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Discrete Event Systems
Exercise 9: Sample Solution

1 “Hopp FCB!”
a) We know that the minimum of i independent and exponentially distributed (with parameter λ) ran-

dom variables is an exponentially distributed random variable with parameter iλ. Thus, we have the
following birth-death-process:

...
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b) Let pi be the probability of state i in the equilibrium. In a general birth-death-process with transition
parameters λi and µi, it holds that

p1µ1 = p0λ1 ⇒ p1 =
λ1

µ1
p0.

By induction, we have
pi+1 · µi+1 + pi−1 · λi = pi · (λi+1 + µi)

and thus
pi =

λ1 · λ2 · · · · λi

µ1 · µ2 · · · · µi
p0.

Applying this formula to our process yields

pi =
n(n− 1) · · · · · (n− i + 1) · λi

1 · 2 · · · · · i · µi
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Let ρ := λ
µ . Since the sum of all probabilities equals 1, we have

p0

n∑

i=0
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)
ρi = p0(1 + ρ)n = 1 ⇒ p0 =

1
(1 + ρ)n

.

Finally,

pi =

(
n
i

)
ρi

(1 + ρ)n
.

c) A team is able to play if and only if there are at least eleven fit players:

p11 + p12 + · · ·+ p20 = 0.965.

Thus, the FCB team has enough players that it can participate in most of the matches (probability
> 95 %).



2 A Binary Game
a) If a player writes both 0 and 1 with probability 1

2 , the sum is 0 or 1 modulo 2 with probability 1
2 ,

independently of the other player’s strategy!

Excursion: In Game Theory,1 a set of strategies with the property that no player can benefit by
changing his strategy while the other players keep their strategies, is called a Nash Equilibrium.
In our example, the two strategies where both players write 0 and 1 with probability 1

2 is a Nash
equilibrium. However, Anna’s and Markus’ strategies do not constitute an equilibrium. To see this,
assume that Anna changes its strategy as follows: Knowing that Markus writes 1 with probability
0.6, Anna can always write 1 and thus wins 60% of all games on average. Therefore, Anna has
indeed an insensitive to change her strategy!

b) We model the situation using 4 states, where the left bit denotes Anna’s decision and the right bit
Markus’ decision in the last round. Note that Anna’ strategy is deterministic. We have (transitions
with probability 0 not shown):
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Anna wins in the shaded states 00 an 11. We calculate the probability of these two states in the
equilibrium:

p00 = .4p00 + .4p10

p01 = .6p00 + .6p10

p11 = .6p01 + .6p11

1 = p00 + p01 + p10 + p11

and get
p00 = .16, p01 = .24, p10 = .24, p11 = .36

Since p00 + p11 = .52, Anna’ strategy is better!

c) First note that both strategies are deterministic. Encoding the states with four bits (from left to
right: Anna two rounds ago, Markus two rounds ago, Anna one round ago, Markus one round ago),
showing only the reachable states and the possible edges (probability 1), we have:
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Note that the first two games—where the strategies are not defined completely yet—decide which
of these two cycles describes the following games. Thus, these initial conditions determine which
player wins more games in the long run.

1For an introduction to Game Theory, e.g.: A Course in Game Theory, M. Osborne and A. Rubinstein, MIT Press, 1994.
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