Greedy algorithms on graphs

Elia Noris
norisel@student.ethz.ch

S.Davis, R.Impagliazzo
“Models of greedy Algorithms for Graph Problems”

A.Borodin, J.Boyar, K.S.Larsen
“Priority Algorithms for Graph Optimization Problems ”

Motivation

Greedy algorithm are widely used in almost every

kind of problem

They are quite often the simplest way to solve a
problem

Until now there have been very few tries to
analyse them as a class of algorithm

The definition itself is quite unprecise

What is greed?

Oliver Stone’s Wall Street (1987)

The point is, ladies and gentleman, ==
is that greed - for lack of a better [
word - is good!

Greed is right!

Greed works!

“The point is you can’t be too greedy”

Donald J. Trump

Greed /gri:d/
noun { U}

a very strong wish to continually get more of
something, especially food or money

(from Cambridge Advance Learner’s Dictionary)

The term “greedy algorithm”
is didactical, elegant and
intuitively understandable,
unluckily it lacks the
precision needed for a
mathematical analysis.

The priority model

Fixed priority algorithm

Determine an allowable ordering of the set of
possible input items (without knowing the actual
input set S of items)

While S is not empty

next := index of input Item I € S that comes
first in the ordering

Make an irrevocable decision concerning /¢t
and remove it from S

Adaptive priority algorithm

While S is not empty

Determine a total ordering of all possible input
items (without knowing the input items in .S

not yet considered)

next := index of input Item I € S that comes
first in the ordering

Make an irrevocable decision concerning /¢
and remove it from S

Examples - The Dominating Set Problem

Fixed priority algorithm:

Order the vertices by the number of neighbours.
Add the vertices to the DS until the graph is
dominated.

Adaptive priority algorithm

The next vertex will be the one with most not yet
covered neighbours.

Vertices are added to the DS until the graph is
dominated.

Examples - The Dominating Set Problem

Examples - The Dominating Set Problem

Fixed priority algorithm

Examples - The Dominating Set Problem

Fixed priority algorithm

Examples - The Dominating Set Problem

Fixed priority algorithm

Examples - The Dominating Set Problem

Adaptive priority algorithm

A general lower bound technique

Interaction between two entities Solver and Adversary, Solver
tries to solve the problem applying the algorithm, Adversary
tries to give Solver the worst possible instance of the
problem.

Adversary must be able to provide a solution whose cost/
output is used to compute the approximation ratio of
Solver’s solution.

This is analogous to the competitive analysis of online
algorithms.

Approximation ratio

An algorithm is said to have an approximation ratio of p if
the expected cost C' of the solution is within a factor of p
of the cost C™ of an optimal solution, i.e. if

C<
i

holds for every instance of the problem.

Shortest Path

Given a directed Graph G(V, E) and two nodes s,t € V
find a directed tree of edges, rooted at s and with ¢ as a leaf.
The objective is to minimize the combined weight of the
edges on the path from s to ¢.

Theorem

No fixed priority algorithm can solve the shortest
path problem with any approximation ratio p

Proof idea:

k> 2p

Y =iz

1. If Solver rejects y then Adversary remove z and builds the
following instance:

a
u/ \1
S t
\1
b

Solver can no longer find a solution whereas Adversary
propose S={u,y} and wins.

2. If Solver accepts y then Adversary builds the following

instance:
a
u/ _1
S i
ridr=al |
k==t |
b

Adversary propose S={x,z} with cost 2, Solver can’t propose
{x,z,y/ because it wouldn’t be a directed tree rooted at s, hence
its solution must contain u and therefore it will cost at least
B+r.

A SRR
approximation ratio = I e syl)

2 QED

As Dijkstra’s Algorithm can solve the Shortest
Path Problem exactly and it belongs to the class
of ADAPTIVE priority algorithms, we can
conclude that the classes of algorithms FIXED
and ADAPTIVE are not equivalent.

Weighted Vertex Cover

Given a directed Graph G(V, E) in which every vertex

v € V has an associated positive weight w(v) find a vertex
cover (a subset of IV whose nodes touch every edge of the
graph) of minimum weight.

The weight of a vertex cover V' is defined as:

w(V') 1= Z w(v)

veV/’

It has been shown that is not possible to approximate the

weighted vertex cover with an approximation ratio better
than

10v/5 — 21 = 1.3606
Unless P=NP

The best known (non priority) algorithm approximates
the weighted vertex cover with an approximation ratio of

il
e

2 4

There are quite simple adaptive priority algorithm which
solves the weighted vertex cover problem with an
approximation ratio of 2.

There’s for instance Clarkson’s Algorithm that at any
iteration picks the node with the minimum weight on
number of not yet covered edges ratio.

Theorem

No adaptive priority algorithm can achieve an
approximation ratio better than 2 for the Weighted
Vertex Cover Problem.

Proof idea:

Ko, bipartite graph

| Nodes can bave a weight.
N X X X7 of either 1 or n’
o«"v

2y

One of the following events will eventually occur

1. the solver accepts a node
with weight n*

_ 2. the solver accepts 1 — 1
" ‘ nodes of weight 1

N XS from either sides

)&\:@”\ of the bipartite graph

3. the solver rejects a node

case I the solver accepts a node v
with weight n?

vovfzé il
LRXS
ig §v\

case 1 the solver accepts a node v

with weight n?

S
LA

KA,
4@’

Adversary set all the node
on the opposite side to 1 and
the remaining node to n”

case I the solver accepts a node v
with weight n?

n Adversary set all the node
on the opposite side to 1 and
the remaining node to n”

’ "'\ Solver’s solution contains v
AN
V‘:{ v“’v i and therefore cost at least n?

o"

»
%

O

case 1 the solver accepts a node v

with weight n?

)
av,
by

¢

S
%

/%

/’

Adversary set all the node
on the opposite side to 1 and
the remaining node to n”

Solver’s solution contains v
and therefore cost at least n>

Adversary proposes a solution
that costs n

case 1 the solver accepts a node v

with weight n?

W7
S
\“; A NXT7 v

£ IHIX
2 7X)\& 2

B RIS
7N\

Adversary set all the node
on the opposite side to 1 and
the remaining node to n”

Solver’s solution contains v
and therefore cost at least n>

Adversary proposes a solution
that costs n

If p < n°/n =n Adversary
wins, with p < 2 this is always
the case

case 2 the solver accepts n — 1 nodes of weight 1
from either sides of the bipartite graph

N6

4""'\‘/
(X

case 2 the solver accepts n — 1 nodes of weight 1
from either sides of the bipartite graph

Adversary sets the last node
on “Solver’s” side to n? and
all the other nodes to 1

ZAA

case 2 the solver accepts n — 1 nodes of weight 1
from either sides of the bipartite graph

1 Adversary sets the last node
on “Solver’s” side to n? and
all the other nodes to 1

Solver’s solution either contains

V‘v’\vz% 1 the “heavy” node or all the nodes
'{‘} ’{Q’ on the other side, hence it will
/ (“\ 2 cost at least 2n — 1

case 2 the solver accepts n — 1 nodes of weight 1
from either sides of the bipartite graph

Adversary sets the last node
on “Solver’s” side to n? and
all the other nodes to 1

Solver’s solution either contains

A4 the “heavy” node or all the nodes
/1 VY Y \ _~
>0:"'(’)\“:Q< on the other side, hence it will
ZAX XN cost at least 2n — 1

Adversary’s solution costs n

2n — 1
BB e ol)

n.
Adversary wins

case 3 the solver rejects a node v (of any weight)

XA

{ XK

A

SAXK

ZEIN

XY

case 3 the solver rejects a node v (of any weight)

1 Adversary set all the unseen node
on the opposite side of v to n°
and the remaining node to 1

\X X/
AR
NEAXK

i

case 3 the solver rejects a node v (of any weight)

Adversary set all the unseen node
on the opposite side of v to n°
and the remaining node to 1

3

At least 2 nodes are set ton

NEAXRS

SRS

case 3 the solver rejects a node v (of any weight)

Adversary set all the unseen node
on the opposite side of v to n°
and the remaining node to 1

3

At least 2 nodes are set ton

& Solver’s solution doesn’t contain
N, "‘V

Q7% - 2
CNETK v, hence it cost at least 2n

i

case 3 the solver rejects a node v (of any weight)

Adversary set all the unseen node
on the opposite side of v to n°
and the remaining node to 1

At least 2 nodes are set to 1°

Solver’s solution doesn’t contain
<, hence it cost at least 2n?

Adversary’s solution contains v
and costs at most n° +n — 1

n?4+n—1

so far so good!

Acceptances-first algorithm

* Special kind of adaptive priority algorithm
* The decision is an accept/reject decision

* After the first rejection the algorithm can no
longer accept any other item

Memoryless

* Special kind of adaptive priority algorithm
* The decision is an accept/reject decision

* Rejections have no influx on the further decision
(i.e. rejections are seen as 70-0ps)

Memoryless algorithm can be
simulated by acceptancesfirst.
algorithms

Node vs. edge model

In the node model the Graph is represented by
lists of adjacent vertices.

In the edge model the Graph is represented by
lists of adjacent edges.

The two models should be equivalent as they
represent the same thing

unfortunately most results in the two papers
require the problem to be formulated in a
specified form

Conclusions

This approach leads to results that hold for whole
classes of algorithms including yet to be designed
algorithms

The distinction between edge model and node
model is inelegant

Not all the result are really significant

The model is promising but still in the alpha
version

dulcis in fundo

courtesy by our friend at MSN.COM

Say you want to go from
Haugesund to Trondheim

Approximatively 600 km

S‘tE-'iI‘d{.]E:ra ; - Micraacd®
L .-'
Trondheim: ; M dap Pﬂ'lm

[0 JAMTLAHD e
Hristiansundn e

ARCTIC QCEAN Molde,
- Sveg,

SOGH 0G. SWEDEN,_

"FJORDAHE ... g :

LE|k§nger o’] nALnRHn

\ DHamﬁ .

“NORWAY, -, (5 7 " Falun®

FTorsliy, s dwkea

|;ﬂ :

Haugesund_ - :
Stavanger:
o
North Sea
: .ﬂ.rendal
Hrlstlansandq Guthe

Freder’lks:ha M

ER005 MicHzor Cop E20035 MAVTED .

’ ‘ ’ L {Y MapPoint
It doesn’t matter if you're e e TIAN
looking for the shortest way...

Loky i .&_rn:hangel

@
1 li ‘E -
i +z . RUSSIA
ICELAND |.|E"d -
; ¥ !
; =
ARCTIC QUEAN R Microsoft” : ,I feead
Y .. MapPoint’ i “fstersund
: ‘-13 i iStart A Phelsinki .
¢ i 3 | o H—|L—7— 3
ICELAND I_I End 12__ 5L ATLANTIC '. elzing nrf.
£ i - ; s SWEQEH anml i
rﬂ S £ I-.HIJE-;‘EIH QCEAN .ﬂ-.lhcur?; ILI{aImar Slau“%“ dllnluH;;'
ATEANTIC 1 \ 1T hei ; C e Eljll-l|::|L-||"g|"IIE:I DI::]E.'I'ISE.' ECDpenhagen_,. E%
QUEAN - oo ol L " BELARUS
~-~ Helsinki Tver ffr-, ;g | Gdansk@
eengfors. - H_UH ’ : WHJ’-‘EEWH
TRy . IRE - - . Berlin (LI Lui
gag v o i Amsterdafn m o W POLAHD . -9
| Ve e AOERStg, “lE *6EHMAN‘|" e -
Ediinburgh,, - Vi nlusa Ty London™ i vBFU I *e%&ﬁ“ RA“'I‘E
g C I S&els
“heriary Biskstok = BELARUS Parig _ @Bud’apest
b @ |
IRE: — A, _ Kiey e Bb Bt L AFG TR ROMAHIA
L R e POLAHD 1(; E E200dMictsol Cop EZO0S NAUTE]. o=t | =T) T o
. At :
e :] W"“““;‘ UKRAINE
ondo o
" aﬂ,russels &zm o = Chl?}l‘lﬂu =
GAR‘l" b “
%/ N oo 5 T ROMAHIA ~
2004 Mictsok Comp 2003 MAVTED. FRANG TNl "

H-[';-wﬂéuchgwﬂi or maybe for the fastest...

the point is....

WHERE DO YOU WANTTO GOTODAY?

