
PRIMAL-DUAL RNC APPROXIMATION ALGORITHMS FOR SET
COVER AND COVERING INTEGER PROGRAMS∗

SRIDHAR RAJAGOPALAN† AND VIJAY V. VAZIRANI‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 2, pp. 525–540

Abstract. We build on the classical greedy sequential set cover algorithm, in the spirit of the
primal-dual schema, to obtain simple parallel approximation algorithms for the set cover problem
and its generalizations. Our algorithms use randomization, and our randomized voting lemmas may
be of independent interest. Fast parallel approximation algorithms were known before for set cover,
though not for the generalizations considered in this paper.

Key words. algorithms, set cover, primal-dual, parallel, approximation, voting lemmas

PII. S0097539793260763

1. Introduction. Given a universe U , containing n elements, and a collection,
S ·

= {Si : Si ⊆ U}, of subsets of the universe, the set cover problem asks for the
smallest subcollection C ⊆ S that covers all the n elements in U (i.e.,

⋃
S∈C S = U).

In a more general setting, one can associate a cost, cS , with each set S ∈ S and ask
for the minimum cost subcollection which covers all of the elements.1 We will use m
to denote |S|.

Set multicover and multiset multicover are successive natural generalizations of
the set cover problem. In both problems, each element e has an integer coverage
requirement re, which specifies how many times e has to be covered. In the case of
multiset multicover, element e occurs in a set S with arbitrary multiplicity, denoted
m(S, e). Setting re = 1 and choosing m(S, e) from {0, 1} to denote whether S contains
e gives back the set cover problem.

The most general problems we address here are covering integer programs. These
are integer programs that have the following form:

min c · x, s.t. Mx ≥ r,x ∈ Z+;

the vectors c and r and the matrix M are all nonnegative rational numbers.
Because of its generality, wide applicability, and clean combinatorial structure, the

set cover problem occupies a central place in the theory of algorithms and approxima-
tions. Set cover was one of the problems shown to be NP-complete in Karp’s seminal
paper [Ka72]. Soon after this, the natural greedy algorithm, which repeatedly adds the
set that contains the largest number of uncovered elements to the cover, was shown to
be an Hn factor approximation algorithm for this problem (Hn = 1 + 1/2 + . . .+ 1/n)
by Johnson [Jo74] and Lovasz [Lo75]. This result was extended to the minimum cost
case by Chvatal [Ch79]. Lovasz establishes a slightly stronger statement, namely,
that the ratio of the greedy solution to the optimum fractional solution is at most

∗Received by the editors November 26, 1993; accepted for publication (in revised form) October
21, 1996; published electronically July 28, 1998.

http://www.siam.org/journals/sicomp/28-2/26076.html
†DIMACS, Princeton University, Princeton, NJ 08544. Current address: IBM Almaden Research

Center, San Jose, CA 95120 (sridhar@almaden.ibm.com). This research was done while the author
was a graduate student at the University of California, Berkeley, supported by NSF PYI Award CCR
88-96202 and NSF grant IRI 91-20074. Part of this work was done while the author was visiting IIT,
Delhi.
‡College of Computing, Georgia Institute of Technology, Atlanta, GA (vazirani@cc.gatech.edu).

This research was supported by NSF grant CCR-9627308.
1Here it is to be understood that the cost of a subcollection C is

∑
S∈C cS .

525

526 SRIDHAR RAJAGOPALAN AND VIJAY VAZIRANI

Hn. Consequently, the integrality gap, the ratio of the optimum integral solution to
the optimum fractional one, is at most Hn. An approximation ratio of O(log n) for
this problem has been shown to be essentially tight by Lund and Yannakakis [LY93].2

More recently, Feige [Fe96] has shown that approximation ratios better than lnn are
unlikely.

The first parallel algorithm for approximating set cover is due to Berger, Rompel,
and Shor [BRS89], who found an RNC5 algorithm with an approximation guarantee
of O(log n). Further, this algorithm can be derandomized to obtain an NC7 algorithm
with the same approximation guarantee. Luby and Nisan [LN93], building on the work
of Plotkin, Shmoys, and Tardos [PST91] have obtained a (1+ε) factor (for any constant
ε > 0), NC3 approximation algorithm for covering and packing linear programs. Since
the integrality gap for set cover is Hn, the Luby–Nisan algorithm approximates the
cost of the optimal set cover to within a (1 + ε)Hn factor. Furthermore (as noted by
Luby and Nisan), in the case of set cover, by using a randomized rounding technique
(see [Ra88]), fractional solutions can be rounded to integral solutions at most O(log n)
times their value.

This paper describes a new RNC3, O(log n) approximation algorithm for the set
cover problem. This algorithm extends naturally to RNC4 algorithms for the various
extensions of set cover each achieving an approximation guarantee of O(log n). In
addition, the approximation guarantee that we obtain in the case of covering integer
programs is better than the best known sequential guarantee, due to Dobson [Do82].

2. A closer look at set cover. We begin by taking a closer look at the greedy
algorithm for set cover. In the minimum cost case, the greedy algorithm chooses the
set that covers new elements at the lowest average cost. More precisely, let U(S)
denote the set of yet uncovered elements in S. The greedy algorithm repeatedly adds

the set argminS

{
cS
|U(S)|

}
to the set cover.

Choose cost(e) to be the cost of covering e by the greedy algorithm. Thus, if
S is the first set to cover e and U(S) = k before S was added to the cover, then

cost(e)
·
= cS/k. Let ei be the ith last element to be covered. Let OPT denote the

optimum set cover as well as its cost.
We now observe that cost(ei) ≤ OPT/i because there is a collection of sets,

namely OPT, which covers all i elements {e1, . . . , ei}. Thus, there is a set S such
that cS ≤ OPT/i|U(S)|. Since ei is the element of smallest cost among {e1 · · · ei},
cost(ei) ≤ OPT/i. Therefore, the cost of the cover obtained by the greedy algorithm
is at most

∑
i cost(ei) ≤ OPT

∑
i

1
i = OPTHn, which provides the approximation

guarantee.
The simple proof given above can be viewed in the more general and powerful

framework of linear programming and duality theory. One can state the set cover
problem as an integer program:

IP :
min

∑
S cSxS

s.t.
∑
S3e xS ≥ 1,

xS ∈ {0, 1}.

By relaxing the integrality condition on x, we obtain a linear program which has the

2More precisely, Lund and Yannakakis establish that there is a constant c such that unless
P̃ = ÑP, set cover cannot be approximated to a ratio smaller than c logn.

RNC APPROXIMATION FOR SET COVER 527

following form and dual:

LP : DP :
min

∑
S cSxS max

∑
e ye

s.t.
∑
S3e xS ≥ 1, s.t.

∑
e∈S ye ≤ cS ,

xS ≥ 0; ye ≥ 0.

The primal linear program is a covering problem and the dual is a packing problem.
We will now reanalyze the greedy algorithm in this context. Define value(e) of an
uncovered element as

value(e)
·
= min

S3e
cS
|U(S)| .

The “value” of an element is a nondecreasing function of time in that it gets bigger
as more and more elements get covered and therefore each U(S) gets smaller. The
greedy algorithm guarantees that cost(e) = value(e) at the moment e is covered.

Now consider any set S ∈ S. Let ei ∈ S be the ith last element of S to be covered
by the greedy algorithm. Then, clearly, cost(ei) = value(ei) ≤ cS/i at the moment of
coverage. Thus, we establish the following inequality for each set S:∑

e∈S
cost(e) ≤

(
1 +

1

2
+ · · ·+ 1

|S|
)
cS .

Alternately, if k is the size of the largest set S ∈ S, then the assignment ye =
cost(e)
Hk

is dual feasible. The dual value for this assignment to y is DP =
∑
e ye =

1
Hk

∑
e cost(e) = 1

Hk
greedy cost. Due to the duality theorem of linear programming,

DP is a lower bound on the value of OPT. Thus, the greedy algorithm approximates
the value of set cover to within a factor of Hk.

3. The key ideas behind our parallel algorithm. The greedy algorithm
chooses a set to add to the set cover for which

∑
e∈S value(e) = cS . One of the

key ideas in this paper is to find a suitable relaxation of this set selection criterion
which guarantees that rapid progress is made but does not degrade the approximation
guarantee significantly. This is by no means a new notion. Indeed, it has been used
in the context of set cover earlier [BRS89]. However, the way in which the relaxation
is made and the resulting parallel algorithms are different from the choices made in
[BRS89].

In our algorithm we identify cost-effective sets by choosing those that satisfy the
inequality ∑

e∈U(S)

value(e) ≥ cS
2
.

This criterion can be distinguished from the greedy criterion in that elements with
different values contribute to the desirability of any set. This weighted mixing of
diverse elements and the consequent better use of the dual variables, value(e), appears
to lend power to our criterion.

Our relaxed criterion guarantees rapid progress. To see this, consider α
·
=

mine value(e). Then, any set for which cS
|U(S)| ∈ [α, 2α] qualifies to be picked. Thus, af-

ter each iteration, the value of α doubles. This and a preprocessing step will enable us

528 SRIDHAR RAJAGOPALAN AND VIJAY VAZIRANI

to show rapid progress for our algorithm. However, an algorithm based solely on this
relaxed criterion will not approximate set cover well, as exhibited by Example 3.0.1.

Example 3.0.1. Let U ·
= {1, 2, . . . , n}. Let S be the

(
n
2

)
sets of size 2 derived

from U . The cost of each set is 1. The optimal cover consists of n
2 sets. However, the

relaxed criterion chooses all the sets. 2

We now address the approximation guarantee. We will be able to assign costs to
each element, denoted cost(e), such that the cost of the set cover is at most

∑
e cost(e).

Further, we will establish that at the moment of coverage, cost(e) ≤ µvalue(e) for each
element e and a suitably chosen constant µ. If, for any algorithm, it is possible to
choose element costs such that these conditions are satisfied, then we will say that the
algorithm has the parsimonious accounting property with parameter µ. It is evident
from the analysis of the greedy algorithm detailed earlier that the parsimonious ac-
counting property with parameter µ suffices to establish an approximation guarantee
of µHk where k is the cardinality of the largest set in S.

These observations motivate a straightforward method of relaxing the set selec-
tion criterion which, however, fails to achieve our stated goal, namely, fast parallel
execution. The relaxation and an instance exhibiting its shortcomings are detailed by
Example 3.0.2 below.

Example 3.0.2. Number the sets arbitrarily. In each iteration, each uncovered
element votes for the lowest numbered set that covers it at the least average cost.

Any set with more than U(S)
2 votes adds itself to the set cover. It is easily verified

that this algorithm has the parsimonious accounting property with parameter µ = 2.
However, the algorithm can be forced to execute Θ(n) iterations on the following
input: let U = {ui, vj : 1 ≤ i, j ≤ n}. Choose S = {Ui, Vj : 1 ≤ i, j ≤ n − 1}, where
Ui = {ui, ui+1, vi+1} and Vj = {vj , uj+1, vj+1}. Finally, choose the set costs to satisfy
cUi−1 > cUi = cVi > cUi+1

for ech i. 2

The solution we propose finds a compromise between the two strategies detailed
above to achieve both objectives, namely, rapid progress as well as good approxima-
tion. The critical extra ingredient used in making this possible is the introduction of
randomization into the process.

The primal-dual scheme provides a general framework in which we can search
for good and fast approximation algorithms for otherwise intractable problems. In
the typical case, the hard problem is formulated as an integer program which is then
relaxed to obtain a linear program and its dual. In this context, the algorithm starts
with a primal, integral infeasible solution and a feasible, suboptimal dual solution.
The algorithm proceeds by iteratively improving the feasibility of the primal and the
optimality of the dual while maintaining primal integrality until the primal solution
becomes feasible. On termination, the obtained primal integral feasible solution is
compared directly with the feasible dual solution to give the approximation guarantee.
The framework leaves sufficient room to use the combinatorial structure of the problem
at hand: in designing the algorithm for the iterative improvement steps and in carrying
out the proof of the approximation guarantee.

The greedy algorithm for set cover can be viewed as an instance in the above

paradigm. At any intermediate stage of the algorithm let ye = cost(e)
Hn

if e has been

covered and value(e)
Hn

otherwise. Then, by the arguments presented in section 2, y is
feasible for DP. The currently picked sets constitute the primal solution.

4. The parallel set cover algorithm. Our proposed algorithm for set cover
is described in Figure 1. The preprocessing step is done once at the inception of

RNC APPROXIMATION FOR SET COVER 529

Parallel SetCov

Preprocess.

Iteration:
For each uncovered element e, compute value(e).
For each set S: include S in L if

(•) ∑
e∈U(S) value(e) ≥ cs

2 .

Phase:
(a) Permute L at random.
(b) Each uncovered element e votes for first set S (in the random order)

such that e ∈ S.
(c) If

∑
e votes S value(e) ≥ cS

16 , S is added to the set cover.
(d) If any set fails to satisfy (•), it is deleted from L.

Repeat until L is empty.
Iterate until all elements are covered.

Fig. 1. The parallel set cover algorithm.

the computation and is a technical step which we will explicitly establish in the next
section. The purpose of this step is to reduce the range of values of cS to one wherein
the largest and smallest values are at most a polynomial factor from each other.

Notice that value(e) is computed only at the beginning of an iteration and is not
updated at the inception of each phase.

4.1. Analysis of Parallel SetCov. We now present an analysis of the pro-
posed algorithm. We will first consider the approximation guarantee and then the
running time. The content of the preprocessing step will be defined with the analysis
of the running time.

4.1.1. Approximation guarantee. The algorithm Parallel SetCov satis-
fies the parsimonious accounting property with µ = 16. If we choose cost(e) =
16value(e) if e votes for S and S is added to the set cover in the same phase, then it
is easily verified that

∑
e cost(e) ≥ cost of cover.

4.1.2. Running time. We will now establish that Parallel SetCov is in
RNC3. In order to do this, we will establish the following three assertions.

1. The algorithm executes O(log n) iterations.
2. With high probability, (1− o(1)), every iteration terminates after O(log nm)

phases.
3. Each of the steps in Figure 1 can be executed in time lognmR, where R is

the length of the largest set cost in bits.

These three assertions imply that Parallel SetCov is in RNC3. Indeed, it fol-
lows that Parallel SetCov runs in (logn)(log nm)(log nmR) time on any standard
PRAM or circuit model with access to coins.

The third assertion follows from the parallel complexity of integer arithmetic and
parallel prefix computations. The details of these operations can be found in a number
of standard texts on parallel computation (see [Le92], for instance).

530 SRIDHAR RAJAGOPALAN AND VIJAY VAZIRANI

In order to prove the first assertion, we have to detail the preprocessing step. De-
fine β = maxe minS3e cS . Then, β ≤ cost of optimal cover ≤ nβ. The first inequality
is because any cover has to pick some set that contains e∗, the maximizing element
for β. The second inequality holds because for any arbitrary element e, there is a set
of cost at most β containing e. Thus, there is a cover comprising of all these sets of
cost at most nβ.

Thus, any set S such that cS ≥ nβ could not possibly be in the optimum cover.
The preprocessing step eliminates all such sets from consideration. Further, if for any
element e there is a set S containing it with cost less than β

n , then we will add S to
the set cover immediately. Since there are at most n elements, at most n sets can be
added in this manner. These can all be added in parallel and the total cost incurred
is at most an additional β. Since β is a lower bound on the cost of the set cover, the
additional cost is subsumed in the approximation.

Thus, we can assume that for each set surviving the preprocessing stage, cS ∈ [βn ,
nβ]. This consequence of the preprocessing stage is a key ingredient in establishing
the following lemma.

Lemma 4.1.1. Parallel SetCov requires at most O(log n) iterations.

Proof. Define α
·
= mine value(e). At any point in the current iteration, consider

a set S that has not yet been included in the set cover and such that cS ≤ 2α|U(S)|.
Then, by the definition of α,∑

e∈U(S)

value(e) ≥ |U(S)|α ≥ cS
2
.

Thus S satisfies (•) and must have satisfied it at the inception of the iteration. Thus
S ∈ L. However, at the end of an iteration, L is empty. Thus for every remaining S,
cS ≥ 2α|U(S)|, or alternately, cS

|U(S)| ≥ 2α. This ensures that in the next iteration, α

increases by a factor of 2. Since α is at least β
n2 and is at most nβ, there can be no

more than logn3 = 3 log n iterations. 2

We will now show that the number of phases in every iteration is small with high
probability. To this end, we will show the following lemma.

Lemma 4.1.2. Consider a fixed iteration, i. The probability that the number of
phases in iteration i exceeds O(log nm) is smaller than 1

n2 .

Proof. We will focus our attention only on those sets that are in L. Thus, the
precondition

∑
e∈U(S) value(e) ≥ cS

2 is imposed on all sets that participate in this
proof unless otherwise specified. The proof of this lemma is made via a potential
function argument. The potential function is Φ

·
=
∑
S∈L |U(S)|. In other words, it is

the number of uncovered element-set pairs in L. In what follows, we will show that
Φ decreases by a constant fraction (in expectation) after each phase. Since the initial
value of Φ is at most nm, the lemma will follow from standard arguments.

Define the degree deg(e) of an element as

deg(e)
·
= |{S ∈ L : S 3 e}|.

Call a set-element pair (S, e), e ∈ U(S) good if deg(e) ≥ deg(f) for at least three
quarters of the elements in U(S).

Let e, f ∈ U(S) such that deg(e) ≥ deg(f). Let Ne, Nf , and Nb be the number
of sets that contain e but not f , f but not e, and both e and f , respectively. Thus,
prob(e votes S) = 1

Ne+Nb
. The probability that both e and f vote for S is exactly the

RNC APPROXIMATION FOR SET COVER 531

probability that S is the first among Ne +Nf +Nb sets which is exactly 1
Ne+Nf+Nb

.

Since deg(e) ≥ deg(f) implies that Ne ≥ Nf we have

prob [f votes S | e votes S] =
prob [e and f vote S]

prob [e votes S]
≥ Ne +Nb
Ne +Nb +Nf

>
1

2
.

The statement above provides the heart of the proof, since it implies that if (S, e) is
good, then S should get a lot of votes if e votes for S. Thus, under this condition,
S should show a tendency to get added to the set cover. We shall now make this
formal.

Noting that for any f ∈ U(S), value(f) ≤ cS
|U(S)| , we see that for any good (S, e),∑

f∈U(S),deg(f)>deg(e) ≤ cS
4 . Since S satisfies (•), we obtain∑

f∈U(S),deg(f)≤deg(e)

value(f) ≥ cS
2
− cS

4
=
cS
4
.

The conditional probability statement above allows us to infer that if (S, e) is good
and e votes for S, then the expected value of

∑
f∈U(S),f votes S value(f) is at least cS

8 .
An application of Markov’s inequality will show that the probability that S is picked
is at least 1

15 .

We will ascribe the decrease in Φ when an element e votes for a set S and S is
subsequently added to the set cover, to the set-element pair (S, e). The decrease in
Φ that will then be ascribed to (S, e) is deg(e), since Φ decreases by 1 for each set
containing e. Since e voted for only one set, any decrease in Φ is ascribed to only one
(S, e) pair. Thus, the expected decrease in Φ, denoted ∆Φ, is at least

E(∆Φ) ≥
∑

(S,e):e∈U(S)

prob(e voted for S, S was picked) · deg(e)

≥
∑

(S, e) good

(prob(e voted for S)× prob(S was picked | e voted for S)× deg(e))

≥
∑

(S, e) good

1

deg(e)

1

15
deg(e)

=
1

15
(number of good (S, e) pairs).

Finally since at least a quarter of all relevant (S, e) pairs are good, we observe that
E(∆Φ) ≥ 1

60Φ. We recall the following fact from probability theory.

Fact 4.1.3. Let {Xt} be a sequence of integer-valued and nonnegative random

variables such that E(Xt − Xt+1|Xt = x) ≥ cx for some constant c. Let Y
·
=

mink{Xk = 0}. Then, prob(Y > O(log(pX0))) ≤ p. Here the asymptotic notation
hides the dependence on 1

c which is linear. 2

Notice that we have just established that the evolution of Φ satisfies the precon-
ditions that allow us to apply Fact 4.1.3. Therefore, choosing p = 1

n2 , we have our
lemma. 2

Theorem 4.1. Parallel SetCov finds a cover which is at most 16Hn times
the optimal set cover. Further, the total running time is O(log n · log nm · log nmR)
with probability 1− 1

n .

532 SRIDHAR RAJAGOPALAN AND VIJAY VAZIRANI

Comment. The constant 16 can be improved to 2(1+ε) for any ε > 0. This is done
by changing the number cS

16 in step (c) to cS
2(1+ε) and the quantity in the definition of

(•) to cS(1− ε2). 2

Comment. The conditional statement is a correlation inequality which we feel
should be of independent interest. Generalizing this correlation inequality will be
a central issue in our analysis of parallel algorithms for the generalizations of set
cover. 2

5. Set multicover and multiset multicover. The set multicover problem is
a natural generalization of the set cover problem. In this generalization, each element
e is associated with a coverage requirement, re, which indicates the depth to which
e must be covered by any feasible cover. Thus, the set multicover problem can be
formulated as an integer program as follows: min

∑
S cSxS subject to

∑
S3e xS ≥ re

and xS ∈ {0, 1}.
Multiset multicover is the generalization where, in addition to the coverage re-

quirement, each element e appears in any set S with a multiplicity m(S, e). Thus, the
integer program is min

∑
S cSxS subject to

∑
m(S, e)xS ≥ re and xS ∈ {0, 1}.

On relaxing the integrality requirement on xS we obtain the following linear
program and dual in the case of multiset multicover.

LP : DP :
min

∑
S cSxS max

∑
e reye −

∑
S zS

s.t.
∑
Sm(S, e)xS ≥ re, s.t.

∑
em(S, e)ye − zS ≤ cS ,

−xS ≥ −1, zS ≥ 0,
xS ≥ 0; ye ≥ 0.

In the case of set multicover, m(S, e) is simply the indicator function that takes a
value of 1 if e ∈ S and 0 otherwise. The interesting feature here is the need to ex-
plicitly limit the value of xS to at most 1 and the associated appearance of the dual
variables zS . Notice that in the set cover problem the limit of 1 on the value of xS
was implicit.

In the following discussion, we shall largely restrict our attention to the more
general case of multiset multicover. In some places, it is possible to obtain slightly
stronger results in the case of set multicover. We will indicate these at appropriate
points in the text.

5.1. Greedy algorithms. There is a natural greedy sequential algorithm for
multiset multicover. Like the set cover algorithm, this algorithm works by repeatedly
picking sets until all the coverage requirements are met. At an intermediate stage
of this process, let r(e) be the residual requirement of e. Thus, r(e) is initially re
and is decremented by m(S, e) each time a set S is added to the cover. Define

a(S, e)
·
= min{m(S, e), r(e)} and the set of alive elements in S, A(S) to be the multiset

containing exactly a(S, e) copies of any element e if S is not already in the set cover,
and the empty set if it is. The greedy algorithm repeatedly adds a set minimizing
cS
|A(S)| to the set cover.

We will extend this notation to multisets in general. Thus, we will denote |A(S)| ·=∑
e a(S, e). Let k = maxS

∑
em(S, e). Let K denote

∑
e re. Dobson [Do82] shows

that this natural extension of the greedy algorithm to set multicover achieves an
approximation ratio of HK . However, he does this by comparing the cost of the
multicover obtained directly to the optimum integral solution of the set multicover
problem. In what follows, we will establish an approximation ratio ofHk by comparing

RNC APPROXIMATION FOR SET COVER 533

the greedy solution to the best possible fractional multicover. Since we can always
restrict m(S, e) to at most re, k ≤ K. Thus, this represents a slight improvement over
Dobson’s result.3

When a set S is picked, its cost cS is ascribed equally to each tuple (e, i) where
S covers e for the ith time. Here, i ranges from 1 to re. We will say S covers (e, i),
in short, to describe this case. Obviously, the cost assigned to each tuple is exactly

cost(e, i) = cS
|A(S)| . Now, we choose ye = maxi{cost(e,i)}

Hk
= cost(e,re)

Hk
. If a set S is not

picked, let zS = 0, and otherwise let

zS =

∑
(e, i) covered by S (cost(e, re)− cost(e, i))

Hk
.

The value of this dual assignment is easily verified to be the cost of the greedy
multicover divided by Hk.

Lemma 5.1.1. y, z is dual feasible.

Proof. First, trivially, both y and z are nonnegative. Consider for any S,(∑
e

m(S, e)ye

)
− zS

=
1

Hk

∑
e

m(S, e)cost(e, re)−
∑

(e, i) covered by S

(cost(e, re)− cost(e, i))

=

1

Hk

 ∑
(e, i) covered by S

cost(e, i) +
∑

e ∈ S, not covered by S

cost(e, re)

 .

We want to view a multiset S as a set which contains m(S, e) copies of element e.
Notice that there is a term in the right-hand side of the above expression corresponding
to each element copy S. Thus, there are m(S, e) terms corresponding to e. Let us
arrange the element copies in S in the reverse order in which they were covered, for
instance, if m(S, e) = 10 and m(S, f) = 5, and suppose r(e) fell to 9 before r(f)
fell to 4 before r(e) fell to 8. Then, the ninth copy of e precedes the fifth copy of
f which precedes the tenth copy of e in this reverse ordering. Notice that the term
corresponding to the jth element in this ordering is at most cS

j . Thus, we have

(∑
e

m(S, e)ye

)
− zS ≤ 1

Hk

(
k∑
i=1

1

i

)
cS .

In other words, the dual constraint corresponding to S is satisfied. Thus, we establish
the feasibility of y, z for the dual problem. 2

The consequence of the above arguments is the following theorem.

Theorem 5.1. The extended greedy algorithm finds a multiset multicover within
an Hk factor of LP∗.

3Recall that in the case of set cover, the approximation factor is logarithmic in the size of the
largest set and not just in n, the size of the universe. Similarly, in this case, the ratio is logarithmic
in k, which is the “local size,” as opposed to K, the “global size” of the problem.

534 SRIDHAR RAJAGOPALAN AND VIJAY VAZIRANI

Parallel MultMultCov
Set r(e) = re for each e.
Iteration:

For each element e, compute value(e) = minS3e cS
|A(S)| .

For each set S: include S in L if
(•) ∑

e a(S, e)value(e) ≥ cs
2 .

Phase:
Initialization:
(a) Permute L at random.
(b) Each element e votes for first r(e) copies of itself in the random

ordering of L.
(c) If

∑
e votes S value(e) ≥ cS

128 , S is added to the set cover.
(d) Decrement r(e) appropriately. Adjust a(S, e) as required.

Delete sets that are picked or fail to satisfy (•) from L.
Repeat until L is empty.

Iterate until all elements are covered.

Fig. 2. The parallel multiset multicover algorithm.

5.2. Parsimonious accounting. More pertinently, the proof implies that the
parsimonious accounting principle ensures approximation in the case of multiset multi-
cover as well. By this we mean the following. Define the dynamic quantity value(e) =
min{ cS

|A(S)|}. Then, as long as we can assign costs cost(e, i) where i ranges from 1 to

re such that
1. cost(e, i) ≤ µvalue(e) at the moment that the set S covering (e, i) is picked,
2.
∑

(e, i) cost(e, i) ≥ cost of cover,
then the algorithm approximates the value of the multiset multicover to within µHk.
Here k is the largest set size, i.e., maxS

∑
em(S, e). We note that in the case of set

multicover, k is at most n, and thus we would have an Hn approximation. Moreover,
in many instances, k could be substantially smaller than n.

5.3. Parallel algorithms and analysis. We now outline parallel algorithms
for multiset multicover. The parallel multiset multicover algorithm is essentially the
same as the set cover algorithm except that with each element we associate a dynamic
variable, r(e), initially re, which tracks the residual requirement of e. After a random
permutation of the candidate sets L is chosen, each element votes for the first r(e)
copies of itself in the sequence.4 The algorithm is detailed in Figure 2. Notice that
we can assume without loss of generality that r(e) ≤ deg(e).

5.4. Analysis. It is easy to see that the algorithm satisfies that parsimonious
accounting property with µ = 128. This establishes the approximation ratio.

The number of iterations is bounded by O(logmnk). As earlier, we will denote
the cost of the optimum multiset multicover by IP∗. The proof follows exactly along
the lines of the proof for the set cover case. The only change required for proving this
is in the definition of the crude estimator β: let S1, S2 · · ·Sm be the sets arranged in

4For example, r(e) is 4 and m(S1, e) = 2, a(S2, e) = 3, and a(S3, e) = 2. Let the permutation
be S1 < S2 < S3. Then, e votes for S1 twice and S2 twice, casting a total of four votes. If the total
number of copies of e in the candidate sets is less than r(e), then e votes for them all.

RNC APPROXIMATION FOR SET COVER 535

increasing order of cost. Let βe be the cost of the set containing the reth copy of e, and
let β = maxe βe. Then, β ≤ IP∗ ≤ mnβ. As before, we can restrict attention to the
sets such that cS ∈ [β/m,mnβ]. Again, it can be easily established that mine value(e)
increases by a constant factor after each iteration. Since value(e) for any element is
at least β/mnk and at most mnβ, there can be only O(logmnk) iterations.

Notice that for the special case of set multicover, k is at most n. Thus, the bound
is logmn iterations.

5.4.1. Phases in an iteration. The number of phases required in an iteration
is at most O(log2 nm). This is established by extending the corresponding lemma for
set cover. However, the extension is non-trivial and we shall need some machinery to
do this.

First we restrict our attention to the sets in L, i.e., sets that satisfy (•). In the
following discussion, we will denote the copies of element e in the set S by e(i). Here,
i ranges from 1 to a(S, e). We say that e(i) votes for S if e(i) is among the first r(e)
copies of e in the random ordering of L.

We will now introduce some notation that will simplify our analysis. We denote
by r(e, i)

·
= r(e)− i+ 1. We denote by deg(e, i)

·
=
∑
S∈Lmin{a(S, e), r(e, i)}. Notice

that from the definitions, it follows that r(e) = r(e, 1) and deg(e) = deg(e, 1). The
second since a(S, e) is at most r(e). In general, it is tricky to get a handle on the
probability that e(i) obtains a vote for S. However, we shall now show the following

lemma which says that the quantity r(e,i)
deg(e,i) approximates this quantity quite nicely.

Lemma 5.4.1.

1

2

r(e, i)

deg(e, i)
≤ prob(e(i) votes S) ≤ 4

r(e, i)

deg(e, i)
.

Proof. The proof has two parts. The first establishes the upper bound, and the
second, the lower bound. For the upper bound we notice that with each permutation

of the sets such that e(i) votes S, we can associate at least deg(e,i)
2r(e,i) − 2 permutations

such that (e, i) does not vote for S. In order to make this association, consider the
notion of a “rotation,” exhibited by Figure 3. This figure is to be interpreted as

r(e,i)

Fig. 3. The top bar shows a permutation of L, and the bottom, a rotated permutation.

follows: the figure shows two permutations of L. These two permutations differ by
a “rotation.” The shaded rectangles representing each permutation represent the
various sets in L. The length of these rectangles correspond to their contributions to
deg(e, i). Thus, the total length of the set of rectangles representing any permutation
of L is exactly deg(e, i).

A rotation is made by extracting from the end of the permutation a minimum
number of sets such that they contribute at least r(e, i) towards deg(e, i) and then
placing them in reversed order in the front of the permutation (as shown).

It is easily verified that a rotation is reversible; i.e., it is possible to “unrotate” any
rotated permutation to the original permutation. This is most easily seen by turning

536 SRIDHAR RAJAGOPALAN AND VIJAY VAZIRANI

Figure 3 upside down. More formally, the unrotation is performed by reversing the
sequence, rotating, and then reversing again.

It is also easily verified that for any configuration such that e(i) votes S, it is

possible to rotate at least deg(e,i)
2r(e,i) − 2 times such that for each rotated configuration,

e(i) does not vote S. This is because the maximum contribution of any set towards
deg(e, i) is r(e, i). Thus, we have associated with each voting permutation at least
deg(e,i)
2r(e,i) − 2 nonvoting permutations. Thus, the probability that e(i) votes for S is

at most (deg(e,i)
2r(e,i) − 1)−1 = 2r(e,i)

deg(e,i)−2r(e,i) . It can be seen via some simple algebraic

manipulations that this implies that prob(e(i) votes S) ≤ 4r(e,i)
deg(e,i) .5

For the second part, we need to do some simple analysis. Let us imagine that
we permute L by choosing at random XT ∈ [0, 1] for each set T and then sorting
L in increasing order of XT . Notice that we do not need to do this algorithmically;
we introduce this just as a means to get a handle on the probability that interests
us. Define Y (x)

·
=
∑
XT<x

min{a(T, e), r(e, i)}. Then, it is easily verified that the

events (e(i) votes S) and (Y (XS) ≤ r(e, i)) are equivalent. Since for any x, E(Y (x)) =
xdeg(e, i), we have by Markov’s inequality,

prob(e(i) votes S | XS = x) ≥ 1− prob(Y (x) ≥ r(e, i)|XS = x) ≥ 1− deg(e, i)

r(e, i)
x.

Let θ ∈ [0, 1]; then

prob(e(i) votes S) ≥
∫ θ

0

prob(e(i) votes S | XS = x)dx ≥ θ − θ2

2

deg(e, i)

r(e, i)
.

Choosing θ = r(e,i)
deg(e,i) completes the proof, since by our assumption (which, as we

pointed out, can be made without loss of generality) that r(e) ≤ deg(e), this fraction
is smaller than 1. Otherwise, the lemma is trivial. 2

Lemma 5.4.2. Let e(i), f (j) ∈ S. Then

prob
(
e(i) and f (j) vote S

) ≥ 1

2

 1
deg(e,i)
r(e,i) + deg(f,j)

r(f,j)

 .

Proof. The proof of this lemma is very similar to the proof of Lemma 5.4.1.

prob (e and f vote S)

=

∫ 1

0

prob (e and f vote S|XS = x) dx

≥
∫ θ

0

prob (e and f vote S|XS = x) dx, θ ∈ [0, 1],

≥
∫ θ

0

1− prob (e does not vote S|XS = x)− prob (f does not vote S|XS = x) dx.

(1)

5To see this, we consider two cases. If deg(e, i) ≤ 4r(e, i), then the conclusion is trivial. Other-

wise, it is easy to see that
2r(e,i)

deg(e,i)−2r(e,i)
≤ 4

r(e,i)
deg(e,i)

by crossmultiplication

RNC APPROXIMATION FOR SET COVER 537

Define Ye(x) and Yf (x) as in the previous lemma,

prob(e(i) does not vote for S | XS = x) ≤ x · deg(e, i)

r(e, i)
,

and do similarly for f (j). Substituting these values back into (1), we obtain

prob(e(i) and f (j) vote for S) ≥ θ −
(

deg(e, i)

r(e, i)
+

deg(f, j)

r(f, j)

)
· θ

2

2
.

Choosing the value of θ to maximize the right-hand side, we get6

prob
(
e(i) and f (j) vote S

) ≥ 1

2

 1
deg(e,i)
r(e,i) + deg(f,j)

r(f,j)

 . 2

Lemma 5.4.3. Let e(i), f (j) ∈ S such that r(e,i)
deg(e,i) ≤ r(f,j)

deg(f,j) .

prob(f (j) votes S | e(i) votes S) ≥ 1

8
.

Proof. The proof is immediate from the previous two lemmas. 2

Remark. In the case of set multicover, the first of the two lemmas implying
Lemma 5.4.3 is trivial. Indeed, since a(S, e) is either 0 or 1, we can immediately

infer that prob(e votes S) = r(e)
deg(e) . The second lemma (with i and j both set to

1) immediately implies the corresponding version of Lemma 5.4.3 with a bound
of 1

4 . 2

Say that a set-element pair (S, e(i)) is good if deg(e,i)
r(e,i) ≥ deg(f,j)

r(f,j) for at least three

quarters of the elements f (j) ∈ S. Then, as in the case of set cover, Lemma 5.4.3
implies that if (S, e(i)) is good

prob
(
S is picked | e(i) votes for S

) ≥ p,
where p > 0. The potential function we use is

Φ
·
=
∑
e

deg(e)Hr(e) =
∑
e

deg(e)

r(e)∑
i=1

1

r(e, i)
.

Initially, Φ ≤ mn log r, where r is the largest requirement. The expected decrease in
Φ ascribable to a good set-element pair (S, e(i)), denoted ∆Φ(S,e(i)), is at least

E(∆Φ(S,e(i))) ≥ prob(e(i) voted for S)× prob(S was picked | e voted for S)
deg(e)

r(e, i)

≥ r(e, i)

deg(e, i)

p

2

deg(e)

r(e, i)

≥ p

2
.

6Again, the assumption that r(e) ≤ deg(e) implies that our choice of θ is at most 1.

538 SRIDHAR RAJAGOPALAN AND VIJAY VAZIRANI

The first inequality is from the definition of Φ, the second is due to Lemmas 5.4.1 and
5.4.3, and the last is due to deg(e) ≥ deg(e, i). Since a constant fraction of all (S, e(i))
are good, E∆Φ ≥ O(Φ

log r), where r is the largest requirement value. From Fact 4.1.3,

we know that the total number of phases is at most O(log r(logmn+ log log r)).
Theorem 5.2. Parallel MultMultCov approximates multiset multicover to

within 128Hn, using a linear number of processors and running in time O(log4mnr).
Corollary 5.4.4. If the number in step (c) of Figure 2 were changed to cS

32 , and
the algorithm were run on an instance of set multicover, then it would be a RNC4

algorithm approximating set multicover to within 32Hn.
Proof. The proof follows from the remark following Lemma 5.4.3. 2

6. Covering integer programs. Covering integer programs are integer pro-
grams of the following form:

CIP :
min

∑
S cSxS

s.t. ∀e ∑
SM(S, e)xS ≥ re,

xS ∈ Z+.

Here, Z+ are the nonnegative integers. The vectors c and r and the matrix M are
all composed of nonnegative (rational) numbers. At this stage, the notion of a “set”
does not have any meaning, however, we continue to use this notation simply to
maintain consistency with the previous discussion. For the purpose of the subsequent
discussion, the reader should keep in mind that S varies over one set of indices, and
e, over the other. Without loss of generality, we may assume that M(S, e) ≤ Re.

What we present here is a scaling and rounding trick. The goal is to reduce to
an instance of multiset multicover with polynomially bounded (and integral) element
multiplicities and requirements. Moreover, in making this reduction, there should be
no significant degradation in the approximation factor.

Lemma 6.0.5. There is an NC1 reduction from covering integer programs to
multiset multicover with element multiplicities and requirements at most O(n2) such
that the cost of the fractional optimal (i.e., the cost of the LP relaxation) goes up by
at most a constant factor.

Proof. Essentially, we need to reduce the element requirements to a polynomial
range and ensure that the requirements and multiplicities are integral. Then, repli-
cating sets to the extent of the largest element requirement, we would get an instance
of multiset multicover. We will achieve this as follows: we will obtain a (crude) ap-
proximation to the fractional optimal within a polynomial factor, and then we will
ensure that the costs of sets are in a polynomial range around this estimate. Also,
we will set all element requirements at a fixed polynomial and set the multiplicities
accordingly. At this point, rounding down the multiplicities will change the fractional
optimal by only a constant factor.

Let βe = Re · minS
cS

M(S,e) and β = maxe βe. Clearly, β ≤ CLP∗ ≤ nβ, where

CLP∗ is the cost of the optimal solution to the LP relaxation of CIP. If a set S
has large cost, i.e., cS > nβ, then S will not be used by the fractional optimal, and
we will eliminate it from consideration. So, for the remaining sets, cS ≤ nβ. Define
αS = d β

ncS
e. We will clump together αS copies of S (i.e., M(S, e) ← M(S, e)αS ,

cS ← cSαS). The cost of the set so created is at least β
n . Additionally, the fractional

optimum is not affected by this scaling (though the same cannot be said of the integral
optimal). Thus, we can assume that for each S, cS ∈ [βn , nβ].

RNC APPROXIMATION FOR SET COVER 539

If any element is covered to its requirement by a set of cost less than β
n , cover

the element using that set and eliminate the element from consideration. The cost
incurred in the process is at most β for all elements so covered, and this is subsumed
in the constant factor. Notice that as a result of this step, the multiplicity of an
element in a set will still be less than its requirements. The reason we require αS to
be integral is that we need to map back solutions from the reduced problem to the
original problem. Henceforth, we can assume that the costs satisfy cS ∈ [βn , nβ]. Next,
we will fix the requirement of each element to be 2n2, and we will set the multiplicities

appropriately, m′(S, e) = M(S,e)
re

· 2n2. Since this is just multiplying each inequality
by a constant, this will not change the (both fractional and integral) optimal solution
or value.

Finally, we will round down the multiplicities, m(S, e) = bm′(S, e)c. We will
show that this will increase the fractional optimal by a factor of at most 4. The same
cannot be said for the integral optimum. This is the reason why we needed to compare
the solution obtained by our approximation algorithms for multiset multicover to the
fractional optimum.

Consider an optimal fractional solution to the problem with multiplicitiesm′(S, e).
Since the cost of this solution is at most nβ, and the cS is at least β

n ,
∑
S xS ≤ n2.

Consider an element e, and let S be the collection of all sets S such that m′(S, e) < 1.
Then, the total coverage of e due to sets in S is at most n2. Therefore, the total
coverage of e due to the remaining sets is at least n2. Since for each of these sets,
m(S, e) ≥ 1

2m
′(S, e), if we multiply each xS by 4, element e will be covered to the

extent of at least 2n2 in the rounded-down problem. The lemma follows. 2

Notice that the reduction in Lemma 6.0.5 is such that a feasible solution to the
instance of the multiset multicover problem can be mapped back to a feasible solu-
tion of the original problem without increasing the cost. Hence we get the following
theorem.

Theorem 6.1. There is an O(log n) factor RNC4 approximation algorithm for
covering integer programs requiring O(n2#(A)) processors, where #(A) is the number
of nonzero entries in A.

Since, in the reduction, all element requirements are set to O(n2), we obtain the
processor bound stated above. Further, since we are comparing the performance of our
algorithm with the fractional optimal, it follows that the integrality gap for covering
integer programs, in which element multiplicities are bounded by requirements, is
bounded by O(log n). It is easy to see that if multiplicities are not bounded by
requirements, the integrality gap can be arbitrarily high.

The previous best (sequential) approximation guarantee for covering integer pro-
grams was Hnmax(A), where max(A) is the largest entry in A, assuming that the
smallest one is 1 [Do82]. Moreover, in that result, the performance of the algorithm
given was compared to the integral optimal.

Notice that the multiset multicover problem with the restriction that each set
can be picked at most once is not a covering integer program, since we will have
negative coefficients. This raises the question of whether there is a larger class than
covering integer programs for which we can achieve (even sequentially) an O(log n)
approximation factor.

Acknowledgments. We thank the referees. Their comments greatly improved
the presentation of the paper.

540 SRIDHAR RAJAGOPALAN AND VIJAY VAZIRANI

REFERENCES

[BRS89] B. Berger, J. Rompel, and P. Shor, Efficient NC algorithms for set cover with applica-
tions to learning and geometry, in Proc. 30th IEEE Symposium on the Foundations
of Computer Science, 1989, pp. 54–59.

[Ch79] V. Chvatal, A greedy heuristic for the set covering problem, Math. Oper. Res., 4 (1979),
pp. 233–235.

[Do82] G. Dobson, Worst-case analysis of greedy heuristics for integer programming with non-
negative data, Math. Oper. Res., 7 (1982), pp. 515–531.

[Fe96] U. Feige, A threshold of lnn for approximating set cover, in Proc. 28th ACM Symposium
on the Theory of Computing, 1996, pp. 312–318.

[Jo74] D. S. Johnson, Approximation algorithms for combinatorial problems, J. Comput. System
Sci., 9 (1974), pp. 256–278.

[Ka72] R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer
Computations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York,
1972, pp. 85–103.

[LN93] M. Luby and N. Nisan, A parallel approximation algorithm for positive linear program-
ming, in Proc. 25th ACM Symposium on Theory of Computing, 1993, pp. 448–457.

[Lo75] L. Lovasz, On the ratio of optimal integral and fractional covers, Discrete Math., 13,
pp. 383–390.

[Le92] F. T. Leighton, Introduction to Parallel Algorithms and Architectures, Morgan Kauf-
man, San Francisco, 1992.

[LY93] C. Lund and M. Yannakakis, On the hardness of approximating minimization problems,
in Proc. 25th ACM Symposium on Theory of Computing, 1993, pp. 286–293.

[PST91] S. A. Plotkin, D. B. Shmoys, and E. Tardos, Fast approximation algorithms for frac-
tional packing and covering problems, in Proc. 32nd IEEE Symposium on the Foun-
dations of Computer Science, 1991, pp. 495–504.

[Ra88] P. Raghavan, Probabilistic construction of deterministic algorithms: Approximating
packing integer programs, J. Comput. System Sci., 37 (1988), pp. 130–143.

