
Greedy algorithms on graphs

Elia Noris
norisel@student.ethz.ch

S.Davis, R.Impagliazzo
“Models of greedy Algorithms for Graph Problems”

A.Borodin, J.Boyar, K.S.Larsen
“Priority Algorithms for Graph Optimization Problems ”

Motivation

• Greedy algorithm are widely used in almost every
kind of problem

• They are quite often the simplest way to solve a
problem

• Until now there have been very few tries to
analyse them as a class of algorithm

• The definition itself is quite unprecise

What is greed?

Oliver Stone’s Wall Street (1987)

The point is, ladies and gentleman,
is that greed - for lack of a better

word - is good!

Greed is right!

Greed works!

“The point is you can’t be too greedy”
Donald J.Trump

Greed /gri:d/
noun [U]

a very strong wish to continually get more of
something, especially food or money

(%om Cambridge Advance Learner’s Dictionary)

The term “greedy algorithm”
is didactical, elegant and

intuitively understandable,
unluckily it lacks the

precision needed for a
mathematical analysis.

The priority model

Fixed priority algorithm
Determine an allowable ordering of the set of
possible input items (without knowing the actual
input set of items)

While is not empty

 index of input Item that comes
first in the ordering

Make an irrevocable decision concerning
and remove it from

S

S

S

next := I ∈ S

Inext

Adaptive priority algorithm

While is not empty
 Determine a total ordering of all possible input

items (without knowing the input items in
 not yet considered)

 index of input Item that comes
first in the ordering

 Make an irrevocable decision concerning

and remove it from

S

S

next := I ∈ S

Inext

S

Fixed priority algorithm:
Order the vertices by the number of neighbours.
Add the vertices to the DS until the graph is
dominated.

Adaptive priority algorithm

The next vertex will be the one with most not yet
covered neighbours.
Vertices are added to the DS until the graph is
dominated.

Examples - The Dominating Set Problem

Examples - The Dominating Set Problem

Fixed priority algorithm

Examples - The Dominating Set Problem

Fixed priority algorithm

Examples - The Dominating Set Problem

Fixed priority algorithm

Examples - The Dominating Set Problem

Adaptive priority algorithm

Examples - The Dominating Set Problem

A general lower bound technique

Interaction between two entities Solver and Adversary, Solver
tries to solve the problem applying the algorithm, Adversary
tries to give Solver the worst possible instance of the
problem.

Adversary must be able to provide a solution whose cost/
output is used to compute the approximation ratio of
Solver’s solution.

This is analogous to the competitive analysis of online
algorithms.

Approximation ratio

An algorithm is said to have an approximation ratio of if
 the expected cost of the solution is within a factor of
of the cost of an optimal solution, i.e. if

ρ

C ρ

C
∗

C

C∗
≤ ρ

holds for every instance of the problem.

Given a directed Graph and two nodes
find a directed tree of edges, rooted at and with as a leaf.
The objective is to minimize the combined weight of the
edges on the path from to .

Shortest Path

s, t ∈ V

s

s

t

G(V, E)
t

Theorem

No fixed priority algorithm can solve the shortest
path problem with any approximation ratio ρ

Proof idea:
a

y=1

!!!
!!

!!
!!

!

s

v=1

""""""""""

u=k
##

x=1

$$!
!!

!!
!!

!

w=k
%%

t

b

z=1

&&########

k ≥ 2ρ

y ≺ z

1. If Solver rejects y then Adversary remove z and builds the
following instance:

a

y=1

!!
!

!
!

!
!

!
!

!

s

u=k
""

x=1

##
!

!
!

!
!

!
!

! t

b

Solver can no longer find a solution whereas Adversary
propose S={u,y} and wins.

2. If Solver accepts y then Adversary builds the following
instance:

a

y=1

!!!
!!

!!
!!

!

s

u=k
""

x=1

##!
!!

!!
!!

! t

b

z=1

$$""""""""

Adversary propose S={x,z} with cost 2, Solver can’t propose
{x,z,y} because it wouldn’t be a directed tree rooted at s, hence
its solution must contain u and therefore it will cost at least
k+1.

approximation ratio = k + 1

2
>

k

2
= ρ

QED

As Dijkstra’s Algorithm can solve the Shortest
Path Problem exactly and it belongs to the class
of ADAPTIVE priority algorithms, we can
conclude that the classes of algorithms FIXED
and ADAPTIVE are not equivalent.

Given a directed Graph in which every vertex
 has an associated positive weight find a vertex
cover (a subset of V whose nodes touch every edge of the
graph) of minimum weight.

The weight of a vertex cover is defined as:

Weighted Vertex Cover

v ∈ V w(v)

V
′

w(V ′) :=
∑

v∈V ′

w(v)

G(V, E)

It has been shown that is not possible to approximate the
weighted vertex cover with an approximation ratio better
than

10
√

5 − 21 = 1.3606

Unless P=NP

The best known (non priority) algorithm approximates
the weighted vertex cover with an approximation ratio of

2 − θ(
1

√
log n

)

There are quite simple adaptive priority algorithm which
solves the weighted vertex cover problem with an
approximation ratio of 2.

There’s for instance Clarkson’s Algorithm that at any
iteration picks the node with the minimum weight on
number of not yet covered edges ratio.

Theorem

No adaptive priority algorithm can achieve an
approximation ratio better than 2 for the Weighted
Vertex Cover Problem.

Proof idea:

Kn,n bipartite graph

Nodes can have a weigh)
of either or1 n

2

One of the following events will eventually occur

1. the solver accepts a node
with weight n

2

2. the solver accepts
nodes of weight
from either sides
of the bipartite graph

n − 1

1

3. the solver rejects a node

case 1 the solver accepts a node v
with weight n

2

1

1

n
2

*

Adversary set all the node
on the opposite side to and
the remaining node to

1

n
2

1

1

n
2

1

1

1

1

n
2

n
2

n
2

*

case 1 the solver accepts a node v
with weight n

2

Adversary set all the node
on the opposite side to and
the remaining node to

1

n
2

1

1

n
2

1

1

1

1

n
2

n
2

n
2

*
Solver’s solution contains v
and therefore cost at least n

2

case 1 the solver accepts a node v
with weight n

2

Adversary set all the node
on the opposite side to and
the remaining node to

1

n
2

1

1

n
2

1

1

1

1

n
2

n
2

n
2

*
Solver’s solution contains v
and therefore cost at leastn

2

Adversary proposes a solution
that costs n

case 1 the solver accepts a node v
with weight n

2

Adversary set all the node
on the opposite side to and
the remaining node to

1

n
2

1

1

n
2

1

1

1

1

n
2

n
2

n
2

*
Solver’s solution contains v
and therefore cost at leastn

2

ρ < n2/n = nIf Adversary
wins, with this is always
the case

ρ < 2

Adversary proposes a solution
that costs n

case 1 the solver accepts a node v
with weight n

2

case 2 the solver accepts nodes of weight
from either sides of the bipartite graph

1

1

n − 1 1

1

1

1

1

1

1 Adversary sets the last node
on “Solver’s” side to and
all the other nodes to

n
2

1

n
2

1

1

1

1

1

n − 1 1case 2 the solver accepts nodes of weight
from either sides of the bipartite graph

Solver’s solution either contains
the “heavy” node or all the nodes
on the other side, hence it will
cost at least 2n − 1

n − 1 1case 2 the solver accepts nodes of weight
from either sides of the bipartite graph

1

1

1

1

n
2

1

1

1

1

1

Adversary sets the last node
on “Solver’s” side to and
all the other nodes to

n
2

1

Solver’s solution either contains
the “heavy” node or all the nodes
on the other side, hence it will
cost at least 2n − 1

Adversary’s solution costs n

If
Adversary wins

ρ <
2n − 1

n
= 2 − o(1)

case 2 the solver accepts nodes of weight
from either sides of the bipartite graph

n − 1 1

1

1

1

1

n
2

1

1

1

1

1

Adversary sets the last node
on “Solver’s” side to and
all the other nodes to

n
2

1

1

1

*

case 3 the solver rejects a node v (of any weight)

Adversary set all the unseen node
on the opposite side of v to
and the remaining node to

case 3 the solver rejects a node v (of any weight)

1

1

*

n
2

n
2

n
2

n
2

n
2

1

1

1

1

case 3 the solver rejects a node v (of any weight)

1

1

*

n
2

n
2

n
2

n
2

1

1

1

At least 2 nodes are set to n
2

Adversary set all the unseen node
on the opposite side of v to
and the remaining node to

n
2

1

case 3 the solver rejects a node v (of any weight)

1

1

*

n
2

n
2

n
2

n
2

1

1

1

At least 2 nodes are set to n
2

Solver’s solution doesn’t contain
*, hence it cost at least 2n

2

Adversary set all the unseen node
on the opposite side of v to
and the remaining node to

n
2

1

case 3 the solver rejects a node v (of any weight)

1

1

*

n
2

n
2

n
2

n
2

1

1

1

At least 2 nodes are set to n
2

2n
2

Adversary’s solution contains v
and costs at most n2

+ n − 1

Adversary wins iff ρ <
2n2

n2 + n − 1
= 2 − o(1)

QED

n
2

1

Adversary set all the unseen node
on the opposite side of v to
and the remaining node to

Solver’s solution doesn’t contain
*, hence it cost at least

so far so good!

Acceptances-first algorithm
• Special kind of adaptive priority algorithm

• The decision is an accept/reject decision

• After the first rejection the algorithm can no
longer accept any other item

Memoryless
• Special kind of adaptive priority algorithm

• The decision is an accept/reject decision

• Rejections have no influx on the further decision
(i.e. rejections are seen as no-ops)

Memoryless algorithm can be
simulated by acceptances-firs)
algorithms

Node vs. edge model
• In the node model the Graph is represented by

lists of adjacent vertices.

• In the edge model the Graph is represented by
lists of adjacent edges.

• The two models should be equivalent as they
represent the same thing

• unfortunately most results in the two papers
require the problem to be formulated in a
specified form

Conclusions
• This approach leads to results that hold for whole

classes of algorithms including yet to be designed
algorithms

• The distinction between edge model and node
model is inelegant

• Not all the result are really significant

• The model is promising but still in the alpha
version

dulcis in fundo
courtesy by our friend at MSN.COM

Say you want to go from
Haugesund to Trondheim

Approximatively 600 km

It doesn’t matter if you’re
looking for the shortest way...

or maybe for the fastest...

the point is....

WHERE DO YOU WANT TO GO TODAY?

