E

Models of Greedy Algorithms for Graph Problems

Sashka Davis*

Russell Impagliazzo!

[Extended Abstract]*

Abstract

Borodin, Nielsen, and Rackoff ([5]) gave a model of greedy-
like algorithms for scheduling problems and [1] extended
their work to facility location and set cover problems. We
generalize their notion to include other optimization prob-
lems, and apply the generalized framework to graph prob-
lems. Our goal is to define an abstract model that cap-
tures the intrinsic power and limitations of greedy algo-
rithms for various graph optimization problems. We prove
bounds on the approximation ratio achievable by such al-
gorithms for basic graph problems such as shortest path,
vertex cover, and others. Shortest path is an example of a
problem where no algorithm in the FIXED priority model
can achieve any approximation ratio (even one dependent
on the graph size), but for which the well-known Dijkstra’s
algorithm shows that an ADAPTIVE priority algorithm can
be optimal. We also prove that the approximation ratio for
vertex cover achievable by ADAPTIVE priority algorithms
is exactly 2. Here, a new lower bound matches the known
upper bounds ([8]).

1 Introduction

There is a huge variety of known algorithms for a
huge variety of computational problems. However,
a surprisingly large fraction of the known efficient
algorithms fit into relatively few basic design paradigms:
e.g., divide-and-conquer, dynamic programming, greedy
algorithms, linear programming relaxation, and hill-
climbing. While algorithm designers have long had a
good intuitive feel for these paradigms, there is still
little research formalizing these paradigms and so little
is known about their relative computational power. For
example, intuitively, greedy algorithms are faster but
less powerful than dynamic programming algorithms;
how could we make such a statement formal?

*University of California, San Diego, sdavis@cs.ucsd.edu. Re-

search supported by NSF grant CCR-0098197.

T University of California, San Diego, russell@cs.ucsd.edu. Re-
search supported by NSF grant CCR-0098197. Some work done
while at the Institute for Advanced Study, supported by the State
of New Jersey.

A full version of
www.cs.ucsd.edu/users/sdavis

the paper is available at

To begin to address such questions, Borodin, Niel-
son and Rackoff recently introduced a formal framework
for the greedy algorithm paradigm ([5]). Their frame-
work, which they called priority algorithms, was origi-
nally given only for scheduling problems. However, An-
gelopoulos and Borodin [1] extended the priority algo-
rithm framework to facility location and set cover prob-
lems. In this paper, we present a more abstract def-
inition of a priority algorithm that can be applied to
a variety of problem domains. In particular, we ap-
ply this model to formalize greedy algorithms for graph
problems.

Even using the standard techniques only, the space
of possible algorithms for a problem is large. This pro-
fusion of competing algorithmic approaches has led to a
growing interest in formalizing and analyzing algorith-
mic methods, rather than individual algorithms. For
example, much of the interest in recent proof complex-
ity has been in studying the relative strength of differ-
ent approaches to satisfiability algorithms. Extending
traditional integrality gap approaches to proving lower
bounds for linear programming relaxation algorithms
based on specific relaxations, Arora, et. al. [2], have
shown lower bounds on very general forms of relax-
ations. While not as technically difficult as the above
work, our work contributes to a more general under-
standing of the relative power of algorithmic methods.
We believe that the priority models described here can
be taken as a starting point in formally defining and an-
alyzing more powerful computational paradigms, such
as backtracking and dynamic programming.

1.1 Motivation The greedy algorithm paradigm is
one of the most important in algorithm design, because
of its simplicity and efficiency. Greedy algorithms are
used in at least three ways: they provide exact algo-
rithms for a variety of problems; they are frequently
the best approximation algorithms for hard optimiza-
tion problems; and, due to their simplicity, they are
frequently used as heuristics for hard optimization prob-
lems even when their approximation ratios are unknown
or known to be poor in the worst-case. To cover all the
uses of greedy algorithms, from simple exact algorithms

Copyright © 2004 by the Association for Computing Machinery, Inc. and the Society for industrial and Applied Mathematics. All Rights reserved. Printed
in The United States of America. No part of this book may be reproduced, stored, or transmitted in any manner without the written permission of the
publisher. For information, write to the Association for Computing Machinery, 1515 Broadway, New York, NY 10036 and the Society for Industrial and
Applied Mathematics, 3600 University City Science Center, Philadel phia, PA 19104-2688

381

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 5.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

to unanalyzed heuristics, one needs to study a cross-
section of problems from the easiest (minimum span-
ning tree) to the hardest (NP-complete problems with
no known approximation algorithms).

While greedy algorithms are simple and intuitive,
they are frequently deceptive. It is often possible
to generate many plausible greedy algorithms for a
problem, and one’s first choice is often not the best
algorithm.

There are also distinctions that can be made be-
tween greedy algorithms. For example, Kruskal’s al-
gorithm for Minimum Spanning Tree is in some sense
simpler than Prim’s algorithm, because it just scans
through the edges in sorted order, rather than dynami-
cally growing a tree.

The priority model allows one to formally address
all of these uses of greedy algorithms and issues in
greedy algorithm design. One can use this model to:

1. Tell when a known but slightly complicated greedy
algorithm cannot be simplified. This can be done
by defining a sub-model of “simple” priority algo-
rithms, and showing that this subclass is weaker
than the general priority model. (See the defini-
tions and the separation of FIXED and ADAP-
TIVE priority algorithms in Section 3.1).

2. Show that sometimes greedy approximation algo-
rithms need to be counter-intuitive. This can be
done by defining a sub-model of “sensible” prior-
ity algorithms, and showing that this subclass is
weaker than the general priority model. (See the
definition of memoryless algorithms in Section 4).

3. Formalize the intuition that greedy algorithms are
weaker than some of the other paradigms, by
proving lower bounds for priority algorithms for
problems with known algorithms of a different
paradigm.

4. Prove that the known greedy approximation algo-
rithm for a problem cannot be improved, by show-
ing a matching lower bound for any priority algo-
rithm.

5. Rule out the possibility of proving a reasonable
approximation ratio for any greedy algorithm for
a hard problem. This is particularly interesting
for problems where greedy algorithms are used as
heuristics.

1.2 Related Work The priority algorithm model re-
sembles that of on-line algorithms. In both models, de-
cisions affecting the output have to be made irreversibly
based on partial information about the input. For this
reason, the techniques used to prove bounds for priority

algorithms often are borrowed from the extensive litera-
ture on on-line algorithms (See [3] for a good overview).

However, where an on-line algorithm sees the parts
of its input in an adversarial order or one imposed by
some real-world constraint such as availability time, a
priority algorithm can specify the order in which inputs
are examined. [5] considered two variants: FIXED pri-
ority algorithms where this order is independent of the
instance and constant throughout the algorithm, and
ADAPTIVE priority where the algorithm can change
the order of future parts based on the part of the in-
stance that it has seen. They also defined some sub-
classes of “intuitive” priority algorithms: GREEDY pri-
ority algorithms which are restricted to make each deci-
sion in a locally optimal way, and MEMORYLESS adap-
tive priority algorithms, which must base decisions only
on the set of previously accepted data items.

[5] proved many non-trivial upper and lower bound
results for a variety of scheduling problems (interval
scheduling with unit, proportional, and arbitrary prof-
its; job scheduling, and minimum makespan). They
showed a separation between the class of ADAPTIVE
priority algorithms and FIXED priority algorithms, by
proving lower bound of 3 on the performance of FIXED
priority algorithms on the interval scheduling on identi-
cal machines with proportional profit and observed an
ADAPTIVE priority algorithm with approximation ra-
tio 2 for the same problem. For the interval schedul-
ing problem with proportional profit [5] proved that the
Longest Processing Time heuristics is optimal within
the class of FIXED priority algorithms. They also
proved a separation between the class of deterministic
and randomized priority algorithms. The problem [5]
considered is interval scheduling with arbitrary profits.
They showed a lower bound of A (the ratio of the maxi-
mum to the minimum unit profit among all intervals) on
the performance of ADAPTIVE priority algorithms, for
multiple and single machine configurations. However,
if a FIXED priority not necessarily greedy algorithm is
given access to randomness then it can achieve an ap-
proximation ratio of O(log A).

Angelopoulos and Borodin proved that no ADAP-
TIVE priority algorithm can achieve an approximation
ratio better than In n—Inlnn+©(1). This bound is tight
because the greedy set cover heuristic, classified as an
ADAPTIVE priority algorithm, achieves the bound. [1]
also considered the unrestricted facility location prob-
lem, and proved a tight bound of Q(logn) on the perfor-
mance of any ADAPTIVE priority algorithm, which is
matched by the known greedy heuristic for the problem.
For the uniform metric facility location problem, they
were able to show a tight bound of 3 on the approxima-
tion ratio achieved by fixed priority algorithms.

382

Boyar and Larsen ([4]) proved a lower bound of § for
the Vertex Cover problem in the general priority model,
where a data item encodes a vertex name along with
the names of its neighbors. They also considered the
Independent Set and Vertex Coloring problems in more
restrictive priority models where a data item encodes
only the degree of the vertex, excluding the names of
the vertices adjacent to it, and proved lower bounds
matching known upper bound results in those models.

1.3 Owur Results In this paper, we extend their
model to combinatorial optimization problems of other
domains. In particular, we look at models for graph
problems, and evaluate the performance of priority
algorithms for some classical graph problems. Our main
contributions are:

Abstract priority model We present an abstract
definition of priority algorithm that applies to a
variety of problem domains. Previous work defined
a new model for each domain, e.g, scheduling al-
gorithms ([5]) or facility location problems ([1]).
We define two instantiations of our abstract model
for graph problems, the node model and the edge
model.

Characterization of models We show how to char-
acterize the power of three of the models (FIXED,
ADAPTIVE, and MEMORYLESS) in terms of
combinatorial games between a Solver and an Ad-
versary. This characterization holds for the ab-
stract definitions of priority algorithms, and so is
problem-independent.

Shortest Paths We show a strong separation between
FIXED and ADAPTIVE priority algorithms. We
consider the problem of finding the shortest path
in graph G from node s to t. Dijkstra’s algorithm
is seen to be an ADAPTIVE priority algorithm
in this model, for the case when edge weights are
positive. In the case of positive edge weights, we
show that no FIXED priority algorithm can achieve
any approximation ratio, even a ratio that is a
function of the graph size. Secondly, for graphs
with negative edge weights (but no negative cycles),
we show that no ADAPTIVE priority algorithm
can achieve any approximation ratio.

Steiner Trees We consider the Steiner Tree problem
for metric spaces. Here, a standard FIXED priority
algorithm achieves an approximation ratio of 2.
We show that no ADAPTIVE priority algorithm
can achieve an approximation ratio better than
1.18, even for the special case when every positive
distance is between 1 and 2. We give an improved
algorithm for this special case, in the ADAPTIVE
priority model.

Weighted Vertex Cover We considered the
Weighted Vertex Cover problem in the node
model. For the weighted vertex cover problem,
the standard 2-approximation algorithm fits into
the ADAPTIVE priority model. Moreover, we
show that no ADAPTIVE priority algorithm can
achieve a better approximation ratio. Thus, the
known algorithm is optimal within the class of
priority algorithms.

Independent Set We consider the independent set
problem for graphs of small degree, in the node
model. For degree-3 graphs, the standard greedy
algorithm achieves an approximation ratio of %,
[7]. This algorithm fits in the ADAPTIVE priority
model. We show that no ADAPTIVE priority al-
gorithm can achieve an approximation ratio better
than 2.

Memoryless Algorithms We define a formal model
of memoryless algorithms and prove a separation
between the class of ADAPTIVE priority algo-
rithms (with memory) and memoryless adaptive
priority algorithms.

1.4 What is a greedy algorithm? The term
“greedy algorithm” has been applied to a wide vari-
ety of optimization algorithms, from Dijkstra’s short-
est path algorithm to Huffman’s coding algorithm. The
pseudo-code for the algorithms in question can appear
quite dissimilar. There are few high-level features com-
mon to most greedy algorithms, unlike say divide-and-
conquer algorithms that almost always have a certain re-
cursive structure, or dynamic programming algorithms,
which almost always fill in a matrix of solutions to sub-
problems. What do these algorithms have in common,
that they should all be placed in the same category?

A standard undergraduate textbook by Neapolitan
and Naimipour ([10]) describes the greedy approach
as follows: a greedy algorithm “grabs data items in
sequence, each time taking the one that is deemed ‘best’
according to some criterion, without regard for the
choices it has made before or will make in the future.”
This seems to us a fairly clear and concise informal
working definition, except for the words “without regard
for the choices it has made before” which we think
does not in fact apply to most of the “canonical”
greedy algorithms. (For example, a coloring algorithm
that assigns each node the first color not used by its
neighbors seems to be a typical greedy algorithm, but
certainly bases its current choice on previously made
decisions.)

This is the sense of a greedy algorithm the priority
model is meant to capture. More precisely, a priority
algorithm:

383

1. Views the instance as a set of “data items”.

2. Views the output as a set of “choices” (decisions)
to be made, one per “data item”.

3. Defines a “criterion” for “best choices”, which
orders data items. (Making this formal leads
to two models, FIXED vs. ADAPTIVE priority
algorithms.)

»

4. In the order defined by this criterion, makes and
commits itself to the choices for the data items.

5. Never reverses a choice once made (i.e., decisions
are irrevocable).

6. In making the choice for the current data item, only
considers the current and previous data items, not
later data items.

All but the third point are also true of on-line algo-
rithms. The main difference is that on-line algorithms
have the order of choices imposed on them, whereas pri-
ority algorithms can define this order in a helpful way.
Many of the lower bound techniques here, in [5], and
in [1] are borrowed from the extensive on-line algorithm
literature.

Are the characteristics listed above the defining fea-
tures of “greedy algorithms”? Many of the known algo-
rithms can be classified as priority algorithms (ADAP-
TIVE or FIXED). For example, Prim’s and Kruskal’s
algorithms for the Minimum Cost Spanning Tree prob-
lem are classified as ADAPTIVE and FIXED priority
algorithms, respectively. Dijkstra’s single source short-
est path algorithm also can be seen to fit the ADAP-
TIVE priority model. The known greedy approximation
[8] for the Weighted Vertex Cover problem (WVC) can
be classified as an ADAPTIVE priority algorithm. The
greedy approximation for the independent set problem
[7] also fits our model. In [1] it was shown that the best
known greedy approximation algorithm for the set cover
problem also fits the framework of priority algorithms,
and similarly the greedy algorithms for the facility loca-
tion in arbitrary and metric spaces have priority models.
However, the term “greedy algorithm” is used in at least
one other sense which the priority model is not meant to
capture. A hill-climbing algorithm that uses the “steep-
est ascent” rule, looking for the local change that leads
to the largest improvement in the solution, is frequently
called a “greedy hill-climbing” or simply “greedy” algo-
rithm. The Dijkstra heuristic for Ford-Fulkerson, which
finds the largest capacity augmenting path during each
iteration, is “greedy” in this sense. As far as we can
tell, there is no real connection between this sense of
greedy algorithm and the one defined above. We make
no claims that any of our results apply to steepest as-
cent algorithms, or any other classes of algorithms that

are metaphorically “greedy” but do not fit the above
description®.

1.5 Priority Models To make the above definition
precise, we need to specify a few components: What
is a decision? What choices are available for each
decision? What is the “data item” corresponding to
a decision? What is a criterion for ordering decisions?
The exact answers to these questions will be problem-
specific, and there may be multiple ways to answer
them even for the same problem. In this section,
we give a format for specifying the answers to these
questions, leaving parameters to be specified later to
model different problems.

The general type of problem we are discussing is a
combinatorial optimization problem. Such a problem
is given by an instance format, a solution format, a
constraint (a relation between instances and solutions),
and an objective function (of instance and solution,
giving a real number value). The problem is, given the
instance, among the solutions meeting the constraint,
find the one that maximizes (or minimizes) the objective
function.

We want to view an instance as a set of data items,
where a solution makes one decision per data item. Let
I" denotes the type of a data item; thus an instance is a
set of items of type I', I C T 2. The solution format will
assign each v € I a decision o from a set of options
¥, so a solution is a set of the form {(v;,0:)|v; € I}.

For example, for k-colorings of graphs on up to
n nodes, we need to assign colors to nodes. So ¥ =
{1,...,k}, and T should correspond to the information
available about a node when the algorithm has to color
it. This is not uniquely defined, but a natural choice,
and the one we will consider here, is to let the algorithm
see the name and adjacency list for v when considering
what to color v. Then the data item corresponding
to a node is the name of the node and the adjacency

TWhile there are a few uses of the phrase “greedy algorithm”

that do not seem to fit the priority model, this seems more a
matter of the inherent ambiguity of natural language than a
weakness in the model. A useful scientific taxonomy will not
always classify things according to common usage; e.g., a shellfish
is not a fish. There will also always be borderline objects that
are hard to classify, e.g., is a marsupial a mammal? We should
not be overly concerned if a few intuitively greedy algorithms go
beyond the restrictions of the priority model; however, this will
be motivation to try to extend the model in future work.

2We are not necessarily assuming that every subset of data
items constitutes a valid instance. For scheduling problems any
sequence of jobs is a valid instance. Instances of graph problems
have more structure, which prevents some sets of data items
from being valid graphs. We also frequently want to restrict
to instances with some global structure, e.g., metric spaces or
directed graphs with no negative cycles.

384

list of a node, i.e., I' would be the set of pairs,
(NodeName, AdjList), where a NodeName is an integer
from {1,...,n}; AdjList is a list of NodeNames. We
then view G as being given in adjacency list format: G
is presented as the set of nodes v, each with its adjacency
list AdjList(v) 3.

More generally, a node model is the case when the
instance is a (directed or undirected) graph G, possibly
with labels or weights on the nodes, and data items
correspond to nodes. Here, I is the set of pairs or triples
consisting of possible node name, node weight, or label
(if appropriate), and a list of neighbors. ¥ varies from
problem to problem; often, a solution is a subset of the
nodes, corresponding to ¥ = {accept,reject}.

Alternatively, in an edge model, the data items
requiring a decision are the edges of a graph. In an edge
model, T is the set of (up to) 5-tuples with two node
names, node labels or weights (as appropriate to the
problem), and an edge label or weight (as appropriate
to the problem). In an edge model, the graph is
represented as the set of all of its edges. Again, the
options ¥ are determined by the problem, with ¥ =
{accept, reject} when a solution is a subgraph.

As another example, [5] consider scheduling prob-
lems, where jobs are to be scheduled on p identical
machines. Here, we have to decide whether to sched-
ule a job, and if so, on which machine and at what
starting time. So ¥ = {(m;,t)|]1 < i < p,t € R} U
{Not scheduled}. They allow the algorithm to see all in-
formation about a job when scheduling it, a data item is
represented by (a;, d;, t;, w;), where a; is the arrival time
of job 4, d; its deadline, t; its processing time, and w; its
weight. Thus, T’ = {(a,d,t,w)|a < d,t > d — a,w > 0}.

In fact, we can put pretty much any search or
optimization problem in the above framework. Let D(I)
determine decision points for an instance I so that
solutions can be described as arrays indexed by D(I),
S € PU)_ Assume we give the algorithm access to the
information LocalInfo(d,I) when making decision d €
D(I). Then we can set I' = {(d, LocalInfo(d,I)) | d €
D(I), Iis a valid instance}. Since the union of all
Locallnfo is all we are given to solve the problem, we
can view I as {(d, LocalInfo(d,I)) | d € D(I)}.

As in [5], we distinguish between algorithms that
order their data points at the start, and those that
reorder them at each iteration. A FIXED priority
algorithm orders the decisions at the start, and proceeds
according to that order. The format for a FIXED
priority algorithm is as follows:

3As mentioned before, not all sets of data items will code
graphs. To actually code an undirected graph, a set of data items
has to have distinct node names, and have the property that, if
x € AdjList(y) then also y € AdjList(z).

FIXED PRIORITY ALGORITHM

Input: instance I CT', I = {v,...,v4}

Output: solution S = {(v;,04)|¢ =1,...,d}.

- Determine a criterion for ordering the decisions, based
on the data items*: 7 : T — Rt U {o0}

- Order I according to m(7;), from smallest to largest

Repeat
e Go through the data items ~; in order
e In step ¢, observe the t’th data item according to
m, let that be 7;,. Make an irrevocable decision
0;,€ Y, based only on currently observed data items
(i-e., the ¢ smallest under the priority function 7).
Update the partial solution: S+ S U {(vi,,04,)}

e Go on to the next data item

Until (decisions are made for all data items)
Output S = {(v;,04)|1 <i < d}.

ADAPTIVE priority algorithms, on the other hand,
have the power to reorder the remaining decision points
during the execution, and clearly can simulate the
simpler FIXED priority algorithms.

ADAPTIVE PRIORITY ALGORITHM

Input: instance I CT', I = {v,...,v4}

Output: solution vector S = {(v;,0;)|1 <i < d}

- Initialize the set of unseen data points U to I, an

empty partial instance PI, an empty partial solution
S, and a counter ¢ to 1.

Repeat

e Based only on the previously observed data items
PI, determine an ordering function
m: T = RT U {oo}

e Order v € U according to m¢(7y)

e Observe the first unseen data item v, € U, and add
it to the partial instance, PI < PI U {v;}.

e Based only on PI, make an irrevocable decision oy
and add (vy,0¢) to the partial solution S

e Remove the processed data point 7, from U, incre-
ment ¢

Until (decisions are made for all data items, U = ()
Output S

The current decision made depends in an arbi-
trary way on the data points seen so far. The algorithm
also has an implicit knowledge about the unseen data
" TWe could instead use a more general notion, where 7 is a
total ordering of I'. Because we use only finite sets of instances
in our lower bounds, all of our lower bounds also hold for this

more general class. Our upper bounds use orderings based on
real-valued priority functions as given here.

385

points: no unseen point has a smaller value of the
priority function 7y than ;.

[5] also define two other restricted models:
GREEDY and MEMORYLESS priority algorithms.
They define a greedy priority algorithm as follows: “A
greedy algorithm makes its irrevocable decision so that
the objective function is optimized as if the input cur-
rently being considered is the final input.” This con-
cept of GREEDY algorithms does not seem to be well-
defined for arbitrary priority models, in particular graph
models, where not every set of data items constitutes a
valid instance. An interesting problem for future re-
search is to define an analogous notion of GREEDY
priority algorithm for graph problems.

We formalize the notion of MEMORYLESS algo-
rithms in Section 4 and show a separation between the
class of memoryless algorithms and adaptive priority al-
gorithms.

2 A General Lower Bound Technique

In this section, we give a characterization of the best
approximation ratio achievable by a (deterministic)
ADAPTIVE priority algorithm, in terms of a combina-
torial game. The techniques used in this section are bor-
rowed from competitive analysis of on-line algorithms.
Let II be a maximization problem, with objective
function p, and X, and T be a priority model for II.
Let T be a finite collection of instances of II. The
ADAPTIVE priority game for T and ratio p > 1
between two players Solver and Adversary is as follows:
1. Initialize an empty partial instance PI and partial
solution PS. The Adversary picks any subset I'y C
T.
2. Repeat until T'; = 0.
begin; (Round t)
(a) The Solver picks v; € Ty, and oy € X.
(b) ~ is added to PI, and deleted from I'y. (¢, 0¢)
is added to PS.
(¢) The Adversary replaces I'; with a subset
Fyp1 CT.

end; (Round t)

3. In the endgame, the Adversary presents a solution
S for PI.

4. The Solver wins if PI ¢ T, S is not a valid
solution, or if PS is a valid solution and p >
1PS) for maximization problem, or p > 25 for

u(S) u(PS)
minimization problem.

LEMMA 2.1. There is a winning strategy for the Solver
in the above game if and only if there is an ADAPTIVE
priority algorithm that achieves an approximation ratio
of p on every instance of Il in T'.

COROLLARY 2.1. If there is a strategy for the Adver-
sary, in the game defined above, that guarantees a payoff
of at most p, then there is no ADAPTIVE priority algo-
rithm that achieves an approrimation ratio better than

p-

We can similarly characterize the FIXED priority model
by replacing steps 1 and 2(a) as follows. The rest of the
game is the same.

1’ Initialize an empty partial instance PI and a partial
solution PS. The Solver picks a total ordering <
on I'. The Adversary picks any subset I'y C T

2(a)’ Let 4 € Ty be the <-first element of T';. The
Solver picks o; € X.

LEMMA 2.2. There is a winning strategy for the Solver
in the above game if and only if there is a FIXED
priority algorithm that achieves an approrimation ratio
p on every instance of Il in T'.

3 Results for Graph Problems

In this section we present our results for FIXED and
ADAPTIVE priority algorithms. The proofs of lower
bounds here and in Section 4 resemble derivation of in-
tegrality gaps for given LP formulation, in that easy in-
stances are used to establish bounds on the approxima-
tion ratio (See [14] for examples). Our results are used
to evaluate priority algorithms as a model for greedy
heuristics, rather than to establish hardness of approx-
imation results for the particular problem.

3.1 Shortest Paths FIXED priority algorithms are
simpler and ADAPTIVE priority algorithms can sim-
ulate them. We want to show that the two priority
models ADAPTIVE and FIXED, are not equivalent
in power. We define the following graph optimization
problem:

DEFINITION 3.1. (ShortPath Problem) Given a di-
rected graph G=(V,G) and two nodes s € V andt € V,
find o directed tree of edges, rooted at s. The objective
function is to minimize the combined weight of the edges
on the path from s to t.

We consider the ShortPath problem in the edge model.
The data items are the edges in the graph, represented
as a triple (u, v, w), where the edge goes from u to v and
has weight w. The set of options is ¥ = {accept, reject}.
A valid instance of the problem is a graph, represented
as a set of edges, in which there is at least one path
from node s to t. An alternative definition of the
ShortPath problem would insist on the edges selected
to form a path, rather than a tree. However, most
standard algorithms construct a single source shortest

386

paths tree, rather than a single path. In fact, not
only is constructing a tree a more general version of
the problem it is not difficult to show that no priority
algorithm can guarantee a path.

The well-known Dijkstra algorithm, which belongs
to the class of ADAPTIVE priority algorithms, solves
this problem exactly.

THEOREM 3.1. No FIXED priority algorithm can solve
the ShortPath problem with any approzimation ratio p.

Proof sketch: We show an Adversary strategy for the
FIXED priority game for any p. Let k > 2p. Let T be
the set of directed graphs on four vertices s,t,a,b with
edge weights either & or 1, so that ¢ is reachable from s.
The Adversary selects the set 'y, as shown on Figure
1. For example, u stands for the edge from s to a, with
weight k. Note that the parallel edges in the figure are
just possible data items; the instance graph will itself
be simple. The next move is by the Solver. She must
assign distinct priorities to all edges, prior to making
any decisions, and this order cannot change. Thus one
of the edges y and z must appear first in the order. Since
the set of data items is symmetrical, we assume, without
loss of generality, that y appears before z in this order.
The Adversary then removes edges v and w, restricting
the remaining set of data items to I'y = {,y, z,u}. The

Figure 1: Adversary selects I'y = {z,y, 2, u, v, w}.

Adversary’s strategy is to wait until the Solver considers
edge y before deleting any other items, and applies the
following strategy after he observes Solver’s decision on
y:

1. If the Solver decides o, = reject, then the Ad-
versary removes z from the remaining set of data
items. The Adversary does not subsequently re-
move any other data items. Thus, the instance will
be I={u,z,y}. The Adversary outputs a solution
S ={y, v}, while the Solver’s solution PS C {u,z}
cannot contain any path from s to t.

2. If the Solver decides o, = accepted. Then the
Adversary never deletes any data items, making
I ={u,z,y,2z}. In the end game, the Adversary
presents solution S = {z, 2z}, with cost 2. If the
Solver picks edge z, then the Solver failed to satisfy
the solution constraints, since no sub-graph with

both y and z can be a directed tree. Otherwise,
PS C {u,z,y} and thus the cost of the Solver is at
least k+1. The approximation ratio is: k%l > p,
so the Solver loses. O

We conclude that the two classes of algorithms
FIXED and ADAPTIVE priority are not equivalent
in power. Dijkstra’s algorithm can solve the above
problem exactly and belongs to the class of ADAPTIVE
priority algorithms.

Dijkstra’s algorithms, however, does not work on
graphs with negative weight edges. Is dynamic program-
ming necessary for this problem? Perhaps there exists
an ADAPTIVE priority algorithm which can solve the
Single Source Shortest Paths problem on graphs with
negative weight edges, but no negative weight cycles?

THEOREM 3.2. No ADAPTIVE priority algorithm can
solve the ShortPath problem for graphs with weight
function w, : (E) = R, allowing negative weights, but
no negative weight cycles.

This result shows a separation between priority algo-
rithms and dynamic programming algorithms for short-
est path problems; a similar separation was shown by
[5] for interval scheduling on a single machine with ar-
bitrary profits.

3.2 The Weighted Vertex Cover Problem Next
we examine the performance of ADAPTIVE prior-
ity algorithms on the Weighted Vertex Cover problem
(WVC). WVC is NP-hard problem and no polynomial
time algorithm can solve it exactly, or even with ap-
proximation ratio 1 + €, for some € > 0 unless P=NP,
[14]. The well known 2-approximation algorithm [8], fits
our ADAPTIVE priority model, and we show that no
ADAPTIVE priority algorithm can achieve an approx-
imation ratio better than 2.

We consider the Vertex Cover problem in the node
model. The data items are nodes, with their name,
weight, and adjacency list. The set of options is ¥ =
{accept,reject}, meaning the vertex is added to the
vertex cover or thrown away.

THEOREM 3.3. No ADAPTIVE priority algorithm can
achieve an approximation ratio better than 2 for the
Weighted Vertex Cover problem.

Proof For any p < 2, we show a winning strategy for
the Adversary in the game defined in Section 2. For a
suitably large n, the Adversary picks a complete bipar-
tite graph K, , and sets T' to be the set of instances
with this underlying graph, where node weights are ei-
ther 1 or n%. Since the underlying graph is fixed, T’
contains two data items for each node, varying only in
the node weight.

387

Each time the Solver selects a data item correspond-
ing to a node v, the Adversary deletes the other such
item (avoiding inconsistency). The Adversary otherwise
does not delete any items until one of the following three
events occurs:

e Event 1: Solver accepts a node v with weight n2.
e Event 2: Solver rejects a node v (of any weight).

e Event 3: Solver accepts n — 1 nodes of weight 1
from either side of the bipartite graph.

Eventually, one of these three events must occur. If
Event 1 occurs first, then the Adversary fixes the
weights of all nodes on the opposite side to 1, by deleting
all data items giving weight n?. This is possible, since
previously the Solver has only accepted nodes of weight
1, so no data item giving a node weight 1 has been
deleted. Similarly, for each node on the same side with
two possible weights, Adversary deletes the data item of
weight 1. This fixes the instance. Eventually, the Solver
will consider all remaining data items, and output a
solution PS with v € PS, so PS has cost at least n2.
The Adversary outputs a solution S consisting of all
nodes on the other side, which has cost n, winning if
p<n?/n=n.

If Event 2 occurs, the Adversary fixes the weights
of all unseen nodes on the opposite side of v to n? and
the weights of remaining nodes on the same side to 1 (by
deleting the data items of other weights.) Since neither
Events 1 or 3 have previously occurred, it is possible for
all nodes on the same side to have value 1, and there are
at least 2 unseen nodes on the opposite side. Eventually
the Solver outputs a vertex cover PS with v ¢ PS.
Hence, all nodes on the opposite side must be in PS,
for a total cost of at least 2n2. The Adversary outputs
all nodes on the same side of v, for a cost of n2 +n — 1.
The Adversary wins if p < #:_1 =2—o0(1).

If Event 3 occurs first, the Solver has committed
to all but one vertex on one side, say A, of the bipartite
graph. Then the Adversary fixes the weight of the last
unseen vertex in A to n? (by deleting the data item
giving it value 1) and unseen nodes on the other side
are set to weight 1.

The Solver outputs a set either containing all of A
and hence having weight at least n2, or containing all
but one node of A and containing all of the other side
B, giving a total weight of 2n — 1. The Adversary takes
side B, winning if p < 22=L =2 — o(1).

Thus, for any p < 2, the above is a winning strategy
for the Adversary for a suitably large value of n. O

The class of instances K, , can be solved easily.
However, what Theorem 3.3 shows is that a large class
of greedy algorithms cannot approximate the WVC
problem with approximation ratio better than 2. This

bound is tight, because the known greedy heuristic
achieves an approximation ratio 2, and thus is optimal
in the class of adaptive priority algorithms.

It was important to our bound that nodes had
weights. Boyar and Larsen ([4]) consider the unweighted
version and prove a lower bound of % for any priority
algorithm.

3.3 The Metric Steiner Tree Problem We exam-
ine the performance of the ADAPTIVE priority algo-
rithms on the Metric Steiner Tree problem. The in-
stance of the problem is a graph G = (V, E), with the
vertex set partitioned into two disjoint subsets, required
and Steiner. Each edge e € E has a positive weight
w(e). The problem is to find a minimum cost tree,
spanning the required vertices which may contain any
number of Steiner nodes. We are interested in the met-
ric version, where the edge weights obey the triangle
inequality. The standard 2-approximation algorithm
for the Steiner tree problem discovered independently
by [11] and [12] belongs to the class of FIXED prior-
ity greedy algorithms. In the restricted case when the
edges of the graph have weights either 1 or 2, known
as the Steiner(1,2) problem, Bern and Plassmann [6]
proved that the average distance heuristic ([9], [13]), is a
%—approximation. The average distance heuristic, how-
ever, does not seem to fit our priority model.

Our lower bounds are for an intermediate class of
Steiner problems, where edge weights are in the interval
[1,2]. This very local restriction implies the metric
property, which helps the adversary argument. To
show that we cannot get a tight bound of 2 using this
restriction, we give a new priority algorithm for this
restricted class.

THEOREM 3.4. No ADAPTIVE priority algorithm in
the edge model can achieve an approzimation ratio better
than % for the Metric Steiner Tree problem, even when
edge weights are restricted to the interval [1,2]. There
is a 1.875-approzimation adaptive priority algorithm for
the [1,2] Metric Steiner Tree problem.

3.4 Maximum Independent Set Problem We
study the performance of ADAPTIVE priority algo-
rithms for the MIS problem and prove a lower bound
of %, for the MIS problem on graphs with maximum
degree 3.

THEOREM 3.5. No ADAPTIVE priority algorithm in

the node model can achieve an approximation ratio
3

better than 5 for the MIS problem, even for graphs of

degree at most 3.

388

4 Memoryless Priority Algorithms

Memoryless priority algorithms are a subclass of adap-
tive priority algorithms. Although the model is general,
it can only be applied for problems where the decision
options are ¥ = {accept,reject}. Problems with such
priority model include scheduling problems, some graph
optimization problems (vertex cover, Steiner trees, max-
imum clique, etc.), and also facility location and set
cover problems. Memoryless priority algorithms have
a restriction on what part of the instance they can re-
member. We would like to think of the decision of the
algorithm to reject a data item as a ‘no-op’ instruction.
The state of the algorithm and the remaining data items
and their priorities do not change, but the current data
item is “forgotten” by the algorithm and removed from
the remaining sequence of data items. The algorithm
stores in its memory (state) only data items that were
accepted. Each decision made by the algorithm is based
on the information presented by the current data item
and the state. The formal framework of a memoryless
adaptive priority algorithm is:

MEMORYLESS PRIORITY ALGORITHM
Input: instance I CT', I = {m,...,74}
Output: solution S = {(v;,0;)| 0; = accept}

- Initialize: a set of unseen data items U «+ I, a partial
solution S« @, and a counter <1

- Determine an ordering function: 7; : T' — Rt U {oo}
- Order v € U according to my ()

Repeat

Observe the first unseen data item v, € U

Make an irrevocable decision o, € {accept,reject}

If (o = accept) then
— update the partial solution: S < SU {v:}
— determine an ordering function:
M1 : T = RY U {oo}

— order v € U—{v} according to m+1

If (04 = reject) then
— Forget v, i.e., delete it from current state.
e Remove the processed data item ~y; from U; t+t+1

Until (U = 0)
Output S

The differences between adaptive priority algorithms
and memoryless algorithms are:
¢ Reordering the inputs Priority algorithms with
memory can reorder the remaining data items in
the instance after each decision, while memoryless
algorithms can reorder the remaining input after
they accept a data item.

e State Memoryless algorithms forget data items
that were rejected, while memory algorithms keep
in their state all data items and the decisions made.

e Decision making process In making decisions,
memory algorithms consider all processed data
items and the decisions made, while memoryless
algorithms can only use the information about data
items that were accepted.

On one side, memoryless algorithms are intuitive. Con-
sider Prim’s and Dijkstra’s algorithms. Both algorithms
are adaptive priority algorithms and grow a tree by
adding an edge at each iteration. In the case of Prim’s
algorithm, when all nodes of the graph are connected by
the currently grown spanning tree the algorithm rejects
all remaining edges of the graph. In this sense Prim’s
algorithm is memoryless, since the priority function and
the decisions made depend only on the edges added to
the current spanning tree. Note that once this algo-
rithm rejects an edge it never accepts another edge (in
this sense any algorithm with this structure can trivially
be regarded as a memoryless algorithm). Similarly, Di-
jkstra, and the known greedy heuristics for the facility
location, set cover, and vertex cover problems can be
classified as memoryless.

On the other hand, memoryless algorithms can be
considered counterintuitive, in a sense that the algo-
rithm could explore the structure of the instance by
giving lower priority to “unwanted” data items and
rejecting them, and thus could achieve better perfor-
mance. For example, consider the weighted indepen-
dent set problem on cycles. If an algorithm rejects the
smallest weight node, then the algorithm has learned
1) the value of the smallest weight; 2) no other vertex
of the instance has a smaller weight; 3) the name of
the vertex with the smallest weight; 4) the names of the
neighbors of the node with the smallest weight. Perhaps
exploring this knowledge could give the algorithm more
power? This idea is used to show the following result.

THEOREM 4.1. No memoryless adaptive priority algo-
rithm can achieve an approximation ratio better than 2
for the weighted independent set problem on cycles with
weights 1 and k (WIS-2 problem). There is a (14 27)-
approximation adaptive priority algorithm for the WIS-
2 problem.

5 Open Questions and Future Directions

Priority algorithms are a formal framework for greedy
algorithms, and many greedy algorithms fit this model.
We were able to show lower bounds for large class
of algorithms for various graph optimization problems,
which shows the weakness of the technique.

389

However, several questions remain unanswered in
our current model for priority algorithms. Can we
obtain an improved lower bound for the general Metric
Steiner tree problem, with unrestricted edge weights?
Our current upper and lower bounds do not match,
and we would like to know whether we can close the
gap. What lower bounds can we obtain for priority
algorithms for the Maximum Independent Set problems
for graphs of arbitrary degrees and for the Weighted
Independent Set problem and other graph optimization
problems?

Memoryless priority algorithms were proved less
powerful for graph optimization problems, yet most
of the known approximation algorithms are classified
as memoryless algorithms. Can we design improved
approximation schemes using memory?

The priority model seems a flexible and useful
tool for understanding the limitations of the simple
greedy algorithms. However, some “intuitively greedy”
algorithms fall outside our model. Thus in future work
we might want to consider extensions of the model,
so that the extended model captures a larger class
of algorithms. One such natural extension will be to
consider a model where the algorithm is given access to
“global information”, such as the length of the instance.
For graph problems this will be the number of edges
or vertices in the graph. What lower bounds can we
prove for priority algorithms in this extended model?
[5] and [4] showed that some of their lower bounds for
scheduling problems do hold for this extended model
and they considered this as evidence of robustness of
the model.

Another extension of priority algorithms for graph
problems is to redefine the notion of local information
associated with a data item. For example, suppose
the type of data item encodes not just the names of
the neighbors, but also neighbors of the neighbors of
a node as well, assuming the problem is viewed in the
node model. Would that additional information, given
to the algorithm during the decision-making process,
increase the power of the priority algorithms? A
different direction would be to introduce randomization
in the model. Our current lower bounds hold only for
deterministic algorithms.

Greedy algorithms are simple and efficient. How-
ever, dynamic programming algorithms and backtrack-
ing algorithms are more powerful®>. We would like to
define similar general frameworks that would capture
the defining characteristics of those powerful classes of
algorithms. Can we design similar formal models and

5We proved that the Single Source Shortest Path problem
on graphs with negative weight edges cannot be solved by any
priority algorithm.

frameworks for proving lower bounds? Can we estab-
lish both negative results on their performance but also
identify the strength of the technique and the problems
on which it performs well? If we build formal models for
the known efficient algorithm design paradigms (greedy,
dynamic programming, hill-climbing, etc.) then nega-
tive results will show the limits of the known (natural)
approaches to optimization.

Acknowledgments:

The authors are thankful to Allan Borodin, Joan Boyar,
Jeff Edmonds, Valentin Kabanets, Kim Larsen, Vadim
Lyubashevsky, and Morten Nielsen.

References

[1] S. Angelopoulos and A. Borodin, On the Power of Prior-
ity Algorithms for Facility Location and Set Cover, 5th
International Workshop on Approximation Algorithms
for Combinatorial Optimization, September, 2002.

S. Arora and B. Bollobds and L. Lovéasz, Proving Inte-

grality Gaps Without Knowing the Linear Program, 43rd

Symposium on Foundations of Computer Science, 2002,

pp. 313-322.

A. Borodin and R. El-Yaniv, Online Computation and

Competitive Analysis, Cambridge University Press, New

York, 1998.

J. Boyar and K. S. Larsen Preliminary Results on

Priority Algorithms for Graph Problems, Manuscript,

2003.

A. Borodin and M. N. Nielsen and C. Rackoff, Incremen-

tal) Priority Algorithms, Thirteen Annual ACM-SIAM

Symposium on Discrete Algorithms, 2002.

M. Bern and P. Plassmann, The Steiner Problem with

Edge Lengths 1 and 2, Information Processing Letters,

(32) 1989, pp. 171-176.

M. Halldorsson and K. Yoshihara, Greedy Approzima-

tions of Independent Sets in Low Degree Graphs, Sixth

International Symposium on Algorithms and Computa-

tion, 1995.

D. Johnson, Algorithms For Combinatorial Problems, J

of Comp. and System Sci., (9) 1974, pp. 256-278.

B. Maxman and M. Imase, Worst case performance

of Rayward-Smith’s Steiner tree heuristic, Information

Processing Letters, (29) 1988, pp. 283-287.

[10] R. Neapolitan and K. Naimipour, Foundations of Algo-
rithms,

[11] L. Kou and G. Markowsky and L. Berman, A Fast
Algorithm for Steiner Trees, Acta Informatica, (15)
1981, pp. 141-145. Jones & Bartlett Publishing, 1997.

[12] J. Plesnik, A Bound for Steiner Tree problem in graphs,
Math. Slovaca, (31) 1981, pp. 155-163.

[13] V. J. Rayward-Smith, The Computation of nearly min-
imal Steiner Trees in graphs, Internat J. Math. Educ.
Sci. Tech., (14) 1983, pp. 15-23.

[14] V. Vazirani, Approzimation Algorithms,
Verlag, Berlin, 2001.

2]

3]

[4]

(8]
[9]

Springer-

390

