
WS 2005-2006 Roger Wattenhofer, Nicolas Burri, Pascal von Rickenbach,
Yves Weber, and (Andreas Wetzel)

Mobile Computing

Exercise 7

Assigned: January 9, 2006
Due: January 23, 2006

Hearts Lobby

So far we have implemented the multi hop communication layer for the hearts game we want to
make ad hoc network compatible. Now it is time to use this communication layer to implement
the game related components.

The first task we have to solve before we can start a Hearts game is to find four players
who are interested in playing together. For this purpose, in this exercise we implement a lobby
system where players can host and join games. To do so, we define a new communication layer
(HeartsCommunication) on top of the multi hop layer.

1 The HeartsCommunication layer

The communication algorithm of the lobby is similar to Source Routing but with more human
interaction: A client who is interested in finding an open game starts a flooding through the
network requesting information about open games. Every client hosting a not yet started game
responds to this flooding by sending back a message containing the necessary information about
its open game. Then, the new player selects one of the found games and sends a join request to
the host of this particular game. If the game is still missing at least one more player, the host
replies with a join acknowledgment. Finally, once four players have joined a game the host can
start the actual Hearts game by create a start message to all clients.

The message format used by the lobby is defined in the file HeartsMessage.java which can be
downloaded on the course website. It basically consists of an int value containing the HeartsMes-
sage type1 and an Object which is used to add a custom parameter to the message. In the
following it is described how the lobby needs to send and react upon the different HeartsMessage
types.

Looking for open games

To look for open games a HeartsMessage of type LOOK FOR GAMES (0x01) has to be flooded through
the network. Choose a reasonable TTL for the flooding!2 The payload field of the HeartsMessage
can be set to null.

1Not to be confused with the type of the multi hop layer. All messages sent by the HeartsCommunication are of

type TYPE SRMSG on the multi hop layer. The whole HeartsMessage is put into the data field of the multi hop

message.
2Flooding of a message of type TYPE SRMSG was not explicitly specified in the last exercise. However, it

should not be difficult to add this functionality to your solution. Simply check if a message of type TYPE SRMSG

has the broadcast address as a destination and deal with it as if it was a route search message. However, don’t

forget to hand the message to the handler for TYPE SRMSG messages.



Reacting on a LOOK FOR GAMES message

On receiving a message of type LOOK FOR GAMES (0x01) the client checks if it is hosting a game. If it
does host a game which does not have four joined players yet, it replies by sending a HeartsMessage
of type HAVE GAME (0x02) with the corresponding Game object as payload. The message is sent
to the originator of the flooding which can be extracted from the sender field of the multi hop
message. If the node does not host an open game it can ignore the message.

Joining a game

To join a previously found game a client sends a HeartsMessage addressed to the host of this
game. This message is of type JOIN GAME REQ (0x03) and contains the Player object of the player
interested in joining the game as payload. Note that the client interested in joining the game is
not yet a member of this game after sending the message.

Reacting on a JOIN GAME REQ message

If the locally hosted game can use another player the node receiving this message adds the player
to its game. All necessary information can be found in the payload of the message. It then replies
by sending a HeartsMessage of type JOIN GAME ACK (0x04) to the originator of the JOIN GAME REQ

with the Game object of the local game as payload. It also sends a message of type HAVE GAME

(0x02) to all other players who have previously joined the game. This messages also have the Game
object of the local game as payload.

Leaving a remote game

If a node wants to leave a not yet started game it sends a HeartsMessage of type LEAVE GAME

(0x05) to the host of the game. As payload the message contains the Player object of the player
leaving the game.

Reacting on a LEAVE GAME message

On receiving a message of type LEAVE GAME the node hosting the game removes the player sending
the message from its game. It then sends a message of type HAVE GAME to the other joined players
with the new Game object as payload.

Aborting a locally hosted game

If a node wants to abort a not yet started, locally hosted game, it sends a message of type
ABORT GAME (0x06) to all joined players. The message has the last valid Game object of this game
as payload.

Reacting on an ABORT GAME message

The nodes receiving an ABORT GAME message change their local state to indicate that they are no
longer a member of any game. They do not send out any messages.

Starting a game

Once four players have joined a game, the host can start the actual Hearts game. It sends a
message of type START GAME to all joined players with the corresponding Game object as payload.
It would also start the local instance of the Hearts game. However, since we do not want to
implement this part yet, the node may simply print a message to the console to indicate that
everything worked as planned.

Reacting on a START GAME message

On receiving a START GAME message a node starts a local instance of the Hearts game. Since we
do not implement the actual game in this exercise the nodes may only print a success message to
the console.

2



Reacting on a HAVE GAME message

Messages of type HAVE GAME are used to inform players about the state of a game. If the node
receiving such a message is looking for games, the message indicates a new game which needs
some more players. If the player has joined a game and receives a HAVE GAME message containing
information about this game, the host wants to inform it about changes of the game state (e.g. a
player has joined/left the game).

2 User Interface

Since the lobby system requires some user interaction, we need to provide a suitable user interface.
Depending on your Java skills you may either write a console based interface or a small graphical
tool.

3 Good-Bye Andi

With the beginning of this year Andreas Wetzel who has been in charge of the practical exercises
has left DCG and started a new career in industry. We would like to thank him for all his help
and wish him good luck in his new job!

If you have questions about the multi hop layer exercises you may still contact him but for
questions about the new exercises please come to one of the remaining assistants.

Thanks
Nicolas

3


