
A Distributed TDMA Slot Assignment
Algorithm for Wireless Sensor Networks

Ted Herman1 and Sébastien Tixeuil2

1 University of Iowa, ted-herman@uiowa.edu
2 LRI – CNRS UMR 8623 & INRIA Grand Large, Université Paris-Sud XI, France,

tixeuil@lri.fr

Abstract. Wireless sensor networks benefit from communication pro-
tocols that reduce power requirements by avoiding frame collision. Time
Division Media Access methods schedule transmission in slots to avoid
collision, however these methods often lack scalability when implemented
in ad hoc networks subject to node failures and dynamic topology. This
paper reports a distributed algorithm for TDMA slot assignment that
is self-stabilizing to transient faults and dynamic topology change. The
expected local convergence time is O(1) for any size network satisfying
a constant bound on the size of a node neighborhood.

1 Introduction

Collision management and avoidance are fundamental issues in wireless network
protocols. Networks now being imagined for sensors [24] and small devices [3]
require energy conservation, scalability, tolerance to transient faults, and adap-
tivity to topology change. Time Division Media Access (TDMA) is a reasonable
technique for managing wireless media access, however the priorities of scalabil-
ity and fault tolerance are not emphasized by most previous research. Recent
analysis [8] of radio transmission characteristics typical of sensor networks shows
that TDMA may not substantially improve bandwidth when compared to ran-
domized collision avoidance protocols, however fairness and energy conservation
considerations remain important motivations. In applications with predictable
communication patterns, a sensor may even power off the radio receiver during
TDMA slots where no messages are expected; such timed approaches to power
management are typical of the sensor regime.

Emerging models of ad hoc sensor networks are more constrained than general
models of distributed systems, especially with respect to computational and
communication resources. These constraints tend to favor simple algorithms that
use limited memory. A few constraints of some sensor networks can be helpful:
sensors may have access to geographic coordinates and a time base (such as GPS
provides), and the density of sensors in an area can have a known, fixed upper
bound. The question we ask in this paper is how systems can distributively obtain

S. Nikoletseas and J. Rolim (Eds.): ALGOSENSORS 2004, LNCS 3121, pp. 45–58, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

46 T. Herman and S. Tixeuil

01 2

3

4

5

67

8

1 0 2 1 01 2

3

4

5

67

8

3 4 5 6

Fig. 1. Two solutions to distance-two coloring

a TDMA assignment of slots to nodes, given the assumptions of synchronized
clocks and a bounded density (where density is interpreted to be a fixed upper
bound on the number of immediate neighbors in the communication range of any
node). In practice, such a limit on the number of neighbors in range of a node
has been achieved by dynamically attenuating transmission power on radios.
Our answers to the question of distributively obtaining a TDMA schedule are
partial: our results are not necessarily optimum, and although the algorithms
we present are self-stabilizing, they are not optimally designed for all cases of
minor disruptions or changes to a stabilized sensor network.

Before presenting our results, it may be helpful for the reader to consider the
relation between TDMA scheduling and standard problems of graph coloring
(since these topics often found in textbooks on network algorithms for spatial
multiplexing). Algorithmic research on TDMA relates the problem of timeslot
assignment to minimal graph coloring where the coloring constraint is typically
that of ensuring that no two nodes within distance two have the same color
(the constraint of distance two has a motivation akin to the well known hidden
terminal problem in wireless networks). This simple reduction of TDMA times-
lot assignment neglects some opportunities for time division: even a solution
to minimum coloring does not necessarily give the best result for TDMA slot
assignment. Consider the two colorings shown in Figure 1, which are minimum
distance-two colorings of the same network. We can count, for each node p, the
size of the set of colors used within its distance-two neighborhood (where this
set includes p’s color); this is illustrated in Figure 2 for the respective colorings
of Figure 1. We see that some of the nodes find more colors in their distance-two
neighborhoods in the second coloring of Figure 1. The method of slot alloca-
tion in Section 6 allocates larger bandwidth share when the number of colors
in distance-two neighborhoods is smaller. Intuitively, if some node p sees k < λ
colors in its distance-two neighborhood, then it should have at least a 1/(k + 1)
share of bandwidth, which is superior to assigning a 1/(λ + 1) share to each
color. Thus the problem of optimum TDMA slot assignment is, in some sense,
harder than optimizing the global number of colors.

Contributions. The main issues for our research are dynamic network con-
figurations, transient fault tolerance and scalability of TDMA slot assignment
algorithms. Our approach to both dynamic network change and transient fault
events is to use the paradigm of self-stabilization, which ensures the system

A Distributed TDMA Slot Assignment Algorithm 47

99 9

9

9

9

99

9

4 4 4 3 99 9

9

9

9

99

9

5 5 4 3

Fig. 2. Number of colors used within distance two

state converges to a valid TDMA assignment after any transient fault or topol-
ogy change event. Our approach to scalability is to propose a randomized slot
assignment algorithm with O(1) expected local convergence time. The basis for
our algorithm is, in essence, a probabilistically fast clustering technique (which
could be exploited for other problems of sensor networks). The expected time
for all nodes to have a valid TDMA assignment is not O(1); our view is that sta-
bilization over the entire network is an unreasonable metric for sensor network
applications; we discuss this further in the paper’s conclusion. Our approach
guarantees that after stabilization, if nodes crash, TDMA collision may occur
only locally (in the distance-three neighborhood of the faults).

Related Work. The idea of self-stabilizing TDMA has been developed in [13,
14] for model that is more restricted than ours (a grid topology where each node
knows its location). Algorithms for allocating TDMA time slots and FDMA fre-
quencies are formulated as vertex coloring problems in a graph [17]. Let the
set of vertex colors be the integers from the range 0..λ. For FDMA the colors
(fv, fw) of neighboring vertices (v, w) should satisfy |fv − fw| > 1 to avoid in-
terference. The standard notation for this constraint is L(�1, �2): for any pair
of vertices at distance i ∈ {1, 2}, the colors differ by at least �i. The coloring
problem for TDMA is: let L′(�1, �2) be the constraint that for any pair of vertices
at distance i ∈ {1, 2}, the colors differ by at least �i mod (λ + 1). (This con-
straint represents the fact that time slots wrap around, unlike frequencies.) The
coloring constraint for TDMA is L′(1, 1). Coloring problems with constraints
L(1, 0), L(0, 1), L(1, 1), and L(2, 1) have been well-studied not only for general
graphs but for many special types of graphs [2,11,18]; many such problems are
NP-complete and although approximation algorithms have been proposed, such
algorithms are typically not distributed. (The related problem finding a mini-
mum dominating set has been shown to have a distributed approximation using
constant time [12], though it is unclear if the techniques apply to self-stabilizing
coloring.) Self-stabilizing algorithms for L(1, 0) have been studied in [5,21,19,20,
7], and for L(1, 1) in [6]. Our algorithms borrow from techniques of self-stabilizing
coloring and renaming [6,7], which use techniques well-known in the literature
of parallel algorithms on PRAM models [15]. To the extent that the sensor net-
work model is synchronous, some of these techniques can be adapted; however
working out details when messages collide, and the initial state is unknown, is
not an entirely trivial task. This paper is novel in the sense that it composes
self-stabilizing algorithms for renaming and coloring for a base model that has

48 T. Herman and S. Tixeuil

only probabilistically correct communication, due to the possibility of collisions
at the media access layer. Also, our coloring uses a constant number of colors for
the L(1, 1) problem, while the previous self-stabilizing solution to this problem
uses n2 colors. Due to space constraints, proofs are delegated to [9].

2 Wireless Network, Program Notation

The system is comprised of a set V of nodes in an ad hoc wireless network,
and each node has a unique identifier. Communication between nodes uses a
low-power radio. Each node p can communicate with a subset Np ⊆ V of nodes
determined by the range of the radio signal; Np is called the neighborhood of node
p. In the wireless model, transmission is omnidirectional: each message sent by p
is effectively broadcast to all nodes in Np. We also assume that communication
capability is bidirectional: q ∈ Np iff p ∈ Nq. Define N1

p = Np and for i > 1,
N i

p = N i−1
p ∪ { r | (∃q : q ∈ N i−1

p : r ∈ Nq) } (call N i
p the distance-i

neighborhood of p). Distribution of nodes is sparse: there is some known constant
δ such that for any node p, |Np| ≤ δ. (Sensor networks can control density by
powering off nodes in areas that are too dense, which is one aim of topology
control algorithms.)

Each node has fine-grained, real-time clock hardware, and all node clocks are
synchronized to a common, global time. Each node uses the same radio frequency
(one frequency is shared spatially by all nodes in the network) and media access
is managed by CSMA/CA: if node p has a message ready to transmit, but is
receiving some signal, then p does not begin transmission until it detects the
absence of signal; and before p transmits a message, it waits for some random
period (as implemented, for instance, in [23]). We assume that the implementa-
tion of CSMA/CA satisfies the following: there exists a constant τ > 0 such that
the probability of a frame transmission without collision is at least τ (this cor-
responds to typical assumptions for multiaccess channels [1]; the independence
of τ for different frame transmissions indicates our assumption of an underlying
memoryless probability distribution in a Markov model).

Notation. We describe algorithms using the notation of guarded assignment
statements: G → S represents a guarded assignment, where G is a predicate of
the local variables of a node, and S is an assignment to local variables of the
node. If predicate G (called the guard) holds, then assignment S is executed,
otherwise S is skipped. Some guards can be event predicates that hold upon
the event of receiving a message: we assume that all such guarded assignments
execute atomically when a message is received. At any system state where a given
guard G holds, we say that G is enabled at that state. The [] operator is the
nondeterministic composition of guarded assignments; ([]q : q ∈ Mp : Gq → Sq)
is a closed-form expression of Gq1 → Sq1 [] Gq2 → Sq2 [] · · · [] Gqk

→ Sqk
, where

Mp = {q1, q2, . . . , qk}.

A Distributed TDMA Slot Assignment Algorithm 49

Execution Semantics. The life of computing at every node consists of the
infinite repetition of finding a guard and executing its corresponding assignment
or skipping the assignment if the guard is false. Generally, we suppose that
when a node executes its program, all statements with true guards are executed
in some constant time (done, for example, in round-robin order).

Shared Variable Propagation. A certain subset of the variables at any node
are designated as shared variables. Nodes periodically transmit the values of their
shared variables, based on a timed discipline. Given the discipline of repeated
transmission of shared variables, each node can have a cached copy of the value
of a shared variable for any neighbor. This cached copy is updated atomically
upon receipt of a message carrying a new value for the shared variable.

Model Construction. Our goal is to provide an implementation of a general
purpose, collision-free communication service. This service can be regarded as a
transformation of the given model of Section 2 into a model without collisions.
This service simplifies application programming and can reduce energy require-
ments for communication (messages do not need to be resent due to collisions).
Let T denote the task of transforming the model of Section 2 into a collision-free
model.

To solve T it suffices to assign each node a color and use node colors as the
schedule for a TDMA approach to collision-free communication [17]. Even before
colors are assigned, we use a schedule that partitions radio time into two parts:
one part is for TDMA scheduling of application messages and the other part is
reserved for the messages of the algorithm that assigns colors and time slots to
nodes. The following diagram illustrates such a schedule, in which each TDMA
part has five slots. Each overhead part is, in fact, a fixed-length slot in the TDMA
schedule.

➀ ➁ ➂ ➃ ➄

︸ ︷︷ ︸

TDMA

· · ·

︸ ︷︷ ︸

overhead

➀ ➁ ➂ ➃ ➄

︸ ︷︷ ︸

TDMA

· · ·

︸ ︷︷ ︸

overhead

The programming model, including the technique for sharing variables, refers to
message and computation activity in the overhead parts. Whereas CSMA/CA
is used to manage collisions in the overhead slots, the remaining TDMA slots do
not use random delay. During initialization or after a dynamic topology change,
frames may collide in the TDMA slots, but after the slot assignment algorithm
self-stabilizes, collisions do not occur in the TDMA slots.

With respect to any given node v, a solution T is locally stabilizing with con-
vergence time t if, for any initial system state, after at most t time units, every
subsequent system state satisfies the property that any transmission by v during
its assigned slot(s) is free from collision. Solution T is globally stabilizing with

50 T. Herman and S. Tixeuil

convergence time t if, for every initial state, after at most t time units, every
subsequent system state has the property that all transmissions during assigned
slots are free from collision. For randomized algorithms, these definitions are
modified to specify expected convergence times (all stabilizing randomized al-
gorithms we consider are probabilistically convergent in the Las Vegas sense).
When the qualification (local or global) is omitted, convergence times for local
stabilization are intended for the presented algorithms.

Several primitive services that are not part of the initial model can simplify
the design and expression of T ’s implementation. All of these services need to
be self-stabilizing. Briefly put, our plan is to develop a sequence of algorithms
that enable TDMA implementation. These algorithms are: neighborhood-unique
naming, maximal independent set, minimal coloring, and the assignment of time
slots from colors. In addition, we rely on neighborhood services that update
cached copies of shared variables.

Neighborhood Identification. We do not assume that a node p has built-in
knowledge of its neighborhood Np or its distance-three neighborhood N3

p . This
is because the type of network under considering is ad hoc, and the topology
dynamic. Therefore some algorithm is needed so that a node can refer to its
neighbors. We describe first how a node p can learn of N2

p , since the technique
can be extended to learn N3

p in a straightforward way.

Each node p can represent N i
p for i ∈ 1..3 by a list of identifiers learned from

messages received at p. However, because we do not make assumptions about
the initial state of any node, such list representations can initially have arbitrary
data. Let L be a data type for a list of up to δ items of the form a : A, where
a is an identifier and A is a set of up to δ identifiers. Let sLp be a shared
variable of type L. Let message type mN with field of type L be the form of
messages transmitted for sLp. Let Lp be a private variable of a type that is an
augmentation of L – it associates a real number with each item: age(a : A) is a
positive real value attached to the item.

Function update(Lp, a : A) changes Lp to have new item information: if Lp

already has some item whose first component is a, it is removed and replaced
with a : A (which then has age zero); if Lp has fewer than δ items and no item
with a as first component, then a : A is added to Lp; if Lp has already δ items
and no item with a as first component, then a : A replaces some item with
maximal age.

Let maxAge be some constant designed to be an upper limit on the possible age
of items in Lp. Function neighbors(Lp) returns the set

{ q | q �= p ∧ (∃ (a : A) : (a : A) ∈ Lp : a = q) }

Given these variable definitions and functions, we present the algorithm for
neighborhood identification.

N0: receive mN(a : A) → update(Lp, a : A \ {p})

A Distributed TDMA Slot Assignment Algorithm 51

N1: ([] (a : A) ∈ Lp : age(a : A) > maxAge → Lp := Lp \ (a : A))
N2: true → sLp := (p : neighbors(Lp))

The constant maxAge should be tuned to safely remove old or invalid neighbor
data, yet to retain current neighbor information by receiving new mN messages
before age expiration. This is an implementation issue beyond of the scope of
this paper: our abstraction of the behavior of the communication layer is the
assumption that, eventually for any node, the guard of N1 remains false for any
(a : A) ∈ Lp for which a ∈ Np. By a similar argument, eventually each node p
correctly has knowledge of N2

p and N3
p as well as Np. In all subsequent sections,

we use N i
p for i ∈ 1..3 as constants in programs with the understanding that

such neighborhood identification is actually obtained by the stabilizing protocol
described above.

Building upon Lp, cached values of the shared variables of nodes in N i
p, for

i ∈ 1..3, can be maintained at p; erroneous cache values not associated with any
node can be discarded by the aging technique. We use the following notation in
the rest of the paper: for node p and some shared variable varq of node q ∈ N3

p ,
let ✉ varq refer to the cached copy of varq at p.

Problem Definition. Let T denote the task of assigning TDMA slots so that
each node has some assigned slot(s) for transmission, and this transmission is
guaranteed to be collision-free. We seek a solution to T that is distributed and
self-stabilizing in the sense that, after some transient failure or reconfiguration,
node states may not be consistent with the requirements of collision-free commu-
nication and collisions can occur; eventually the algorithm corrects node states
to result in collision-free communication.

3 Neighborhood Unique Naming

An algorithm providing neighborhood-unique naming gives each node a name
distinct from any of its N3-neighbors. This may seem odd considering that we
already assume that nodes have unique identifiers, but when we try to use the
identifiers for certain applications such as coloring, the potentially large names-
pace of identifiers can cause scalability problems. Therefore it can be useful to
give nodes smaller names, from a constant space of names, in a way that ensures
names are locally unique.

The problem of neighborhood unique naming can be considered as an N3-
coloring algorithm and quickly suggests a solution to T . Since neighborhood
unique naming provides a solution to the problem of L(1, 1) coloring, it provides
a schedule for TDMA. This solution would be especially wasteful if the space of
unique identifiers is larger than |V |. It turns out that having unique identifiers
within a neighborhood can be exploited by other algorithms to obtain a minimal
N2-coloring, so we present a simple randomized algorithm for N3-naming.

52 T. Herman and S. Tixeuil

Our neighborhood unique naming algorithm is roughly based on the randomized
technique described in [6], and introduces some new features. Define ∆ = 	δt

for some t > 3; the choice of t to fix constant ∆ has two competing motivations
discussed at the end of this section. We call ∆ the namespace. Let shared variable
Idp have domain 0..∆; variable Idp is the name of node p. Another variable is
used to collect the names of neighboring nodes: Cidsp = {✉ Idq | q ∈ N3

p \{p} }.
Let random(S) choose with uniform probability some element of set S. Node p
uses the following function to compute Idp:

newId(Idp) =
{

Idp if Idp �∈ Cidsp

random(∆ \ Cidsp) otherwise

The algorithm for unique naming is the following.

N3: true → Idp := newId(Idp)

Define Uniq(p) to be the predicate that holds iff (i) no name mentioned in
Cidsp is equal to Idp, (ii) for each q ∈ N3

p , q �= p, Idq �= Idp, (iii) for each
q ∈ N3

p , one name in Cidsq equals Idp, (iv) for each q ∈ N3
p , q �= p, the equality

✉ Idp = Idp holds at node q, and (v) no cache update message en route to p
conveys a name that would update Cidsp to have a name equal to Idp. Predicate
Uniq(p) states that p’s name is known to all nodes in N3

p and does not conflict
with any name of a node q within N3

q , nor is there a cached name liable to
update Cidsp that conflicts with p’s name. A key property of the algorithm is
the following: Uniq(p) is a stable property of the execution. This is because after
Uniq(p) holds, any node q in N3

p will not assign Idq to equal p’s name, because
N3 avoids names listed in the cache of distance-three neighborhood names – this
stability property is not present in the randomized algorithm [6]. The property
(∀r : r ∈ R : Uniq(r)) is similarly stable for any subset R of nodes. In words,
once a name becomes established as unique for all the neighborhoods it belongs
to, it is stable. Therefore we can reason about a Markov model of executions by
showing that the probability of a sequence of steps moving, from one stable set
of ids to a larger stable set, is positive.

Lemma 1. Starting from any state, there is a constant, positive probability that
Uniq(p) holds within constant time.

Corollary 1. The algorithm self-stabilizes with probability 1 and has constant
expected local convergence time.

Using the names assigned by N3 is a solution to L(1, 1) coloring, however using
∆ colors is not the basis for an efficient TDMA schedule. The naming obtained
by the algorithm does have a useful property. Let P be a path of t distinct nodes,
that is, P = p1, p2, . . . , pt. Define predicate Up(P) to hold if idpi < idpj for each
i < j. In words, Up(P) holds if the names along the path P increase.

A Distributed TDMA Slot Assignment Algorithm 53

Lemma 2. Every path P satisfying Up(P) has fewer than ∆ + 1 nodes.

This lemma shows that the simple coloring algorithm gives us a property that
node identifiers do not have: the path length of any increasing sequence of names
is bounded by a constant. Henceforth, we suppose that node identifiers have this
property, that is, we treat N i

p as if the node identifiers are drawn from the
namespace1 of size ∆.

4 Leaders via Maximal Independent Set

Simple distance two coloring algorithms may use a number of colors that is
wastefully large. Our objective is to find an algorithm that uses a reasonable
number of colors and completes, with high probability, in constant time. We ob-
serve that an assignment to satisfy distance two coloring can be done in constant
time given a set of neighborhood leader nodes distributed in the network. The
leaders dictate coloring for nearby nodes. The coloring enabled by this method is
minimal (not minimum, which is an NP-hard problem). An algorithm selecting
a maximal independent set is our basis for selecting the leader nodes.

Let each node p have a boolean shared variable �p. In an initial state, the value
of �p is arbitrary. A legitimate state for the algorithm satisfies (∀p : p ∈ V : Lp),
where

Lp ≡ (�p ⇒ (∀q : q ∈ Np : ¬�q)) ∧ (¬�p ⇒ (∃q : q ∈ Np : �q))

Thus the algorithm should elect one leader (identified by the �-variable) for
each neighborhood. As in previous sections, ✉ �p denotes the cached copy of the
shared variable �p.

R1: (∀q : q ∈ Np : q > p) → �p := true
R2: ([] q : q ∈ Np : ✉ �q ∧ q < p → �p := false)
R3: (∃q : q ∈ Np : q < p) ∧ (∀q : q ∈ Np ∧ (q > p ∨ ¬✉ �q)) → �p := true

Although the algorithm does not use randomization, its convergence techni-
cally remains probabilistic because our underlying model of communication uses
CSMA/CA based on random delay. The algorithm’s progress is therefore guar-
anteed with probability 1 rather than by deterministic means.

Lemma 3. With probability 1 the algorithm R1-R3 converges to a solution of
maximal independent set; the convergence time is O(1) if each timed variable
propagation completes in O(1) time.
1 There are two competing motivations for tuning the parameter t in ∆ = δt. First,

t should be large enough to ensure that the choice made by newId is unique with
high probability. In the worst case, |N3

p | = δ3 +1, and each node’s cache can contain
δ3 names, so a choosing t ≈ 6 could be satisfactory. Generally, larger values for t
decrease the expected convergence time of the neighborhood unique naming algo-
rithm. On the other hand, smaller values of t will reduce the constant ∆, which will
reduce the convergence time for algorithms described in subsequent sections.

54 T. Herman and S. Tixeuil

5 Leader Assigned Coloring

Our method of distance-two coloring is simple: colors are assigned by the leader
nodes given by maximal independent set output. The following variables are
introduced for each node p:

colorp is a number representing the color for node p.
min�p is meaningful only for p such that ¬�p holds: it is intended to satisfy

min�p = min { q | q ∈ Np ∧ ✉ �q }

In words, min�p is the smallest id of any neighbor that is a leader. Due to
the uniqueness of names in N3

p , the value min�p stabilizes to a unique node.
spectrump is a set of pairs (c, r) where c is a color and r is an id. Pertain-

ing only to nonleader nodes, spectrump should contain (colorp,min�p) and
(✉ colorq, ✉min�q) for each q ∈ Np.

setcolp is meaningful only for p such that �p holds. It is an array of colors
indexed by identifier: setcolp[q] is p’s preferred color for q ∈ Np. We consider
colorp and setcolp[p] to be synonyms for the same variable. In the algorithm
we use the notation setcolp[A] :=B to denote the parallel assignment of a set
of colors B based on a set of indices A. To make this assignment determin-
istic, we suppose that A can be represented by a sorted list for purposes of
the assignment; B is similarly structured as a list.

domp for leader p is computed to be the nodes to which p can give a preferred
color; these include any q ∈ Np such that min�q = p. We say for q ∈ domp

that p dominates q.
f is a function used by each leader p to compute a set of unused colors to assign

to the nodes in domp. The set of used colors for p is

{ c | (∃ q, r : q ∈ Np ∧ (c, r) ∈ spectrumq ∧ r < p) }

That is, used colors with respect to p are those colors in N2
p that are al-

ready assigned by leaders with smaller identifiers than p. The complement
of the used set is the range of possible colors that p may prefer for nodes
it dominates. Let f be the function to minimize the number of colors pre-
ferred for the nodes of domp, ensuring that the colors for domp are distinct,
and assigning smaller color indices (as close to 0 as possible) preferentially.
Function f returns a list of colors to match the deterministic list of domp in
the assignment of R5.

R4: �p → domp := { p } ∪ { q | q ∈ Np ∧ ✉min�q = p }
R5: �p → setcolp[domp] := f({c | ∃q : q ∈ Np ∧ r < p ∧ (c, r) ∈ ✉ spectrumq })
R6: true → min�p := min { q | q ∈ Np ∪ {p} ∧ ✉ �q }
R7: ¬�p → colorp := ✉ setcolr[p], where r = min�p

R8: ¬�p → spectrump := (colorp,min�p) ∪
⋃

{ (c, r) |
(∃ q, c, r : q ∈ Np : c = ✉ colorq ∧ r = ✉min�q) }

A Distributed TDMA Slot Assignment Algorithm 55

Lemma 4. The algorithm R4-R8 converges to a distance-two coloring, with
probability 1; the convergence time is O(1) if each timed variable propagation
completes in O(1) time.

Due to space restrictions, we omit the proof that the resulting coloring is min-
imal (which follows from the construction of f to be locally minimum, and the
essentially sequential assignment of colors along paths of increasing names).

6 Assigning Time Slots from Colors

Given a distance-two coloring of the network nodes, the next task is to derive
time slot assignments for each node for TDMA scheduling. Our starting assump-
tion is that each node has equal priority for assigning time slots, ie, we are using
an unweighted model in allocating bandwidth. Before presenting an algorithm,
we have two motivating observations.

First, the algorithms that provide coloring are local in the sense that the actual
number of colors assigned is not available in any global variable. Therefore to
assign time slots consistently to all nodes apparently requires some additional
computation. In the first solution of Figure 1, both leftmost and rightmost nodes
have color 1, however only at the leftmost node is it clear that color 1 should be
allocated one ninth of the time slots. Local information available at the rightmost
node might imply that color 1 should have one third of the allocated slots.

The second observation is that each node p should have about as much band-
width as any other node in N2

p . This follows from our assumption that all nodes
have equal priority. Consider the N2

p sizes shown in Figure 2 that correspond to
the colorings of 1. The rightmost node p in the first coloring has three colors in its
two-neighborhood, but has a neighbor q with four colors in its two-neighborhood.
It follows that q shares bandwidth with four nodes: q’s share of the bandwidth
is at most 1/4, whereas p’s share is at most 1/3. It does not violate fairness to
allow p to use 1/3 of the slot allocation if these slots would otherwise be wasted.
Our algorithm therefore allocates slots in order from most constrained (least
bandwidth share) to least constrained, so that extra slots can be used where
available.

To describe the algorithm that allocates media access time for node p, we intro-
duce these shared variables and local functions.

basep stabilizes to the number of colors in N2
p . The value base−1

p = 1/basep is
used as a constraint on the share of bandwidth required by p in the TDMA
slot assignment.

itvlp is a set of intervals of the form [x, y) where 0 ≤ x < y ≤ 1. For allocation,
each unit of time is divided into intervals and itvlp is the set of intervals
that node p can use to transmit messages. The expression |[x, y)| denotes
the time-length of an interval.

56 T. Herman and S. Tixeuil

g(b, S) is a function to assign intervals, where S is a set of subintervals of [0, 1).
Function g(b, S) returns a maximal set T of subintervals of [0, 1) that are
disjoint and also disjoint from any element of S such that (

∑

a∈T |a|) ≤ b.

To simplify the presentation, we introduce Sp as a private (nonshared) variable.

R9: true → basep := | {✉ colorq | q ∈ N2
p } |

R10: true → Sp :=
⋃

{✉ itvlq | q ∈ N2
p ∧

(✉ baseq > basep ∨
(✉ baseq = basep ∧ ✉ colorq < colorp)) }

R11: true → itvlp := g(base−1
p , Sp)

Lemma 5. With probability 1 the algorithm R9–R11 converges to an allocation
of time intervals such that no two nodes within distance two have conflicting time
intervals, and the interval lengths for each node p sum to |{ colorq | q ∈ N2

p }|−1;
the expected convergence time of R9-R11 is O(1) starting from any state with
stable and valid coloring.

It can be verified of R9-R11 that, at a fixed point, no node q ∈ N2
p is assigned

a time that overlaps with interval(s) assigned to p; also, all available time is
assigned (there are no leftover intervals). A remaining practical issue is the con-
version from intervals to a time slot schedule: a discrete TDMA slot schedule
will approximate the intervals calculated by g.

7 Assembly

Given the component algorithms of Sections 2–6, the concluding statement of
our result follows.

Theorem 1. The composition of N0–N3 and R1–R11 is a probabilistically self-
stabilizing solution to T with O(1) expected local convergence time.

8 Conclusion

Sensor networks differ in characteristics and in typical applications from other
large scale networks such as the Internet. Sensor networks of extreme scale (hun-
dreds of thousands to millions of nodes) have been imagined [10], motivating
scalability concerns for such networks. The current generation of sensor net-
works emphasizes the sensing aspect of the nodes, so services that aggregate
data and report data have been emphasized. Future generations of sensor net-
works will have significant actuation capabilities. In the context of large scale

A Distributed TDMA Slot Assignment Algorithm 57

sensor/actuator networks, end-to-end services can be less important than re-
gional and local services. Therefore we emphasize local stabilization time rather
than global stabilization time in this paper, as the local stabilization time is
likely to be more important for scalability of TDMA than global stabilization
time. Nonetheless, the question of global stabilization time is neglected in pre-
vious sections. We speculate that global stabilization time will be sublinear in
the diameter of the network (which could be a different type of argument for
scalability of our constructions, considering that end-to-end latency would be
linear in the network diameter even after stabilization). Some justification for
our speculation is the following: if the expected local time for convergence is
O(1) and underlying probability assumptions are derived from Bernoulli (ran-
dom name selection) and Poisson (wireless CSMA/CA) distributions, then these
distributions can be approximately bounded by exponential distributions with
constant means. Exponential distributions define half-lives for populations of
convergent processes (given asymptotically large populations), which is to say
that within some constant time γ, the expected population of processes that
have not converged is halved; it would follow that global convergence is O(lg n).

We close by mentioning two important open problems. Because sensor networks
can be deployed in an ad hoc manner, new sensor nodes can be dynamically
thrown into a network, and mobility is also possible, the TDMA algorithm we
propose could have a serious disadvantage: introduction of just one new node
could disrupt the TDMA schedules of a sizable part of a network before the sys-
tem stabilizes. Even if the stabilization time is expected to be O(1), it may be
that better algorithms could contain the effects of small topology changes with
less impact than our proposed construction. One can exploit normal notifications
of topology change as suggested in [4], for example. Another interesting ques-
tion is whether the assumption of globally synchronized clocks (often casually
defended by citing GPS availability in literature of wireless networks) is really
needed for self-stabilizing TDMA construction; we have no proof at present that
global synchronization is necessary.

References

1. D. Bertsekas, R. Gallager. Data Networks, Prentice-Hall, 1987.
2. H. L. Bodlaender, T. Kloks, R. B. Tan, J. van Leeuwen. Approximations for λ-

coloring of graphs. University of Utrecht, Department of Computer Science, Tech-
nical Report 2000-25, 2000 (25 pages).

3. D. E. Culler, J. Hill, P. Buonadonna, R. Szewczyk, A. Woo. A network-centric ap-
proach to embedded software for tiny devices. In Proceedings of Embedded Software,
First International Workshop EMSOFT 2001, Springer LNCS 2211, pp. 114-130,
2001.

4. S Dolev and T Herman. Superstabilizing protocols for dynamic distributed systems.
Chicago Journal of Theoretical Computer Science, 3(4), 1997.

5. S. Ghosh, M. H. Karaata. A self-stabilizing algorithm for coloring planar graphs.
Distributed Computing 7:55-59, 1993.

58 T. Herman and S. Tixeuil

6. M. Gradinariu, C. Johnen. Self-stabilizing neighborhood unique naming under un-
fair scheduler. In Euro-Par’01 Parallel Processing, Proceedings, Springer LNCS
2150, 2001, pp. 458-465.

7. M. Gradinariu, S. Tixeuil. Self-stabilizing vertex coloration of arbitrary
graphs. In 4th International Conference On Principles Of DIstributed Systems,
OPODIS’2000, 2000, pp. 55-70.

8. M. Haenggi, X. Liu. Fundamental throughput limits in Rayleigh fading sensor
networks. in submission, 2003.

9. T Herman, S Tixeuil A distributed TDMA slot assignment algorithm for wireless
sensor networks. Technical Report, University of Iowa Department of Computer
Science, 2004. CoRR Archive Number cs.DC/0405042.

10. J. Kahn, R. Katz, and K. Pister. Next century challenges: mobile networking for
”smart dust”. In Proceedings of the Fifth Annual International Conference on Mo-
bile Computing and Networking (MOBICOM ’99), 1999.

11. S. O. Krumke, M. V. Marathe, S. S. Ravi. Models and approximation algorithms
for channel assignment in radio networks. Wireless Networks 7(6 2001):575-584.

12. F. Kuhn, R. Wattenhofer. Constant-time distributed dominating set approxima-
tion. In Proceedings of the Twenty-Second ACM Symposium on Principles of Dis-
tributed Computing, (PODC 2003), pp. 25-32, 2003.

13. S. S. Kulkarni, U. Arumugam. Collision-free communication in sensor networks.
In Proceedings of Self-Stabilizing Systems, 6th International Symposium, Springer
LNCS 2704, 2003, pp. 17-31.

14. S. S. Kulkarni and U. Arumugam. Transformations for Write-All-With-Collision
Model. In Proceedings of the 7th International Conference on Principles of Dis-
tributed Systems (OPODIS), Springer LNCS, 12/03. (Martinique, French West
Indies, France).

15. M. Luby. A simple parallel algorithm for the maximal independent set problem.
SIAM Journal on Computing 15:1036-1053, 1986.

16. M. Mizuno, M. Nesterenko. A transformation of self-stabilizing serial model pro-
grams for asynchronous parallel computing environments. Information Processing
Letters 66 (6 1998):285-290.

17. S. Ramanathan. A unified framework and algorithm for channel assignment in
wireless networks. Wireless Networks 5(2 1999):81-94.

18. S. Ramanathan, E. L. Lloyd. Scheduling algorithms for multi-hop radio networks.
IEEE/ACM Transactions on Networking, 1(2 1993):166-177.

19. S. Shukla, D. Rosenkrantz, and S. Ravi. Developing self-stabilizing coloring algo-
rithms via systematic randomization. In Proceedings of the International Workshop
on Parallel Processing, pages 668–673, Bangalore, India, 1994. Tata-McGrawhill,
New Delhi.

20. S. Shukla, D. Rosenkrantz, and S. Ravi. Observations on self-stabilizing graph
algorithms for anonymous networks. In Proceedings of the Second Workshop on
Self-stabilizing Systems (WSS’95), pages 7.1–7.15, 1995.

21. S. Sur and P. K. Srimani. A self-stabilizing algorithm for coloring bipartite graphs.
Information Sciences, 69:219–227, 1993.

22. G. Tel. Introduction to Distributed Algorithms, Cambridge University Press, 1994.
23. A. Woo, D. Culler. A transmission control scheme for media access in sensor net-

works. In Proceedings of the Seventh International Conference on Mobile Comput-
ing and Networking (Mobicom 2001), pp. 221-235, 2001.

24. F. Zhao, L. Guibas (Editors). Proceedings of Information Processing in Sensor
Networks, Second International Workshop, IPSN 2003, Springer LNCS 2634. April,
2003.

	Introduction
	Wireless Network, Program Notation
	Neighborhood Unique Naming
	Leaders via Maximal Independent Set
	Leader Assigned Coloring
	Assigning Time Slots from Colors
	Assembly
	Conclusion

