
WS 2005/06 Prof. R. Wattenhofer / Thomas Moscibroda / Stefan Schmid

Discrete Event Systems

Exercise 11: Sample Solution

1 Competitive Analysis

a) Recall that calls have infinite duration. Therefore, once a cell accepts a call, no neighboring
cell can accept a call thereafter. The natural greedy algorithm AGreedy accepts a call,
whenever this is possible. That is, a call in cell C is accepted if no neighboring cell of C has
previously accepted a call.

A

B

D

C
A

B C

D

Figure 1: The solutions AGreedy (left) and AOpt (right)

By accepting a call, AGreedy can prevent itself from accepting at most 3 subsequent calls.
This is shown in Figure 1. Assume that there are four calls, the first one in A, then three
non-interfering ones in neighboring cells B, C, and D. AGreedy accepts the first and has
benefit 1. AOpt rejects the first call, but accepts the remaining three, resulting in a benefit
of 3. The algorithm is 3-competitive.

b) There is no competitive algorithm if calls can have arbitrary durations. Assume that the first
call arrives in A and has arbitrary duration. There are two possible actions for an algorithm
ALG.

If ALG rejects this call, no further call will arrive and therefore benefit(ALG) = 0. The
optimal algorithm would have accepted the call, i.e., benefit(OPT) = 1. The competitive
ratio is infinitely large.

On the other hand, if ALG accepts the call, there will be infinitely many calls coming
in state B, each of which has very short duration ε. While ALG cannot accept any of
these calls (because the call in A has infinite duration), the optimal algorithm rejects the
first call and accepts all subsequent calls. This yields benefit(ALG) = 1 as opposed to
benefit(OPT) = β, for an arbitrarily large value of β

c) At first sight, it seems that there is no better algorithm than the natural greedy algorithm
from part a) of the exercise. After all, the algorithm must accept the first call in order to
stay competitive. Accepting the first call, on the other hand, leads to a competitive ratio
of 3. However, it can be shown that there exists a randomized algorithm with competitive
ratio 2.97. This algorithm accepts every call with a certain probability.

2 Online Algorithm

a) When using the strategy recommended by Cons-ULT, Mario has to serve all clients while
Luigi does not move at all. The total length of Mario’s path is 0.4+0.3+0.4+0.2+0.7 = 2. In
the optimal solution on the other hand, Luigi serves the first request even though he is more
distant to this request than Mario. All subsequent requests are handled by the closer friend.
Mario’s path has length 0.1 + 0.1 = 0.2 and Luigi walks a distance of 0.6 + 0.1 + 0.2 = 0.9.
Hence, the total cost of this solution is 1.1. For the request sequence σ1, the competitive
ratio of Cons-ULT’s algorithm is therefore 2/1.1 ≈ 1.82.

b) No, the algorithm proposed by Cons-ULT is not competitive for any constant. In fact, the
outcome of Cons-ULT’s algorithm can be as bad as n times worse than the optimal solution,
where n is the number of requests.

To see this, consider the request sequence σ2 = 1
2 − ε , 0 , 1

2 − ε , 0 , 1
2 − ε , . . ., for an

arbitrarily small constant ε. Clearly, all requests of σ2 are handled by Mario who has to go
back and forth between the two points 0 and 1

2 − ε. Hence, the total cost of Cons-ULT’s
algorithm is n · (1

2 − ε) ≈ n/2.

In contrast, the optimal solution for sequence σ2 is much better. Luigi could move for the
first request to position 1

2 − ε, and the two friends could remain at their position forever
thereafter. Hence, the optimal cost is 1

2 + ε. Combining this with the result of Cons-ULT,
we see that the competitive ratio α of the Cons-ULT ratio can be as bad as

n · (1
2 − ε)

1
2 + ε

≈ n.

c) Indeed, there exists a much better algorithm for Mario and Luigi’s problem that achieves a
competitive ratio of 2.1 Let us assume that Mario’s position is always to the left of Luigi or
at exactly the same place. It can easily be seen that the algorithm does never change this
invariant. Then, the algorithm handles the next request as follows:

– If the request is located to the left of Mario or to the right of Luigi, serve the request
with the closer of the two.

– Otherwise, the request is between the two friends. In this case, both Mario and Luigi
move towards the request at equal speed until (at least) one of them reaches the request.

We now prove that the above algorithm is 2-competitive.

Proof. Let OPT and ALG denote the optimal solution and the solution computed by our
algorithm for a given request sequence, respectively. Also, let oi

M and oi
L be the positions of

Mario and Luigi after the ith request in the optimal solution OPT . Similarly, we denote by
ai

M and ai
L the positions of Mario and Luigi after the ith request in ALG.

1Note that in the exam, we did of course not expect students to write down a formal proof as detailed as in
this master solution. Instead, it was sufficient to provide a reasonable argument why the proposed algorithm is
competitive.

2

We now define the following potential function:

Φi = 2(|oi
M − ai

M |+ |oi
L − ai

L|) + |ai
M − ai

L|.

The potential function has three properties:

i) Φi ≥ 0 for all i.

ii) If OPT moves its players a distance d, then Φi+1 ≤ Φi + 2d.

iii) If ALG moves its players a distance d, then Φi+1 ≤ Φi − d.

Property i) certainly holds. As for property ii), notice that if OPT moves, the term |ai
M−ai

L|
is not changed and clearly, the term |oi

M − ai
M | + |oi

L − ai
L| can increase by at most d. In

order to prove that iii) holds, we assume that oi
M ≤ oi

L, i.e., the Mario is never to the right
of Luigi in the optimal solution. This is without loss of generality, because if the optimal
solution switches the positions of the two friends, we can simply use a “renaming” in order
to reestablish the invariant.

We must distinguish two cases. First, assume that the ith request is either to the left of
Mario or to the right of Luigi, i.e., only one of the two moves by a distance of d. In this
case, the term |ai

M − ai
L| increases by d. On the other hand, the term |oi

M − ai
M |+ |oi

L− ai
L|

must decrease by d, because after moving Mario or Luigi by a distance d, either |oi
M − ai

M |
or |oi

L − ai
L| becomes 0. This is the case because the optimal solution must also handle

this request. The new value of the potential function in the first case is therefore at most
Φi+1 ≤ Φi − 2d + d = Φi − d.

Now, consider the second case, in which the request is between Mario and Luigi and both
of them move a distance d/2 towards the request from opposite sides. Because both friends
move towards each other, the term |ai

M − ai
L| must decrease by d. Now, consider the change

of the term |oi
M − ai

M | + |oi
L − ai

L|. When serving the ith request, either Mario or Luigi is
matched exactly with the optimal server, i.e., either |oi

M −ai
M | or |oi

L−ai
L| decreases by d/2.

The term that does not decrease, however, may increase at most d/2, because that is the
distance this friend walks. Hence, in the second case, the term |oi

M −ai
M |+ |oi

L−ai
L| remains

exactly the same. In combination with the above observation that |ai
M − ai

L| decreases by
d, this concludes the proof.

Using the potential function, we can now prove the competitive ratio. Specifically, assume
that for serving the ith request, OPT and ALG move Mario and Luigi a distance of di

O and
di

A, respectively. Also, let ∆Φi be the change of the potential function after request i, i.e.,
∆Φi = Φi −Φi−1. Because in our case, we have ∆Φi = 2di

0 − di
A as shown above (one move

by OPT and one move by ALG), it holds that

di
A + ∆Φi ≤ 2 · di

0.

Summing this term up over all iterations i, we obtain
∑

i

di
A +

∑

i

(Φi − Φi−1) ≤ 2 ·
∑

i

di
O.

In the term
∑

i (Φi − Φi−1), all but the first and last term cancel out and hence,

ALG + Φn − Φ0 ≤ 2 ·OPT.

Because Φn is positive and Φ0 is a constant, it follows that ALG ≤ 2 ·OPT + O(1).

Note that the method of using a potential function is very powerful when dealing with online
algorithms. In particular, whenever (for every possible online problem) we can come up with
a potential function for which we can prove that an algorithm ALG fulfils properties i), ii),
and iii), then ALG has a constant approximation of C, where C is the constant used in
property ii).

3

