J. Jannotti, D.S.J. De Couto, D.R. Karger, R. Morris; MobiCom 2000
- LLS: a Locality Aware Location Service for Mobile Ad Hoc Networks
 - I. Abraham, D. Dolev, D. Malkhi; DIALM-POMC 2004

Overview

Introduction
Ad Hoc Networks
Problem overview
The GLS approach
The LLS approach
Conclusion

Introduction

- What is Ad Hoc?
 - connection method for Wireless Networks
 - □ dynamic
 - □ spontaneous
 - 🗆 mobile
 - without any additional infrastructure (i.e. no base stations, no routers, no directories)
 - nodes themselves have to contribute to routing

Applications

- Taxi/Police/Fire squad fleet
- Wearable computing
- Disaster relief and Disaster alarm
- Military/Security
- Meeting room/conference

Simple solution: simply route towards the destination

Simple solution: simply route towards the destination

- Geographic routing algorithms assume that besides the position of the source the position of the destination is also known
- How to get this position?
 - Well known Location Server

Get the Position of the destination

What do we need:

- □ The network must somehow know where a node is
 - a node has to **publish** its location
- A node must be able to find out another node's location, given its network identifier
 - a node wants to **lookup** another node's location

A lookup service offers publish and lookup primitives

A simple publish-driven approach

- When a node comes up or changes its position, it simply floods the network with its new location
 - Each node has to hold information about every other node in the network
 - memory...
 - traffic...

A simple lookup-driven approach

- When a node wants to know another node's position, it simply floods the network with a query
 - The corresponding node answers with its position, also by flooding
 - no memory needed
 - even more traffic

Requirements

- No node should be a bottleneck
- The failure of a node should not affect the reachability of many other nodes
- Queries for the locations of nearby hosts should be satisfied with correspondingly local communication.
- The per-node storage and communication cost of the location service should grow as a small function of the total number of nodes.

Overview

Introduction
Ad Hoc Networks
Problem overview
The GLS approach
The LLS approach
Conclusion

GLS – Grid's Location Service

- Each node has several other nodes as location servers and also acts as a location server on behalf of some other nodes
- GLS uses geographic forwarding
 here: simply route towards the destination (also known as greedy routing)
 - could also be another geographic routing protocol

Partitioning the world

Invariant: a node is located in exactly one square of each size (no overlapping) An order-x square contains always 4 order-(x-1) squares

A wants to find B (lookup)

- B has ID 17 (computed through hash function known by every node)
- A sends a request to the closest node to B (ID 17) for which A has location information. Next node does the same... Until B is reached.
- Def.: Node closest to B in ID space: node with least ID greater than B

• Circular ID space: $1 \rightarrow 4 \rightarrow 17 \rightarrow 25 \rightarrow 29 \rightarrow 41$

B publishes its location

- B (ID 17) chooses three location servers for each level of the grid hierarchy in its related squares
- B recruits nodes with IDs "close" to its own ID to serve as its location servers

	90	38				39	
70			37	50		45	
91	62	5			51		11
	1				35	19	
26		41					
29		23	63	41		72	
	14 14		63 B: 17	41	28	72 10	
4		23		<u>41</u> <u>6</u>	28 83 21		20

Problems...

- Works fine for uniform distributed nodes over the whole area
- neighboring points over border?
- mobility?

	90	38				39	
70			37	50		45	
91	62	5			51		11
	1				35	19	
26		41					
29		$\frac{41}{23}$	63	41		72	
ļ	14 14	41 23 7 2	63 B: 17	41	28	72 10	
4				<u>41</u> 6	83		20

Overview

Introduction
Ad Hoc Networks
Problem overview
The GLS approach
The LLS approach
Conclusion

LLS – Locality-aware Location Service

Locality-aware publish algorithm:

- Cost of updating the location service due to a node moving from x to y is proportional to the distance between x and y.
- Locality-aware lookup algorithm:
 - Cost of a lookup operation is proportional to the cost of routing between source and target when the destination is known.

How it works – The spiral algorithm

- lookup: perform a spiral like search path
- a node publishes its location information in a set of virtual points that form a virtual spiral
- the lookup finds the location of the destination where the two spirals intersect

Why do the spirals intersect?

- Hierarchy of lattices with squares of size 2^k x 2^k and H(node ID) as its origin
- When a node t performs a publish, it aligns its lattices to H(node ID of t) and stores its location information to the 4 lattice points that are closest to t (for each hierarchy-level)
- When another node wants to find out the position of t, it performs a lookup, aligned to H(node ID of t)

$$W_{k}(t.id,x) = \{W_{1}, W_{2}, W_{3}, W_{4}\}$$

Why is it locality-aware?

Lemma: Let k be the minimal index such that |st|=d<2^k then at least one of the nodes in W_k(t.id,s) contains a location pointer to node t

in the k-th phase

Why is it locality-aware?

 Theorem: For networks in which routing is Δ-locality-aware, for any source s and destination t the expected cost of locating t is O(|st|)

$$\Sigma_{i\leq k} 2 \cdot 4 \cdot 2^i \cdot \Delta = O(2^k) = O(|st|)$$

The spiral-flood algorithm

- Problem in the basic spiral algorithm: path cost from source to destination is low, but cost from source to first virtual point is high
- Solution (spiral-flood algorithm): do spiral lookup as long as the cumulative cost is less than 4^{phase}, then flood with depth 2^{phase}

The LLS algorithm

- At each level, publish to 16 virtual points instead of only 4
- Instead of publishing the location in Z_i, publish pointers to W_{i-1}.
 Store the location only in Z₀

 $Z_k(t.id,x) = \{w_1,..., w_{16}\}$

Overview

Introduction
Ad Hoc Networks
Problem overview
The GLS approach
The LLS approach
Conclusion

Conclusion

- Privacy?
- Own position always known?