
Contention-Free MAC protocols for Wireless Sensor Networks

Costas Busch

buschc@cs.rpi.edu

Malik Magdon-Ismail

magdon@cs.rpi.edu

Fikret Sivrikaya

sivrif@rpi.edu

Bülent Yener

yener@cs.rpi.edu

Abstract

A MAC protocol specifies how nodes in a sensor network coordinate their communication over
a shared communication channel. Owing to the limited capabilities of sensor nodes, the desired
properties of a MAC protocol are: it should be distributed and avoid collisions; it should self-

stabilize to changes in the network (such as arrival of new nodes), and these changes should be
contained, i.e., affect only the nodes in the vicinity of the change; it should not assume that
nodes have a global time reference, i.e., nodes may not be time-synchronized. We give the first
MAC protocols that satisfy all of these requirements. In particular, we provide distributed,
contention-free, self-stabilizing MAC protocols which do not assume a global time reference.

In a stable state, our protocols ensure that a node’s throughput is inversely proportional
to the local density of nodes, hence a localized bottleneck will not affect the entire network.
The communication complexity until stabilization is small: O(log n) control messages per node,
of size at most O(log n) bits (n is the size of the sensor network). The time it takes for the
protocol to stabilize depends on the maximum density of the nodes. Further, in the event that
the network changes, only nodes in the neighborhood of the change get affected.

1

1 Introduction

Sensor networks are the focus of significant research efforts on account of their diverse applications,
that include disaster recovery, military surveillance, health administration and environmental mon-
itoring. A sensor network is comprised of a large number of limited power sensor nodes which
collect and process data from a target domain and transmit information back to specific sites (e.g.,
headquarters, disaster control centers). We consider wireless sensor networks which share the same
wireless communication channel. A Medium Access Control (MAC) protocol specifies how nodes
share the channel, and hence plays a central role in the performance of a sensor network.

Sensor networks contain many nodes, typically dispersed at high, possibly non-uniform, den-
sities; sensors may turn on and off in order to conserve energy; and, the communication traffic is
space and time correlated. Contention occurs when two nearby sensor nodes both attempt access
the communication channel. Contention causes message collisions, which are very likely to occur
when traffic is frequent and correlated, and they decrease the lifetime of a sensor network. A MAC
protocol is contention-free if it does not allow any collisions. All existing contention-free MAC
protocols assume that the sensor nodes are time-synchronized in some way. This is usually not
possible on account of the large scale of sensor networks.

The preceding discussion emphasizes the following desirable properties for a MAC protocol in
sensor networks: it should be distributed and contention-free; it should self-stabilize to changes
in the network (such as the arrival of new nodes into the network), and these changes should be
contained, i.e., affect only the nodes in the vicinity of the change; it should not assume that nodes
have access to a global time reference, i.e., nodes may not be time-synchronized. These properties
are essential to the scalability of sensor networks and for keeping the sensor hardware simple. In
this paper, we give the first MAC protocols that satisfy all of these requirements.

A contention-free MAC protocol should be able to bring the network from an arbitrary state
to a collision-free stable state. Since the protocol is distributed, during this stabilization phase
collisions are unavoidable. We measure the quality of the stabilization phase in terms of the time
take to reach the stable state, the amount of control messages exchanged. When the nodes reach
the stable state, they use the contention-free MAC protocol to transmit messages without collisions.
In the stable state, we measure the efficiency by a node’s throughput, the inverse of the time interval
between which it is allowed to transmit messages by the MAC protocol.

Model. A sensor network with n nodes can be represented by a graph G = (V,E), in which two
sensor nodes are connected if they can communicate. We do not place any restrictions on G. A
message sent by a node is received by all of its adjacent nodes. If two nodes are adjacent and send
messages simultaneously their messages collide. If two nodes u and w are not adjacent and have
the same common adjacent node v, then when u and w transmit at the same time their messages
collide in v (hidden terminal problem).

The k-neighborhood of a node v, ∆k(v), is the set of nodes whose shortest path to v has length
at most k. We denote the size of a nodes in the k-neighborhood by δk(v), and the maximum
k-neighborhood size by δk. A 1-neighbor is simply referred to as neighbor. We can generalize this
notion of a k-deighborhood to the k-neighborhood of a set of nodes, S: ∆k(S) is the set of nodes
that are at most a distance k away from some node in S. We assume that at the start of the
algorithm, every node has been provided an upper bound on δ1 and δ2 (for example by the network
administrator).

1

Contributions. We give a distributed, contention-free, self-stabilizing MAC protocol which does
not assume a global time reference. The protocol has two parts. Starting from an arbitrary initial
state, the protocol first enters a loose phase where nodes set up a preliminary MAC protocol. This
phase is followed by a tight phase in which nodes make the MAC protocol more efficient. Both
parts of the protocol are self-stabilizing. Since we make no assumptions about the initial state, the
protocol re-stabilize after network changes as well.

During the loose phase, every node transmits at most O(log n) control messages, each of size
at most O(log n) bits. The time duration of this phase is O(log n ·min{δ31 , δ

2
2}). The protocol has

now reached a stable state in which the throughput of a node is O(1/min{δ31 , δ
2
2}). The network

may either remain in this protocol, or proceed to the next (tight) phase in which we improve the
steady state throughput of the nodes. The tightening phase also requires at most O(log n) control
messages per node of size at most O(log n) to reach the steady state. The time duration of this
phase is O(log n · min{δ51 , δ

2
1δ

2
2}). During steady state, the throughput of node v is 1/φ2

v , where
φv is the maximum 1-neighborhood size of all node v’s 2-neighbors. An important property of the
tight phase is that the throughput of a node is related only to the local “density” of the node in
graph, and hence adapts to the varying topology of the network.

If the network changes, for example a set S of nodes suddenly power up after being powered
down for some time, as already mentioned, the protocol will self-stabilize to the change. Further,
the only nodes that are affected by the stabilization are nodes in ∆2(S) for the loose phase, and
∆3(S) for the tight phase.

Approach. Our approach is based on the concept of a frame (see Figure 1), which is the basis
of TDMA MAC protocols. We adapt the frame approach so that it does not depend on any global
time reference. Each node divides time into equal sized frames. Each frame is further divided into
equal sized time slots; a time slot corresponds to the time duration of sending one message. Frames
in the same node have the same size (number of slots). However, different nodes can have different
frame sizes. The frames do not need to be aligned at the various nodes, and neither do the time
slots.

u

w

v

Figure 1: Frames of three nodes. Frames at different nodes may not be aligned. Solid shaded time
slots indicate the selected time slot of each node; longer vertical lines identify the frame boundaries.

The basic idea is that each node selects a slot in its own frame which it then uses to transmit
messages. The selected slots of any 2-neighbor nodes must not overlap (that is, they should be
conflict-free), since otherwise collisions can occur. In order to guarantee that slots remain conflict-
free in any frame repetitions, the frame sizes in the same neighborhood are chosen to be multiples
of each other. In our algorithms the frame sizes are powers of 2. Thus, nodes need to select slots
only once, and the slots remain conflict-free thereafter.

2

The MAC protocols (algorithms) we provide find conflict-free time slots. For the loose phase,
we have developed algorithm LooseMAC in which all nodes have the same fixed frame size, which is
proportional to min{δ31 , δ

2
2}. For the tight phase we have developed algorithm TightMAC in which

each node v has frame size proportional to φ2
v, which depends only on the local area density of

node i. Thus, in TightMAC different nodes in the network have different frame sizes that reflects
the variation of the node density in different areas of the network.

Related Work. MAC protocols fall into two broad classes: contention-based and contention-
free. Contention-based MAC protocols are also known as random access protocols, requiring no
coordination among the nodes accessing the channel. Colliding nodes back off for a random duration
and try to access the channel again. Such protocols first appeared as Pure ALOHA [1] and Slotted
ALOHA [17]. The throughput of Aloha-like protocols was significantly improved by the Carrier
Sense Multiple Access (CSMA) protocol [10]. Recently, CSMA and its enhancements with collision
avoidance (CA) and request to send (RTS) and clear to send (CTS) mechanisms have led to the
IEEE 802.11 [24] standard for wireless ad-hoc networks. The performance of contention based MAC
protocols is weak when traffic is frewuent or correlated and these protocols suffer from stability
problems [19]. As a result, contention-based protocols are not suitable for sensor networks.

Most related to our work are contention-free MAC protocols. In these protocols, the nodes are
following some particular schedule which guarantees collision-free transmission times. Typical ex-
amples of such protocols are: Frequency Division Multiple Access (FDMA); Time Division Multiple
Access (TDMA) [11]; Code Division Multiple Access (CDMA) [21]. In addition to TDMA, FDMA
and CDMA, various reservation based [9] or token based schemes [5, 8] are proposed for distributed
channel access control. Among these schemes, TDMA and its variants are most relevant to our
work. Allocation of TDMA slots is well studied (e.g., in the context of packet radio networks) and
there are many centralized [15, 20], and distributed [2, 6, 16] schemes for TDMA slot assignments.
All these existing protocols are either centralized or rely on a global time reference.

There is considerable recent work on integrated views of several layers in wireless networking.
Power controled MAC protocols have been considered by [7, 13, 14, 12, 22] in settings that are based
on collision avoidance [13, 12, 22], transmission scheduling [7], and limited interference CDMA
systems [14]. Some recent results suggest energy saving by powering off a subset of the nodes in
an ad hoc wireless network [18, 23, 4, 3]. The common theme is to enable nodes to power off
or go to low energy sleeping mode during idle time while ensuring connectivity. While GAF [23]
and SPAN [4] are distributed approaches with coordination among neighbors, in ASCENT a node
decides itself to be on or off [3].

Paper Outline. We continue in Section 2 with a description and analysis outline of Algorithm
LooseMAC (the detailed description and analysis appears in the appendix). Then we give the
description and analysis of Algorithm TightMAC in Section 3.

2 Algorithm LooseMAC

Here we give a description of Algorithm LooseMAC and its performance analysis. In the algorithm
each node selects the same frame size, which is proportional to min{δ31 , δ

2
2}. The algorithm is

randomized and guarantees that all nodes will find their slots fast, sending only a small number of
messages. Further, the algorithm is self-stabilizing with good affected area containment properties.

3

For simplicity of the presentation, we will assume that slots are aligned (frames do not need to
be aligned). All results hold immediately for when the slots are not aligned (with small constant
factors, since each slot may overlap with at most two slots in a neighbor’s frame). For notation
convenience, given a set of nodes V = {v1, v2, . . . , vn}, we will denote node vi with i.

2.1 Description of LooseMAC

Algorithm 1 depicts the basic functionality of LooseMAC. Consider some node i. Node i divides
time into frames of size Λ. The task for node i is to select a conflict-free slot. When this occurs we
say that the node is “ready”; variable Ready set to true signifies this event.

Algorithm 1 LooseMAC(node i)

1: Divide time into frames of size Λ;
2: Ready ← false;
3: while not Ready do
4: Select a slot σi randomly in the frame;
5: Send a “beacon” message in σi;
6: Listen for a period of Λ time slots;
7: if no collision is detected by i and no neighbor of i reports a conflict then
8: Ready ← true;

Initially, when node i enters the network it is not ready. Node i selects randomly and uniformly
a slot σi in its frame. In σi, node i sends a “beacon” message mi to its neighborhood. Let Z denote
the time period with the next Λ time slots. If σi doesn’t create any conflicts in its neighbors during
Z, then node i keeps slot i and it becomes ready. After the node becomes ready it remains ready
and doesn’t select a new slot (with the exception of when a new neighbor joins the network, which
is described in the Section 2.2). Below we explain how node i can detect that σi creates a conflict,
and therefore, whether to keep or abandon the selected time slot (see also Figure 2.1).

If mi creates conflicts in some neighbor j, then j responds with broadcasting a message mj

that reports the conflict (this message simply says that a conflicts occurred in j, without specifying
which node caused the conflict). Node j sends the mj during its currently selected slot σj. Since
frame length of j is also Λ, the message mj is sent before the end of Z. If mj is received by i without
collisions, then i infers that σi creates conflicts, and i abandons σi and continues with selecting
another slot. If mj is received with collisions, node j does not know if mj was reporting a conflict
or not (since it listens to noise). For safety, i assumes that the collided message was reporting a
conflict, so node i again abandons σi and selects another slot. The process repeats until i does not
detect message collisions in Z and no node reports a conflict in a period of Λ time slots.

To enable the nodes to detect conflicts, they use a marking mechanism. A node marks the time
slots that are being used by its neighbors. Consider node j. Suppose that a neighbor i sends a
message mi to j at a slot π. If node j receives mi without collisions, and π is unmarked, then j
marks π as being used by i. If later i selects another slot, node j will mark the new slot position
and unmark the previous position. Using the marking mechanism, node j detects a conflict as
follows. Suppose that a neighbor node k sends a message during slot π, which is already marked
with i. Node j then detects a conflict between the time slots chosen by i and k. A conflict occurs
also if nodes i and k transmit at the same time, which is observed as a message collision by j. We
obtain the following result.

4

j

i

k

Figure 2: Execution of the LooseMAC algorithm, where the shaded slot corresponds to a collision
and the waived lines to a conflict report message.

Lemma 1 For Λ = Θ(min{δ31 , δ
2
2}), with high probability, a non-ready node becomes ready within

O(Λ · log n) time slots.

Sketch of proof: Here, we consider only the case Λ = Θ(δ31) (the case Λ = Θ(δ22) is treated
similarly). Let i be a non-ready node. When node i selects a new slot, it becomes ready if for the
next period of Λ slots, which we will denote Z, no collision occurs in i and no neighbor of i reports
a conflict.

During Z, a neighbor j sends at most two messages, one due to a new selected slot, and one
at the old selected slot. According to the algorithm, collisions (and conflicts) are caused primarily
when nodes select new slots. A new slot message of j collides with probability at most p1 ≤ cδ1/Λ,
for some small constant c. This holds since i has at most δ1 neighbors and each neighbor can send
at most 2 messages in period Z, that could collide with the message of j. Considering now all the
neighbors of i, a collision occurs in i during Z with probability at most p2 = p1δ1 ≤ cδ

2
1/Λ.

A neighbor node j reports a conflict in Z if a conflict occurs in j either during Z or in the
previous Λ time slots. With a similar analysis as above, this event occurs with probability at most
p3 ≤ c′δ1/Λ (where c′ > c, since we also consider the conflicts in the marked slots in the frame of
j). Considering now all the δ1 − 1 neighbors, we have that a conflict is reported by any of them
with a probability most p4 = δ1p3.

Consequently, node j remains non-ready with probability at most p5 = p2 + p4 ≤ c′′δ31 , for
constant c′′ ≥ c′. Since Λ = Θ(δ31), p5 ≤ c′′, which is a constant. Thus, in the expected case, node
i becomes ready within 1/c′′ frame repetitions. This implies that with high probability, node i
switches to ready in O(log n) frame repetitions, as needed.

2.2 Fresh Nodes

Algorithm LooseMAC can handle the case in which nodes join and leave dynamically the network.
When a node leaves, it simply informs the neighbor nodes to unmark the respective slots, and the
rest of the network remains unaffected. However, even if the departing node isn’t able to inform
its neighbors that it is leaving, for example when a node fails or crashes, the rest of the network
still remains unaffected.

The situation is more complicated when a node joins the network, due to the hidden terminal
problem. Let j and k be two nodes which are not 2-neighbors. Let i be a node which joins the
network and which is neighbor with both j and k. Thus, when i joins, j and k become 2-neighbors.
Suppose now that j and k were ready before i joins, and have already selected slots which are
overlapping (and which were conflict-free, since i and j were not 2-neighbors). When i joins, the
slots of j and k conflict, and thus they need to reselect slots.

5

This is accomplished by having node i to force nodes j and k to become non-ready. In order to
achieve this, when i joins the network, it is in a special status which is called fresh. Node i informs
its neighbors about its special status by sending control messages. When a neighbor node j of i
receives a control message from i indicating that i is fresh, then j becomes non-ready.

While i is fresh, it selects random slots and if for a period of Λ slots no conflict occurs in it
and its neighbors, then its switches to the non-fresh status. This guarantees that every neighbor
of i has become non-ready before i becomes non-fresh. Then, node i continues with the algorithm
as being non-ready until it becomes ready, as described in Section 2.1. With an analysis similar to
Lemma 1, we obtain the following lemma.

Lemma 2 For Λ = Θ(min{δ31 , δ
2
2}), with high probability, a fresh node becomes non-fresh within

O(Λ · log n) slots.

2.3 Complexity of LooseMAC

A network state is stable if all nodes in the network are ready. When a network is in a stable state
in stays in it until some new node joins the network. We show now that starting from an arbitrary
state I, if no changes occur in the network after I, the network reaches a stable state. Suppose for
the discussion below that Λ = Θ(min{δ31 , δ

2
2}).

Let S be the set of non-ready nodes in state I. Let Sf be the set of fresh nodes in S. Lemma 2
implies that within O(Λ · log n) slots, the network reaches a state I ′ in which all nodes in Sf become
non-fresh, and thus, there are no more fresh nodes in the network. In I ′ there are only non-ready
nodes in the network. Lemma 1, implies that all the non-ready nodes become ready in O(Λ · log n)
time slots. Therefore, within O(Λ · log n) time slots, the network reaches a stable state.

The “affected” nodes are the nodes which send control messages until stabilization. The nodes
in ∆1(Sf) become all non-ready, and in I ′ only the nodes of ∆1(S) are non-ready. While those
nodes become ready, they communicate with their neighbors. Therefore, the nodes affected are all
members of ∆2(S). Each affected node sends at most O(log n) control messages, since in every
frame it sends at most 2 messages. Each message has size O(log n) bits, since the message consists
of the sender’s id (log n bits), fresh status (1 bit), and conflict report (1 bit). Therefore, we have
the following theorem.

Theorem 3 (Complexity of LooseMAC) Consider an arbitrary network state I, such that no

change occurs after I. With high probability, the network stabilizes within O(Λ · log n) slots. If S
are the non-ready nodes in I, then the affected area is ∆2(S). Each affected node sends at most

O(log n) messages, each message consisting of O(log n) bits.

3 Algorithm TightMAC

We consider now the case where nodes have different frame sizes. We present the self-stabilizing
Algorithm TightMAC in which each node i has a frame size proportional to φ2

i ; recall that φi is the
maximum 1-neighborhood size of any 2-neighbor of i. This algorithm runs on top of LooseMAC.
(To simplify the discussion, we will refer to the frames of TightMAC as “tight”, and the frames of
LooseMAC as “loose”.)

When a node enters the network, is first runs the LooseMAC algorithm. Using the selected slot
in the loose frame (the loose slot), the node communicates with its neighbors in order to compute

6

the size of the tight frame, and then to find a conflict-free slot (the tight slot) in the tight frame.
Then the node starts using the tight frames slots. The tight frames and the loose frames are
interleaved so that a node can switch between them whenever necessary. This enables algorithm
TightMAC to be self-stabilizing, due to the self-stabilizing nature of LooseMAC.

3.1 Ready Levels

After a node runs LooseMAC, the TightMAC algorithm requires that all nodes in its 2-neighborhood
are ready (in order to compute φi). In order to make this possible, we modify the LooseMAC
algorithm so that there are three additional ready levels: ready-1, ready-2 and ready-3. A node is
ready-x if all nodes in its neighborhood are ready-(x− 1). A node starts executing the TightMAC
algorithm when it is ready-3.

The ready status changes as follows. When a node becomes ready, it broadcasts a message
informing its neighbors about it. When a ready node has received ready messages from all of its
neighbors it becomes ready-1. In a similar way, a ready-1 node elevates its status to ready-2, and
then to ready-3. A node does not elevate its status further. In the LooseMAC algorithm, a ready-x
node has the same behavior as a ready node (for example, from any ready-x mode it becomes
non-ready when a fresh node arrives in the neighborhood).

3.2 Description of TightMAC

Algorithm 2 depicts the outline of Algorithm TightMAC. When a node i joins the network, it first
executes the LooseMAC algorithm until it becomes ready-3. At this point it starts the execution of
the main part of the TightMAC algorithm. All the control messages are sent using the loose slots,
until the node switches to using the tight frames.

Algorithm 2 TightMAC(node i)

1: Execute LooseMAC(i);
2: Whenever i becomes ready-3:
3: Inform the 2-neighborhood about δ1(i) and then compute φi;
4: Choose a frame Fi with |Fi| = 2dlog 6φ2

i
e;

5: Inform the 1-neighborhood about the relative position of Fi, with respect to its loose slot;
6: Execute FindTightSlot();
7: Start using the tight frame;

Next i computes its φ values. When node i becomes ready-3, it knows its 1-neighborhood, since
all these nodes have marked slots in its loose frame of i. Thus, i knows δ1(i). Then i sends this
value to its neighbors. Each neighbor computes the maximum of the values received and is sends
it again to its neighbors. Now i knows the maximum 1-neighborhood size, of any of 2-neighbors,
and thus it computes φ. This process requires at most 2 control messages from each node.

Then, node i chooses the size of its tight frame Fi to be equal to the smallest power of 2 bigger
or equal to 6φ2

i . Then i sends a message notifying its neighbors about the position of Fi with
respect to the position of the loose slot. This information is needed in order for the neighbor nodes
to determine whether the slots in the tight frames conflict or not. After this step, node i executes
the FindTightSlot algorithm (described in Section 3.3) which computes the conflict-free slot in the
frame Fi. After the tight slot is computed, node i switches to using tight frame Fi.

7

In order to guarantee the proper interleaving of the loose and tight frames, in Fi, in addition to
the tight slot, node i also reserves slots for the loose slot and all marked slots in the loose frame.
This way, the slots used by LooseMAC are always preserved and can be used by i, even in the tight
frame. This is especially useful when node i becomes non-ready, or some neighbor is non-ready,
and i needs to execute the LooseMAC algorithm again.

3.3 Algorithm FindTightSlot

In the heart of the TightMAC algorithm is the FindTightSlot algorithm, which is used to find
conflict-free slots in the tight frames. The tight frames have different sizes at the various nodes,
which depends on their local parameter φi. The different frame sizes cause additional conflicts
between the selected slots of neighbors. Take two nodes i and j with respective frames Fi and Fj .
Let si be a slot of Fi. Every time that the frames repeat, si overlaps with the same slots in Fj .
The coincidence set Ci,j(si) is the set of time slots in Fj that overlap with si in any repetitions of
the two frames. If |Fi| ≥ |Fj |, then si overlaps with exactly one time slot of Fj . If on the other
hand |Fi| < |Fj |, then |Ci,j(si)| > 1. Nodes i and j conflict if their selected slots si and sj are
chosen so that sj ∈ Ci,j(si) (or equivalently si ∈ Cj,i(sj)); in other words, si and sj overlap at some
repetition of the frames Fi and Fj .

Algorithm 3 FindTightSlot()

1: SlotFound← false;
2: while not SlotFound do
3: Select← false;
4: With probability 1/φ2

i set Select← true;
5: if Select then
6: Let si be an randomly chosen unreserved slot in the first 6δ21(i) slots of Fi;
7: Send the position of si;
8: Listen for a period of Λ time slots;
9: if no conflict is reported by any neighbor then

10: SlotFound← true;

The task of algorithm FindTightSlot for node i is to find a conflict-free slot in Fi. In order to
detect conflicts, node i uses a slot reservation mechanism, similar to the marking mechanism of
LooseMAC. When frame Fi is created, node i reserves in Fi as many slots as the marked slots in
its loose frame. This way, when FindTightSlot selects slots, it will avoid using the slots of the loose
frame, and thus, both frames will coexist.

The procedure for selecting a slot is as follows. Node i selects an unreserved slot σi in the first
6δ21(i) slots of Fi. As the analysis shows, these are enough slots in order to obtain a conflict-free
slot. Then node i notifies its neighbors about σi. In order to do so it uses the loose slot, which
repeats every Λ time slots. Each neighbor j then checks if σi creates any conflicts in their own slots,
by examining whether si conflicts with reserved slots in Fj . If conflicts occur, then j responds with
a conflict report message (again in the loose slot). Node i waits for Λ time slots. In this period
if a neighbor detected a conflict it reports it. If i receives a conflict report then it chooses again
another slot and the process repeats; otherwise, i returns the selected slot si.

In the algorithm, a node select a new slot in a loose frame with probability 1/φ2
i . This guarantees

that the new slot selection is unlikely to cause many conflicts with other nodes choosing slots at

8

the same time, which helps in stabilizing with small frame sizes and small number of messages.
We would like to comment on the choice of the frame size of node i, which is proportional to

φ2
i . Take some node j which is a 2-neighbor of i. Node j chooses a slot in the first Z = 6δ21(j) slots

of Fj . Node i has frame size larger than Z. So, node i cannot have more than one slot repetition
in Z. This implies that i and j conflict at most once during Z. Therefore, and so the possible
conflicting slots in j during Z are bounded by the 2-neighborhood size of j. This makes it easy to
bound the probabilities in our analysis which is given below.

Lemma 4 Let j ∈ ∆2(i) be node which selects a slot sj. Slot sj causes conflicts in ∆1(i) with

probability at most 1/2.

Proof: Node j chooses sj among q1 ≥ 4δ21(j) unreserved slots in frame Fj (since at most δ1(j)
by the loose frame slots, and δ1(j) are reserved FindTightSlot algorithm). When sj is selected,
there are q2 ≤ 2δ2(j) total slots reserved in the frames in all the 1-neighbors of j. Subsequently, sj

creates a conflict in any 1-neighbor with probability at most q2/q1 = 1/2.

Lemma 5 For node i, during a period of Λ time slots, conflicts occur in ∆1(i) with probability at

most 1/2.

Proof: Let Z be the period of Λ time slots. A conflict is caused during Z in ∆1(i) by any slot
selection in nodes ∆2(i). A slot selection by node j ∈ ∆2(i) occurs with probability at most 1/φ2

j .
From Lemma 5, a slot selection of j causes conflicts in ∆1(i) with probability at most 1/2. There
are at most δ2(i) nodes similar to j. The probability that any of them causes a conflict during Z
in ∆1(i) is at most q ≤ δ2(i)/(2min{j∈∆2(i)} φ

2
j). Since for any j ∈ ∆2(i), φ

2
j ≥ δ2(i), we have that

q ≤ 1/2, as needed.

Lemma 5, implies that every time that i selects a slot in its tight frame, this slot is conflict-free
with probability at least 1/2. Since i selects a time slot with probability 1/φ2

i in every repetition
of loose frame, in the expected case i will select a slot within O(φ2

i) repetitions of the loose frame.
This implies the following result.

Corollary 6 With high probability, node i successfully chooses a conflict-free time slot in Fi within

O(φ2
i Λ log n) time slots.

3.4 Complexity of TightMAC

A network state is stable if all nodes in the network have selected conflict-free tight slots. When a
network is in a stable state in stays in it until some node joins/leaves the network. We show now
that starting from an arbitrary state I, if no changes occur in the network after I, the network
reaches a stable state. Let S ne the non-ready nodes in state I.

From Theorem 3, with high probability, the LooseMAC requires O(Λ log n) time slots until all
nodes become ready. Then, O(1) time is required until the nodes become ready-3. Consider a node
i. Computing φi requires O(1) messages sent from node i, where each message consists of O(log n)
bits. From Lemma 6, with high probability, node i requires O(φ2

i Λ log n) time slots until it selects
the conflict-free time slot. Since, δ1 ≥ φi, the total time until stabilization is O(δ21Λ log n). The
affected slots are the ones in ∆3(i). With an analysis similar to Corollary 6, we can show that each
affected node sends at most O(log n) control messages until stabilization, each with O(log n) bits.
Combining all the results, we obtain the following theorem.

9

Theorem 7 (Complexity of TightMAC) Consider an arbitrary network state I, such that no

change occurs after I. With high probability, the network stabilizes within O(δ21 · Λ · log n) slots. If

S are the non-ready nodes in I, then the affected area is ∆3(S). Each affected node sends at most

O(log n) messages, each message consisting of Θ(log n) bits.

References

[1] N. Abramson, “The ALOHA system - another alternative for computer communications,”
Proceedings of the AFIPS Conference, vol. 37, pp. 295-298, 1970.

[2] M. H. Ammar and D. S. Stevens, “A distributed TDMA rescheduling procedure for mobile
packet radio networks,” Proceedings of IEEE ICC, pp. 1609-1613, Denver, CO, June 1991.

[3] A. Cerpa and D. Estrin, ”ASCENT: Adaptive Self-configuring sensor network topologies,” in
Proc. of INFOCOM’02, 2002.

[4] B. Chen, et al, ”Span: An Energy-efficient Coordination Algorithm for topology maintenance
in ad hoc wireless networks,” in Proc. MOBICOM’01, 2001.

[5] I. Chlamtac, W. R. Franta and K. Levin, “BRAM: The broadcast recognizing access method,”
IEEE Transactions on Communications, vol. 27, no. 8, August 1979.

[6] I. Cidon and M. Sidi, “Distributed assignment algorithms for multihop packet radio networks,”
IEEE Transactions on Computers, vol. 38, no. 10, pp. 1353-1361, October 1989.

[7] T. ElBatt and A. Ephremides “Joint Scheduling and Power Control for Wireless Ad hoc
Networks,” IEEE Computer and Communications Conference (INFOCOM), June 2002.

[8] D. Farber, J. Feldman, R. Heinrich, D. Hopwood, K. Larson, D. Loomis and L. Rowe, “The
distributed computing system,” Proceedings of IEEE COMPCON, pp. 31-34, San Francisco,
CA, February 1973.

[9] L. Kleinrock and M. O. Scholl, “Packet switching in radio channels: New conflict-free multiple
access schemes,” IEEE Transactions on Communications, vol. 28, no. 7, pp. 1015-1029, July
1980.

[10] L. Kleinrock and F. A. Tobagi, “Packet switching in radio channels: Part I - carrier sense
multiple-access modes and their throughput-delay characteristics,” IEEE Transactions on
Communications, vol. 23, no. 12, pp. 1400-1416, December 1975.

[11] J. Martin, Communication Satellite systems, Prentice Hall, New Jersey, 1978.

[12] J.P. Monks, V. Bharghavan, and W. Hwu, “A Power Controlled Multiple Access Protocol for
Wireless Packet Networks,” IEEE INFOCOM 2001, Anchorage, Alaska, April, 2001.

[13] A. Muqattash and M. Krunz, “Power controlled dual channel (PCDC) medium access protocol
for wireless ad hoc networks,” in Proceedings of the IEEE INFOCOM 2003 Conference, San
Francisco, April 2003.

10

[14] A. Muqattash and M. Krunz, “CDMA-based MAC protocol for wireless ad hoc networks,” in
Proceedings of the ACM MobiHoc 2003 Conference, Annapolis, Maryland, June 2003.

[15] R. Nelson and L. Kleinrock, “Spatial TDMA: A collision free multihop channel access proto-
col,” IEEE Transactions on Communications, vol. 33, no. 9, pp. 934-944, September 1985.

[16] V. Rajendran, K. Obraczka, J.J. Garcia-Luna-Aceves. “Energy-Efficient, Collision-Free
Medium Access Control for Wireless Sensor Networks,” in Proc. SENSYS03, 2003.

[17] L. G. Roberts, “ALOHA packet system with and without slots and capture,” Computer Com-
munications Review, vol. 5, no. 2, April 1975.

[18] S. Singh and C. S. Raghavendra, ”Power efficient MAC protocol for multihop radio networks,”
in the Nineth IEEE ISPIMRC’98, pp:153-157, 1998.

[19] F. Tobagi and L. Kleinrock, “Packet switching in radio channels: Part IV - Stability consider-
ations and dynamic control in carrier sense multiple-access,” IEEE Transactions on Commu-
nications, vol. 25, no. 10, pp. 1103-1119, October 1977.

[20] T. V. Truong, “TDMA in mobile radio networks: An pp. 504-507, Atlanta, GA, Nov, 1984.

[21] A. J. Viterbi, CDMA: Principles of Spread Spectrum Communication, Addison-Wesley, Read-
ing, MA, 1995.

[22] S.L. Wu, Y.C. Tseng, and J.P. Sheu, “Intelligent medium access for mobile ad-hoc networks
with busy tones and power control,” IEEE JSAC, 18(9):1647–1657, 2000.

[23] Y. Xu, J. Heidemann and D. Estrin, ”Geography-informed Energy conservation for ad hoc
networks,” in Proc. MOBICOM’01, 2001.

[24] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE
standards 802.11, January 1997.

11

Appendix

A Algorithm LooseMAC

In this section, we discuss the LooseMAC algorithm in more detail. In the basic description of the
algorithm, recall that nodes are referred to as being “ready” when they select a conflict-free time
slot. In the actual implementation of the algorithm, this corresponds to just one the three states
(modes) a node can be in: NEWSLOT, WATCH and READY. The READY mode here corresponds
to the “ready” state in the basic discussion of the algorithm. All nodes start in the NEWSLOT

mode by selecting a random time slot. After the node transmits a control message in its randomly
selected slot, the node switches into the WATCH mode, where it checks if its randomly selected slot
is collision-free. If it is, then the node goes into the READY mode. Else the node goes back to the
NEWSLOT mode by selecting a new random time slot. Recall that the aim of the algorithm is to
reach a network state where every node in the network is READY, i.e. each node has a conflict-free
time slot for transmission.

The detailed pseudo-code for LooseMAC is given in Algorithm 4, with the auxiliary functions
Send, Receive and UpdateMode given respectively in Algorithms 5, 6 and 7. Let us go over the
algorithm by considering how node i executes the algorithm and reaches the READY state. Node
i starts the algorithm by selecting a random time slot σ and initializing its mode to NEWSLOT.
In the current time frame, node i listens the channel for every time slot, but broadcasts only in σ.
Note that the Send function is called in every time slot, but it does nothing in effect if the current
time slot is not the node’s selected time slot, σ. If the current time slot is indeed the selected time
slot σ, then the node broadcasts a control message including its id, a bit indicating any observed
conflicts, and a bit indicating whether the node is “fresh” (see the basic algorithm discussion in
section 2.1).

Unlike Send function, the Receive function is literally executed in every time slot, i.e. the node
listens the channel in every time slot. When listening the channel in a time slot, it may either
receive noise, or receive and decode a message successfully. Receiving noise means that two or
more neighbors of i are transmitting at the same time, thus i sets its Conflict variable to true.
If i receives a message 〈j, Conflictj , F reshj〉, it checks in its current frame if this time slot was
reserved for any node other than j. If so, it again sets its Conflict variable to true. Else, it reserves
this time slot for node j. Finally, if Conflictj is true, this indicates that j has recently observed a
collision. To keep this information, node i sets its ConflictInNeighbor variable to true.

When node i transmits in its randomly selected slot σ, it switches its mode to WATCH, which
lasts for at most Λ consecutive time slots. When in WATCH mode, node i effectively checks if σ
is a free time slot in its 2-neighborhood (i.e. σ is collision-free). In order for i to determine that
σ is collision-free, it first needs to ensure that no neighbor of i is transmitting at σ. Node i can
simply accomplish this by checking if it receives any transmission in slot σ. Even if no node in the
immediate neighborhood of i has selected σ, this time slot may still not be collision-free because of
a 2-neighbor of i and because of the hidden terminal problem, as mentioned earlier. Hence, node i
relies on the reports of its neighbors to see if its time slot is indeed collision-free. If i is in WATCH

state and receives a message 〈j, Conflictj, F reshj〉 in which Conflictj is true, the conflict observed
at node j may be due to i’s transmission. Moreover, if i receives a garbled message in any time slot
when it is in WATCH mode, it can never know whether the transmitted control messages carried
conflict information or not. Hence node i goes into READY state only if it receives no garbled

12

messages (collisions) during the last Λ time slots in which it is in WATCH mode, and each control
message it receives during this period has the Conflict bit reset to false. With the local variables
set in the Receive function, the node calls the UpdateMode method in each time slot in order to
handle the discussed state transitions, if necessary.

Algorithm 4 LooseMAC(node i)

1: Unmark all slots in frame;
2: Fresh← true;
3: Conflict, LastConflict, ColissionInNeighbor, FreshNeighbor ← false;
4: σ ← random slot in frame;
5: Mode← NEWSLOT ;
6:

7: Divide time into frames each with duration T , consisting of Λ time slots;
8: τ ← 1; {the current slot}
9: {this loop repeats at every time slot}

10: while true do
11: Send();
12: Receive();
13: UpdateMode();
14: τ ← τ + 1;
15: if τ = Λ + 1 then
16: τ ← 1;

Algorithm 5 Send()

1: if τ = σ then
2: if Mode = NEWSLOT then
3: Broadcast〈i, Conflict, Fresh〉;
4: if Mode ∈ {WATCH,READY } then
5: if Conflict then
6: Broadcast〈i, Conflict, Fresh〉;
7: LastConflict← Conflict;
8: Conflict← false;

B Analysis of LooseMAC

B.1 Basics

Suppose for the moment that the time slots at each node are aligned. We will discuss later the
case for when the time slots are not aligned. We will refer to the absolute positions of time slots
according to some common reference, which is the first ever time slot of the first node that joined
the network. Unless otherwise stated, we will refer to absolute time slots.

Consider a time slot α of a node v. Slot α has an absolute position, which is the number of
slots passed since i became operational. and a relative position which is the number of time slots
passed since the beginning of the current frame.

13

Algorithm 6 Receive()

1: if received noise then
2: Conflict← true;
3: else
4: if receipt of message 〈j, Conflictj , F reshj〉 then
5: if Freshj then
6: FreshNeighbor ← true;
7: if τ = σ then
8: Conflict← true;
9: else

10: if Conflictj then
11: ConflictInNeighbor ← true;
12: if (slot τ is marked with some node k, k 6= j) then
13: Conflict← true;
14: else
15: Unmark any previously marked slot with j;
16: Mark slot τ with j;

Algorithm 7 UpdateMode()

1: if τ = σ then
2: NewMode←Mode;
3: if Mode = NEWSLOT then
4: NewMode←WATCH;
5: if Mode = WATCH then
6: AnyConflict← LastConflict or Conflict or ConflictInNeighbor;
7: if AnyConflict or FreshNeighbor then
8: σ ← random unmarked slot in frame;
9: NewMode← NEWSLOT ;

10: else
11: NewMode← READY ;
12: if not AnyConflict then
13: Fresh← false;
14: if Mode = READY then
15: if FreshNeighbor then
16: σ ← random unmarked slot in frame;
17: NewMode← NEWSLOT ;
18: Mode← NewMode;
19: FreshNeighbor,ConflictInNeighbor ← false;

14

For each node i, we will use the subscript i to denote its local variables, for example for i
variable Fresh is denoted Freshi. The current value of a variable is value of the variable at the
beginning of the current time slot. We will always refer to the current values of the variables, unless
otherwise stated. A variable switches value at a time slot if at the value of the variable is different
at the beginning and at the end of the slot. We say that at slot α node i is in the X mode, or
simply node i is X, if the current value of Modei is X (where X is either NEWSLOT , WATCH,
or READY).

An (absolute) time slot is special for node i if the respective relative lost is the selected slot
of i. Note that a node has at least one special slot every T time steps. Special time slots are
important for two reasons: (i) a node switches its mode only at special time slots, and (ii) a node
broadcasts control messages only at special time slots. Let m be a control message that a node i
sends any special time slot α. If in α the mode of i is X, then we say that m is X (where X is
either NEWSLOT , WATCH, or READY). From the algorithm description we have the following
result.

Lemma 8 In any period of Λ time slots, a node has either one or two special time slots; further,

it sends at most one NEWSLOT message in this period.

We say that a conflict occurs in node i at slot α if any of the following three events occur
in α: (i) two messages collide and i listens to noise, or (ii) node i receives a message m from a
neighbor j without collisions and α is special for i, or (iii) node i receives a message m from a
neighbor j without collisions but slot α is marked in i with another node k 6= j. In either case, the
variable Conflicti is set to true in α. Let β be the immediate special slot after α. According to the
algorithm, if a conflict occurs in i node i will broadcast a control message with Conflicti = true
in β.

B.2 Fresh Nodes

We say that at any time slot a node i is fresh if Freshi = true; otherwise the node is non-fresh.
When a node joins the network it is fresh. A node becomes non-fresh at a time slot at which it is
in the WATCH mode and its local variable AnyConflict is false, that is no conflict in the node i
nor in its neighbors. We show the following lemmas.

Lemma 9 Consider a node i which switches to non-fresh at a time slot α. Then no neighbor of i
is READY , nor switches to READY , at α.

Proof: Let β = α−Λ. According to the algorithm, at special slot α node i is in WATCH mode,
while at special slot β node i is in NEWSLOT mode. Thus, at slot β, node i broadcasts a control
message mi with Freshi = true. Let j be some neighbor of i at slot α. We examine two cases:

• Node j joined the network after β. When a node becomes active its initial mode is
NEWSLOT , and it clearly requires at least Λ additional slots before it switches to the
READY mode, an event that occurs after α. Therefore, at slot α node j is not in the
READY mode, nor switches to the READY mode.

• Node j joined the network at or before β. In slot β message mi is received by j with or
without conflicts. We examine each case separately.

15

Suppose that j detects a conflict in β. Then j broadcasts a control message mj with
Conflictj = true in the next special slot γ. Slot γ appears no later the Λ time slots af-
ter β; thus γ is before or concurrent with α. During γ, node i receives mj with or without
conflicts. In either case, AnyConflicti is set to true, which implies that at slot α node i
remains fresh. A contradiction.

Therefore, mi does not create a conflict in j at time slot β. Then, clearly, β is not a special slot
for j. When j receives the message mi it sets its local variable FreshNeighborj to true. Let
γ be the first special slot of j after β. Slot γ appears before α, since the number of slots from
β (including β) up to α (excluding α) are in total Λ. If in γ node j is in either the WATCH
or READY modes, it switches to the NEWSLOT mode (since FreshNeighborj = true).
This implies that j requires at least Λ more slots before it becomes READY , an event that
can only occur after α. If in γ node j is in the NEWSLOT mode, then it will require at
least Λ− 1 time slots before it switches to the READY mode, an event that occurs after α.
Therefore, in all cases, node j is not in the READY mode in α, nor switches to the READY
mode in α.

B.3 Knowing Time Slots of Neighbors

Let σi be the relative position of the currently selected slot of node i. Let ψj be the respective
relative position of slot σi in node j. Let j be a neighbor of i. We say that node j knows the slot

of i, if j has marked slot ψj with i. From the proof of Lemma 9, we obtain the following.

Lemma 10 Let α be a time slot at which node i switches to non-fresh or READY . Let β be the

special slot of i immediately before α. and let S be the set of neighbors of i which participate at β.

At time slot a, every node in S knows the current time slot of i.

Next, we show that if two neighbor nodes are READY at the same time then they know
each-other’s time slots.

Lemma 11 At any time in which two neighbor nodes are READY , they know each other’s slots.

Proof: Let α be any time slot in which two neighbor nodes i and j are READY . We will show
that j knows the slot of i in α. The opposite direction (i knows teh slot of j) is symmetric.

Suppose for contradiction that j doesn’t know the slot of i in α. Let β be the last special time
slot before α in which i switches to the READY mode. Let γ = α − Λ. From Lemma 10, node
j cannot be participating in the network in γ. Therefore, j joined the network after γ. Let ζ be
the time slot at which j becomes non-fresh. Clearly, ζ occurs after β, since at least Λ slots are
needed in order to switch to the non-fresh mode from the moment of joining the network. From
Lemma 9, no neighbor of j will be READY in slot ζ. Therefore, i is not ready in ζ, which implies
that i becomes READY again at a slot η after β and before α. This contradicts the choice of β.
Therefore, j knows the slot of i at α.

16

B.4 Stable State

A network state is stable if each node is in the READY state. Clearly in a stable state there are no
conflicts of messages, since from Lemma 11 each node knows the slots of all of its neighbors, and
thus these slots are conflict-free. Once such a stable state is reached, the network remains in the
stable state while no topological changes occur (no node joins or leaves the network). We study
now the conditions under which we can reach a stable state. A useful lemma in our study is derived
from from the algorithm description, and Lemma 9:

Lemma 12 A READY node remains READY unless it becomes adjacent to a fresh node.

Suppose we are given an arbitrary network state I0. We will show how we can reach a stable state
from I0, assuming that no topological changes occur after I0. Let S denote the set of participating
nodes in state I0. We define the following subsets of S: set A contains nodes which in state I0
are not READY ; set B contains nodes which is state I0 are fresh; set C contains nodes which are
neighbors of B. Let A′ = A − B ∪ C, that is, A′ is the set of nodes which are not READY in
I0 and not neighbors with fresh nodes. Let S′ = S − A ∪ B, that is S′ is the set of nodes which
are READY in I0 and not neighbors with fresh nodes. From Lemma 12, we have the following
containment theorem, which shows that the nodes which are READY and not adjacent to fresh
nodes are not affected by changes in the network.

Theorem 13 (Containment) The nodes of S′ remain READY after I0.

Suppose now that there exists a network state I1, such that between state I0 and I1 each node
in A′ switches to READY and each node in B becomes non-fresh. After state I1, no node is fresh.
From Lemma 12, all the nodes in A′ remain READY after I1. Let D denote the set of nodes which
are not READY in state I1. From Lemma 9, each node of set C switch to a non-READY state
between I0 and I1. Thus, the only nodes which are not possibly ready at I1 are the nodes of B and
their neighbors C. Therefore, D ⊆ B ∪C.

Suppose now that there exists a network state I2, such that between state I1 and I2 each node
in D switches to READY . Then, from Lemma 12, all the nodes in D remain READY after I2.
Thus state I2 is stable, and we have the following result.

Lemma 14 Given an arbitrary state I0, the network reaches a stable state if first the nodes of set

A′ switch to READY and the nodes of set B become non-fresh, and then the nodes of set D switch

to READY .

B.5 Becoming READY

Here we show that the nodes of set A′ reach the ready state within O(Λ log n) time slots since I0.
For the discussion below, assume that node i is not adjacent to fresh nodes.

Lemma 15 Let m be a NEWSLOT message which is broadcasted by node i. Let S ⊆ ∆1(i). The

probability that message m conflicts in S is at most 4min{δ1|S|, δ2}/Λ.

Proof: Let α be the slot at which messagem is sent. Node i chooses α randomly among q1 ≤ Λ−δ1
unmarked slots in a sequence of Λ slots Z, since there are at most δ1 marked slots from the neighbors

17

of i. Let j ∈ S. From the Z slots in j, q
(j)
2 ≤ δ1 of them are marked with neighbors of j. In q

(j)
3 ≤ 2δ1

slots, j receives messages from adjacent nodes (since from Lemma 8, each adjacent node of j sends

at most 2 control messages in Z). Therefore, m can conflict in at most q(j) = q
(j)
2 + q

(j)
3 ≤ 3δ1 slots

in j. The probability that m causes a conflict in j j is at most q(j)/q1.

Now we consider all nodes in S. Let q2 =
∑

j∈S q
(j)
2 , q3 =

∑
j∈S q

(j)
3 , and q = q2 + q3. The

probability that m conflicts in S is at most q/q1.
Now, we give an upper bound on q. Clearly, q2 ≤ δ1|S|, and q3 ≤ 2δ1|S|, and thus q ≤ 3δ1|S|.

Moreover, q2 ≤ δ2, since the number of slots marked in the nodes on S are no more than the size
of the 2-neighborhood of i, that is q2 ≤ δ2. Similarly, q3 ≤ 2δ2. Therefore q ≤ 3δ2, which implies
that q ≤ 3min{δ1|S|, δ2}.

Subsequently, messagem conflicts in S with probability at most q/q1 = 3min{δ1|S|, δ2}/Λ−δ1 ≤
4min{δ1|S|, δ2}/Λ.

Lemma 16 Let Z be a period of kλ time slots. Let W a period consisting of Z and the Λ time

slots before Z. Conflicts occur in a node i during Z, only if NEWSLOT conflicts occur in i during

W .

Proof: In Z a conflict occurs in i by NEWSLOT messages or by WATCH messages. (Note
that from Lemma 10, a READY message cannot cause a conflict, unless it collides with either
a NEWSLOT or a WATCH message, which are the kinds of conflicts we consider below.) We
will show that the conflicts caused by WATCH messages in Z can be considered as NEWSLOT
message conflicts in W .

Consider a WATCH message m, sent by node j ∈ ∆1(i), at time slot α of Z. There are the
following kinds of conflicts that are caused by m in i:

(1) m collides with a NEWSLOT message: this case is covered by the NEWSLOT message
conflicts.

(2) m collides with a WATCH message: Let l be the neighbor of i which sends the WATCH
message m′ that collides with m. Consider the time slot β = α−Λ. Nodes j and l must have
sent NEWSLOT messages in β. Thus, the conflict in α is caused because of the NEWSLOT
message conflict in β.

(3) α is the selected slot of i: if in α node i is in NEWSLOT mode, then it sends a NEWSLOT
message. If in α node i is not inNEWSLOT mode, then in β node i had the same selected slot
and j was in the NEWSLOT mode. Thus, the conflict in α can be treated as a NEWSLOT
message conflict in either α or β.

(4) α is marked with a node different than i: this case is similar to case (3).

Subsequently, a WATCH message conflict in α can be treated as a NEWSLOT conflict in either
α or β. This implies that conflicts from WATCH or NEWSLOT messages are caused in Z only
if conflicts from NEWSLOT messages are caused in W .

Lemma 17 Consider a node i and a period Z of kλ time slots. During Z, conflicts occur in ∆1(i)
with probability at most 4(k + 1)min{δ31 , δ

2
2}/Λ.

18

Proof: From Lemma 16, we only need to find an upper bound on the probability that conflicts
are caused by NEWSLOT messages in period W (this period is defined in the statement of Lemma
16). The duration of W is (k + 1) slots. Conflicts in ∆1(i) are caused only from messages sent by
∆2(i) during W . From Lemma 8, during Z, each node in ∆2(i) sends at most k + 1 NEWSLOT
messages. From Lemma 15, each of these messages causes conflicts in δ1(i) with probability at most
4δ2/Λ. Since, there are at most (k + 1)δ2 messages, we have that conflicts occur with probability
at most 4(k + 1)δ22/Λ.

We can also compute an alternative bound for this probability. Conflicts occur in ∆1(i) if
conflicts occur in any of the individual nodes in ∆1(i). Let j ∈ ∆1(i). Each neighbor of j, sends at
most k+1 NEWSLOT messages during W . From Lemma 15, each such message causes a conflict
in j with probability at most 4δ1/Λ. Since there are at most (k + 1)δ1 such messages, a conflict
occurs in W with probability at most 4(k + 1)δ21/Λ. Since there at most δ1 nodes similar to j, we
have that conflicts occur in ∆1(i) with probability at most 4(k + 1)δ31/Λ.

Combining the two upper bounds we have that the probability of conflicts in ∆1(i) during Z is
at most 4(k + 1)min{δ31 , δ

2
2}/Λ.

Lemma 18 Let α be a special slot for node i, in which i is in WATCH mode. In slot α node i
does not switch to the READY mode with probability at most 16min{δ31 , δ

2
2}/Λ.

Proof: Let β be the immediate previous special slot of i before α. Denote by Z the time period
starting at β and ending at α (period Z includes β and α). Node i does not switch to the READY
mode in α if either of the following two events occurs. E1: A conflict occurs in i in Z; E2: A node
adjacent to i reports a conflict during Z.

Consider now event E2. Let j be a neighbor of i that reports a conflict with sending a message
m in Z. Suppose that message m is received by i without conflicts (the case where m conflicts is
covered in E1). Let Z ′ denote the period consisting of Z and the Λ slots immediately before β.
Message m is sent if a conflict occurs in j during Z ′. Therefore, combining E1 and E2, we have
that i does not switch to the READY state in α, only if during Z ′ conflicts occur in ∆1(i).

Since Z ′ consists of 2Λ+1 ≤ 3Λ time slots, from Lemma 17, conflicts occur in Z ′ with probability
at most 16min{δ31 , δ

2
2}/Λ.

Let Λ ≥ 32min{δ31 , δ
2
2}. Lemma 18 implies the following corollary.

Corollary 19 Let α be a special slot for node i, in which i is in WATCH mode. In slot α node i
switches to the READY mode with probability at least 1/2.

Corollary 19 further implies the following result.

Corollary 20 With high probability, all nodes of set A′ become READY within O(Λ log n) slots

after state I0.

B.6 Becoming non-Fresh

Here we show that the nodes of set B become non-fresh within O(Λ log n) time slots since I0.
When a node i ∈ B joins the network, it can cause two nodes which were not 2-neighbors before,
to become 2-neighbors. This implies that two READY neighbors of i can possibly cause conflicts
in i, since they could have selected overlapping time slots. In order to avoid conflicts of this form,

19

fresh node i forces every neighbor to become non-READY . Then those neighbors select new time
slots which are guaranteed to be conflict-free when they become READY again. We show below
that each node in C switches to the NEWSLOT mode (becomes non-READY) after state I0, due
the fresh nodes B.

Lemma 21 With high probability, every node in C switches to the NEWSLOT mode within

O(Λ log n) time slots after I0.

Proof: Consider a node i ∈ B. Let t be a time at kΛ log n time slots after I0, for some k ≥ 1.
We will show that node i forces all neighbors to enter the NEWSLOT mode by time t. There are
two possible events:

• By time t node i becomes non-fresh. In this case, Lemma 9, guarantees that between I0 and
time t every neighbor of i switches to the NEWSLOT mode.

• By time t node i remains fresh. Let α be a time slot between t and I0, in which node i is
in NEWSLOT mode and broadcasts message m. Lemma 15 implies that message m create
conflicts in ∆1(i) with probability at most 4δ21/Λ ≤ 1/8δ1 ≤ 1/8. Since node i is not-fresh,
it is not READY either, and thus it broadcasts a NEWSLOT message every 2Λ time slots.
Therefore, with high probability, one of these NEWSLOT messages is received without
conflicts by all neighbors by time t. This implies that with high probability all neighbors of
i switch to the NEWSLOT mode by time t.

Considering now all the nodes in B, we have that with high probability every node in C switches
to the NEWSLOT mode by time t.

Let I ′ ne a network state in which all the nodes in C have entered the NEWSLOT mode after
I0. After state I ′, when the C nodes enter the READY mode, their READY messages will not
cause conflicts in neighbors (a consequence of Lemma 10). Therefore, conflicts are caused only
from NEWSLOT and WATCH messages. Therefore, after state I ′ we can use an analysis similar
to subsection B.5, to obtain that with high probability all nodes of set B become non-fresh within
O(Λ log n) slots after state I ′. Lemma 21, implies the following result.

Corollary 22 With high probability, all nodes of set B become non-fresh within O(Λ log n) slots

after state I0.

B.7 Complexity

For Λ ≥ 32min{δ31 , δ
2
2}, Corollaries 20 and 22 imply that within O(Λ log n) time slots after I0, all

nodes in A′ become READY and all nodes in B become non-fresh. Thus I1 occurs no later than
O(Λ log n) time slots after I0. Using a result similar to Corollary 20, we can also show that the
nodes in D become READY within O(Λ log n) after I1. Lemma 14 implies the main result for the
stabilization time.

Theorem 23 (Stabilization Time) Given an arbitrary network state I0 with no topological

changes occurring after I0, with high probability the network reaches a stable state within O(Λ log n)
time slots.

20

Lemma 8 and Theorem 23 imply the following corollary.

Corollary 24 (Message Complexity) Since state I0, each node sends O(log n) control mes-

sages, each with Θ(log n) bits, until stabilization.

21

