
TinyOS
Seminar of Distributed Systems 2004/05, Report

Jan S. Rellermeyer
Department of Computer Science, ETH Zurich

jrellermeyer(at)student.ethz.ch

1 Introduction

Sensor networks are low cost and low power devices, designed to collect data,
do some local computation and transmit partially processed data via radio
frequency or bluetooth. At any time, single nodes of the network might
fail or change their position due to environmental influences. Thus sensor
networks must be self-organizing and cannot use a globally known topology.
The major bottleneck of the motes themselves is the power consumption
and the low computational power.
TinyOS has been designed to meet the requirements of sensor networks.
Sensor values have to be processed in real time to avoid data loss. As the
hardware contains physical parallelism, the OS must provide some kind of
multithreaded architecture.

2 Summary

Even systems that call themselves real time need some hundreds of processor
cycles to perform a context switch. On a small microprocessor like the Atmel
AVR, used in both mica-family motes and the BTnode, this is unacceptable
and would lead to data loss. TinyOS does not use a stack-based threaded
architecture but an event based architecture. This allows to have only one
stack and a single execution context. In case a hardware component wants
to deliver data, it calls an event that will preempt running tasks.
TinyOS is based on nesC, a C dialect that is imperative at low level and
declarative at high level. Applications are component based, code is encap-
sulated in components that are defined by the interfaces they provide and
by those they can consume. Interfaces are bidirectional, they do not only
define the commands that have to be implemented by the lower level that
implements the interface, but also events that have to be implemented by
the higher level that uses the component implementing the interface. The
component based model decouples API and implementation and hides the
specific properties of an implementation. At compile time, implementations
can be substituted by different implementation, either in hardware or in

1



software, only the wiring has to be changed. This makes TinyOS very flex-
ible.
A core feature of TinyOS is the scheduling, TinyOS uses a simple queue with
length 7 and a two level scheduling. Events have high priority and can pre-
empt tasks, that have low priority. To avoid blocking scenarios, events and
commands are expected to do only state transmissions and leave complex
computations to tasks, that can be preempted if necessary. Hardware inter-
rupts thrown by timers or by the radio module map to first level events.
The paradigm for network transmissions in TinyOS is active messaging.
Messages contain a handler address and on arrival this handler is called.
Each node is expected to run the same handler code and can either redirect
the message to a neighbor, if it is not the receiver, or start some local events
as reaction to the message. Transmissions are best effort, if more is needed,
it is up to the application to implement more sophisticated features like
flow control or encryption. To send packages over the network, TinyOS uses
multi-hop routing instead of point-to-point connections to save transmission
power. Route discovery is done by 2-hop broadcast and topology discovery
is based on shortest path from each node to the base station.
A typical application for TinyOS is TinyDB, a RDBS interface for TinyOS
sensor networks. In general, SQL commands are transmitted from the base
station down the tree to every node. Intermediate nodes collect the data
from the children and transmit the aggregated data to the root node.

3 Conclusion

Sensor networks become more and more popular, in the meantime, global
players like Intel are pushing the technology. A yet unsolved problem is the
disposal of sensor nodes after they have reached the end of their life cycle.
TinyOS is designed to meet the requirements of small devices with small
resources. The major bottleneck is the power consumption of the radio
module so better routing algorithms could improve the system significantly.
Static resource allocation is a direct result of the small resources but with
computation power of current motes, dynamic resource allocation could be
afforded. Additionally, systems to change the node’s code at runtime might
broaden the room for applications as currently nodes have to be collected
and manually reprogrammed to change their general behavior. Dynamic
component based systems like OSGi are more flexible than TinyOS while
still small-footprinted.

2



References

[1] A. Easwaran: TinyOS. http://www.i2r.a-
star.edu.sg/icsd/SecureSensor/papers/TinyOS.pdf

[2] M. Franklin, W. Hong: ETH Zurich Distributed Systems Summer
School: Data Streams and Sensor Networks, ETH Zurich, 2004.
http://www.dcg.ethz.ch/micsss2004/files/Franklin.zip

[3] J. Hill: A Software Architecture Supporting Networked Sensors, U.C.
Berkeley, 2000. http://www.tinyos.net/papers/TinyOS Masters.pdf

[4] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pis-
ter: A System Architecture for Networked Sensors, U.C. Berkeley.
http://web.cs.berkeley.edu/tos

[5] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister: System
Architecture Directions for Networked Sensors. In Proc. 9th Interna-
tion Conference on Architectureal Support Programming Languages
and Operating Systems (ASPLOS-IX), pages 93-104. ACM Press, New
York, Nov. 2000

[6] V. Raghunathan: TinyOS. http://black.csl.uiuc.edu/∼vivek/talks/tinyostalk.pdf

[7] G. Wong: Motes, nesC and TinyOS. http://cs-
people.bu.edu/gtw/motes/talk.pdf

[8] www.tinyos.net: TinyOS Tutorial

3


