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Abstract. Motivated by a frequency assignment problem in cellular networks, we introduce and
study a new coloring problem that we call minimum conflict-free coloring (min-CF-coloring). In its
general form, the input of the min-CF-coloring problem is a set system (X,S), where each S ∈ S is
a subset of X. The output is a coloring χ of the sets in S that satisfies the following constraint: for
every x ∈ X there exists a color i and a unique set S ∈ S such that x ∈ S and χ(S) = i. The goal is
to minimize the number of colors used by the coloring χ.

Min-CF-coloring of general set systems is not easier than the classic graph coloring problem.
However, in view of our motivation, we consider set systems induced by simple geometric regions in
the plane.

In particular, we study disks (both congruent and noncongruent), axis-parallel rectangles (with
a constant ratio between the smallest and largest rectangle), regular hexagons (with a constant
ratio between the smallest and largest hexagon), and general congruent centrally symmetric convex
regions in the plane. In all cases we have coloring algorithms that use O(logn) colors (where n
is the number of regions). Tightness is demonstrated by showing that even in the case of unit
disks, Θ(logn) colors may be necessary. For rectangles and hexagons we also obtain a constant-ratio
approximation algorithm when the ratio between the largest and smallest rectangle (hexagon) is a
constant.

We also consider a dual problem of CF-coloring points with respect to sets. Given a set system
(X,S), the goal in the dual problem is to color the elements in X with a minimum number of colors
so that every set S ∈ S contains a point whose color appears only once in S. We show that O(log |X|)
colors suffice for set systems in which X is a set of points in the plane and the sets are intersections
of X with scaled translations of a convex region. This result is used in proving that O(logn) colors
suffice in the primal version.
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1. Introduction. Cellular networks are heterogeneous networks with two differ-
ent types of nodes: base-stations (that act as servers) and clients. The base-stations
are interconnected by an external fixed backbone network. Clients are connected
only to base-stations; links between clients and base-stations are implemented by ra-
dio links. Fixed frequencies are assigned to base-stations to enable links to clients.
Clients, on the other hand, continuously scan frequencies in search of a base-station
with good reception. This scanning takes place automatically and enables smooth
transitions between links when a client is mobile. Consider a client that is within the
reception range of two base-stations. If these two base-stations are assigned the same
frequency, then mutual interference occurs, and the links between the client and each
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of these conflicting base-stations are rendered too noisy to be used. A base-station
may serve a client, provided that the reception is strong enough and interference
from other base-stations is weak enough. The fundamental problem of frequency as-
signment in a cellular network is to assign frequencies to base-stations so that every
client is served by some base-station. The goal is to minimize the number of assigned
frequencies since spectrum is limited and costly.

We consider the following abstraction of the above problem, which we refer to as
the minimum conflict-free coloring problem (min-CF-coloring).

Definition 1.1. Let X be a fixed domain (e.g., the plane), and let S be a
collection of subsets of X (e.g., disks whose centers correspond to base-stations). A
function χ : S → N is a CF-coloring of S if, for every x ∈ ⋃

S∈S S, there exists a
color i ∈ N such that {S ∈ S : x ∈ S and χ(S) = i} contains a single subset S ∈ S.

The goal in the min-CF-coloring problem is to find a CF-coloring that uses as few
colors as possible. It is not hard to verify that, in its most general form defined above,
this problem is not easier than vertex coloring in graphs and is even equally hard to
approximate. An adaptation of the NP-completeness proof of minimum coloring of
intersection graphs of unit disks by [CCJ90] proves that even CF-coloring of unit disks
(or unit squares) in the plane is NP-complete. Since this proof is based on a reduction
from coloring planar graphs, it follows that approximating the minimum number of
colors required in a CF-coloring of unit disks is NP-hard for an approximation ratio
of 4

3 − ε, for every ε > 0.

1.1. Our results. We restrict our attention to set systems (X,R), where X is
a set of points in the plane and R is a family of subsets of X that are defined by the
intersections of X with closed geometric regions in the plane (e.g., disks). We refer
to the members of R as ranges, and to (X,R) as a range-space.

1.1.1. CF-coloring of disks. Given a finite set of disks S, the size-ratio of S
is the ratio between the largest and the smallest radiuses of disks in S. For simplicity
we assume that the smallest radius is 1. For each i ≥ 1, let Si denote the subset of
disks in S whose radius is in the range [2i−1, 2i). Let φ2i(Si) denote the maximum
number of centers of disks in Si that are contained in a 2i × 2i square. We refer to
φ2i(Si) as the local density of Si (with respect to 2i× 2i square). For a set of centers
X ⊂ R2, and for any given radius r, let Sr(X) denote the set of (congruent) disks
having radius r whose centers are the points in X.

Our main results for coloring disks are stated in the following theorem.

Theorem 1.2.

1. Given a finite set S of disks with size-ratio ρ, there exists a polynomial-

time algorithm that computes a CF-coloring of S using O (
min

{∑log(ρ)+1
i=1 (1+

log φ2i(Si)), log |S|}) = O
(
min

{
log(ρ) ·maxi{log φ2i(Si)}, log |S|}) colors.1

2. Given a finite set of centers X ⊂ R2, there exists a polynomial-time algorithm
that computes a coloring χ of X using O(log |X|) colors such that if we color
Sr(X) by assigning each disk D ∈ Sr(X) the color of its center, then this is
a valid CF-coloring of Sr(X) for every radius r.

Tightness of Theorem 1.2 is shown by presenting, for any given integer n, a set
S of n unit disks with φ1(S) = n for which Ω(logn) colors are necessary in every
CF-coloring of S.

1For simplicity of notation, we avoid writing log(x+ 1) throughout the paper, even when x may
equal 1, and consider O(0) to be O(1).
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In the first part of Theorem 1.2, the disks are not necessarily congruent; that
is, the size-ratio ρ may be bigger than 1. In the second part of Theorem 1.2, the
disks are congruent (i.e., the size-ratio equals 1). However, the common radius is not
determined in advance. Namely, the order of quantifiers in the second part of the
theorem is as follows: Given the locations of the disk centers, the algorithm computes
a coloring of the centers (of the disks) such that this coloring is conflict-free for every
radius r. We refer to such a coloring as a uniform CF-coloring.

Uniform CF-coloring has an interesting interpretation in the context of cellular
networks. Assume that base-stations are located in the disk centers X. Assume that
a client located at point P has a reception range r. The client is served, provided
that the disk centered at P with radius r contains a base-station that transmits in a
distinct frequency among the base-stations within that disk.

Thus, uniform CF-coloring models frequency assignment in the setting of isotropic
base-stations that transmit with the same power and clients with different reception
ranges. Moreover, the coloring of the base-stations in a uniform CF-coloring is inde-
pendent of the reception ranges of the clients.

Building on Theorem 1.2, we also obtain two bicriteria CF-coloring algorithms
for disks having the same (unit) radius. In both cases we obtain colorings that use
very few colors. In the first case this comes at a cost of not serving a small area that
is covered by the disks (i.e., an area close to the boundary of the union of the disks).
In the second case we serve the entire area, but we allow the disks to have a slightly
larger radius. A formal statement of these bicriteria results follows.

Theorem 1.3. For every 0 < ε < 1 and every finite set of centers X ⊂ R2, there
exist polynomial-time algorithms that compute colorings as follows:

1. A coloring χ of S1(X) using O
(
log 1

ε

)
colors for which the following holds:

The area of the set of points in
⋃S1(X) that are not served with respect to

χ is at most an ε-fraction of the total area of S1(X).
2. A coloring of S1+ε(X) that uses O

(
log 1

ε

)
colors such that every point in⋃S1(X) is served.

In other words, in the first case, the portion of the total area that is not served is
an exponentially small fraction as a function of the number of colors. In the second
case, the increase in the radius of the disks is exponentially small as a function of the
number of colors.

1.1.2. CF-coloring of rectangles and regular hexagons. Let R denote a
set of axis-parallel rectangles. Given a rectangle R ∈ R, let w(R) (respectively,
h(R)) denote the width (respectively, height) of R. The size-ratio of R is defined by

max
{w(R1)
w(R2)

, h(R1)
h(R2)

}
R1,R2∈R.

The size-ratio of a collection of regular hexagons is simply the ratio of the longest
side length to the shortest side length.

Theorem 1.4. Let R denote either a set of axis-parallel rectangles or a set
of axis-parallel regular hexagons. Let ρ denote the size-ratio of R, and let χopt(R)
denote an optimal CF-coloring of R.

1. If R is a set of rectangles, then there exists a polynomial-time algorithm that
computes a CF-coloring χ of R such that |χ(R)| = O((log ρ)2) · |χopt(R)|.

2. If R is a set of regular hexagons, then there exists a polynomial-time algo-
rithm that computes a CF-coloring χ of R such that |χ(R)| = O(log ρ) ·
|χopt(R)|.

For a constant size-ratio ρ, Theorem 1.4 implies a constant-ratio approximation
algorithm.



CONFLICT-FREE COLORING OF SIMPLE GEOMETRIC REGIONS 97

C

y

y′

z

z′

w

w′

O

Cr,O

x1

x3

Cr,O(x1)

Cr,O(x2)

Cr,O(x3)

x2

Fig. 1.1. On the left is an example of a scaled translation Cr,O of a regular hexagon C with
respect to the point O, where the scaling factor is r = 2. The points y, z, and w on the small
hexagon C are mapped to the points y′, z′, and w′, respectively, on the larger hexagon Cr,O. The
dashed lines correspond to the rays emanating from O toward the points y, z, and w. On the
right is an additional set X = {x1, x2, x3} of three points and the corresponding set Cr,O(X) =
{Cr,O(x1), Cr,O(x2), Cr,O(x3)}.

1.1.3. Uniform CF-coloring of congruent centrally symmetric convex
regions. Consider a convex region C and a point O. Scaling by a factor r > 0 with
respect to a center O is the transformation that maps every point P �= O to the point
P ′ along the ray emanating from O toward P such that |P ′O| = r · |PO|. The center
point O is a fixed point of the transformation of the scaling. We denote the image
of C with respect to such a scaling by Cr,O. Given a point x and a scaling factor
r > 0, we denote by Cr,O(x) the image of Cr,O obtained by the translation that maps
O to x (see Figure 1.1). We refer to C ′ as a scaled translation of C if there exist
points x,O and a scaling factor r > 0 such that C ′ = Cr,O(x). Given a set of centers
X and a scaling factor r > 0, the set Cr,O(X) denotes the set of scaled translations
{Cr,O(x)}x∈X .

A region C ∈ R2 is centrally symmetric if there exists a point O (called the
center) such that the transformation of reflection about O is a bijection of C onto C.
Note that disks, rectangles, and regular hexagons are all convex centrally symmetric
regions.

The following theorem generalizes the uniform coloring result presented in part 2
of Theorem 1.2 to sets of centrally symmetric convex regions that are congruent via
translations.

Theorem 1.5. Let C denote a centrally symmetric convex region with a center
point O. Given a finite set of centers X ⊂ R2, there exists a coloring χ of X that uses
O(log |X|) colors such that if we color each c ∈ Cr,O(X) with the color of its center,
then this is a valid CF-coloring of Cr,O(X) for every scaling factor r.

A polynomial-time constructive version of Theorem 1.5 holds when the region C is
“well behaved,” e.g., a disk, an ellipsoid, or a polygon. (More formally, a polynomial-
time algorithm for computing Delaunay graphs of arrangements of regions Cr,O(X) is
needed.)

1.2. Techniques.

1.2.1. A dual coloring problem: CF-coloring of points with respect to
ranges. In order to prove Theorem 1.2, we consider the following coloring problem,
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which is dual to our original coloring problem described in Definition 1.1.
Definition 1.6. Let (X,R) denote a range-space. A function χ : X → N is a

CF-coloring of X with respect to R if, for every R ∈ R, there exists a color i ∈ N
such that the set {x ∈ R : χ(x) = i} contains a single point.

Note that in the original definition of CF-coloring (Definition 1.1) we were in-
terested in coloring ranges (regions) in order to serve points contained in the ranges,
while in Definition 1.6 we are interested in coloring points in order to “serve” ranges
containing the points.

We give a general framework for CF-coloring points with respect to sets of ranges
R and provide a sufficient condition under which a coloring using O(log |X|) colors
can be achieved. This condition is stated in terms of a special graph constructed from
(X,R). When X is a set of points in the plane and R is the set of ranges obtained
by intersections with disks, this graph is the standard Delaunay graph. We then
study several cases in which the condition is satisfied. Theorems 1.2 and 1.5 follow
by reduction to these cases. We believe that Theorem 1.7 stated below (from which
Theorem 1.5 is easily derived) is of independent interest.

Theorem 1.7. Let C be a compact convex region in the plane, and let X be a
finite set of points in the plane. Let R ⊆ 2X denote the set of ranges obtained by
intersecting X with all scaled translations of C. Then there exists a CF-coloring of
X with respect to R using O(log |X|) colors.

Recently, Pach and Tóth [PT03] proved that Ω(log |X|) colors are required for
CF-coloring every set X of points in the plane with respect to disks.

1.2.2. CF-coloring of chains. A chain S is a collection of subsets, each as-
signed a unique index in {1, . . . , |S|}, for which the following holds. For every (dis-
crete) interval [i, j], 1 ≤ i ≤ j ≤ |S|, there exists a point x ∈ ⋃

S∈S S such that the
subcollection of subsets that contains the point x equals the subcollection of subsets
indexed from i to j. Moreover, for every point x ∈ ⋃

S∈S S, the set of indexes of
subsets that contain the point x is an interval. (For an illustration, see Figure 6.2.)
We show that chains of unit disks (respectively, unit squares and hexagons) are tight
examples of Theorem 1.2 (respectively, Theorem 1.4); namely, every CF-coloring of
a chain must use Ω(log |S|) colors, and it is possible to CF-color every chain using
O(log |S|) colors.

Chains also play an important role in our approximation algorithm for CF-coloring
rectangles and hexagons. Loosely speaking, our coloring algorithm works by decom-
posing the set of rectangles into chains. An important component in our analysis
is understanding and exploiting the intersections between pairs of different chains.
Specifically, we show how different types of pairs of chains (see Figures 7.5 and 7.9)
can “help” each other so as to go below the upper bound on the number of colors
required to color chains, which is logarithmic in their size.

1.3. Related problems. As noted above, min-CF-coloring of general set sys-
tems is not easier (even to approximate) than vertex-coloring in graphs. The latter
problem is of course known to be NP-hard, and is hard even to approximate [FK98].
The problem remains hard for the special case of unit disks (and squares), and it
is even NP-hard to achieve an approximation ratio of 4

3 − ε for every ε > 0 (by an
adaptation of [CCJ90]).

Marathe et al. [MBH+95] studied the problem of vertex-coloring of intersection
graphs of unit disks. They presented an approximation algorithm with an approx-
imation ratio of 3. Motivated by channel assignment problems in radio networks,
Krumke, Marathe, and Ravi [KMR01] presented a 2-approximation algorithm for the



CONFLICT-FREE COLORING OF SIMPLE GEOMETRIC REGIONS 99

distance-2 coloring problem in families of graphs that generalize intersection graphs
of disks.

A natural variant of min-CF-coloring is min-CF-multicoloring. Given a collection
S of sets, a CF-multicoloring of S is a mapping χ from S to subsets of colors. The
requirement is that for every point x ∈ ⋃

S∈S S there exists a color i such that
{S : x ∈ S, i ∈ χ(S)} contains a single subset. The min-CF-multicoloring problem is
related to the problem of minimizing the number of time slots required to broadcast
information in a single-hop radio network. In view of this relation, it has been observed
by Bar-Yehuda ([B01], based on [BGI92]) that every set system (X,S) can be CF-
multicolored using O(log |X| · log |S|) colors.

Mathematical optimization techniques have been used to solve a family of fre-
quency assignment problems that arise in wireless communication (for a comprehen-
sive survey, see [AHK+01]). We elaborate why these frequency assignment problems
do not capture min-CF-coloring. Basically, such frequency assignment problems are
modeled using interference or constraint graphs. The vertices correspond to base-
stations, and edges correspond to interference between pairs of base-stations. Each
edge (v, w) is associated with a penalty function pv,w : N× N→ R, so that if v is as-
signed frequency i ∈ N and w is assigned frequency j ∈ N, then a penalty of pv,w(i, j)
is incurred. A typical constraint is to bound the maximum penalty on every edge. A
typical cost function is the number of frequencies used. CF-coloring cannot be mod-
eled in this fashion because CF-coloring allows for conflicts between base-stations,
provided that another base-station serves the “area of conflict.” Even models that
use nonbinary constraints (see [DBJC98]) do not capture CF-coloring. We note that
the above models take into account interferences between close frequencies, while we
have ignored this issue for the sake of simplicity. We can, however, incorporate some
variants of such constraints. For example, in the case of unit disks we can easily
impose the constraint that, for every point x, the frequency assigned to the disk that
serves x differs by at least δmin from the frequency assigned to every other disk cov-
ering x. By applying Theorem 1.2 and multiplying each color by δmin, we can satisfy

the above constraint while using O
(
min

{∑log(ρ)+1
i=1 log φ2i(Si), log |S|} · δmin

)
colors

(and there is an example that exhibits tightness).
Frequency assignment problems in cellular networks as well as the positioning

problem of base-stations have been studied extensively; see [AKM+01, GGRV00, H01]
for other models and many references. Finally, we refer to [HS03, SM03] for further
work on CF-coloring problems.

Further research. Among the open problems related to our results are the follow-
ing: (1) Is there a constant approximation algorithm for min-CF-coloring of unit disks
and disks in general? (2) Is it possible to extend our results to min-CF-coloring with
capacity constraints defined as “every base-station is given a capacity that bounds
the number of clients that it can serve”?

Organization. In section 2, preliminary notions and notations are presented. In
section 3 we describe our results for CF-coloring points with respect to range-spaces:
We describe a general framework and several applications. In section 4 we prove
our results for CF-coloring of disks (Theorems 1.2 and 1.3), which build on results
from section 3. Theorem 1.5 is proved in section 5, and tightness of Theorem 1.2 is
established in section 6. Our O(1)-approximation algorithm for rectangles is provided
in section 7. In section 8 we discuss how a very similar algorithm can be applied to
color regular hexagons. Finally, in section 9 we derive a couple of additional related
results.
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2. Preliminaries.

2.1. Combinatorial arrangements. A finite set R of regions (in the plane)
induces the following equivalence relation. Every two points x, y in the plane belong
to the same class if and only if they reside in exactly the same subset of regions
in R. That is, x and y are in the same equivalence class if {R ∈ R : x ∈ R} =
{R ∈ R : y ∈ R}. We refer to each such equivalence class as a cell. The set of all
cells induced by R is denoted by cells(R). With a slight abuse of notation, we view
the pair (cells(R),R) as a range-space. To be precise, (cells(R),R) is the following
range-space: (a) the ground set is equal to a representative from every cell, and (b) the
ranges are the intersections of sets in R with the ground set. We henceforth refer to
the range-space (cells(R),R) as the combinatorial arrangement induced by R; we
denote this combinatorial arrangement by A(R).

a cell

Fig. 2.1. An arrangement of disks. The marked cell corresponds to the regions that are con-
tained in the middle disk and only in that disk.

The definition of a combinatorial arrangement differs from that of a topological
arrangement (where one considers the subdivision into connected components induced
by the ranges). For example, Figure 2.1 depicts a collection of disks. The two shad-
owed regions constitute a single cell in the combinatorial arrangement induced by
the disk. In the definition of a topological arrangement these regions are considered
as two separate cells. We often consider combinatorial arrangements of the form
(V,R), where V ⊂ cells(R). We refer, in short, to combinatorial arrangements as
arrangements.

2.2. Primal and dual range-spaces. Consider a range-space (X,R). The dual
set system is (R, X∗), where X∗ = {N(x)}x∈X ⊆ 2R and N(x) = {R ∈ R : x ∈ R}.
One may represent a set system by a bipartite graph (X ∪R, E), with an edge (x,R)
if x ∈ R. Under this representation, the dual set system corresponds to the bipartite
graph in which the roles of the two sides of the vertex set are interchanged. Isomor-
phism of set systems is equivalent to the isomorphism between the bipartite graph
representations of the corresponding set systems.

Let T denote a set of regions in the plane. We use T to denote a set of regions
with some common property, for example, the set of all unit disks or the set of axis-
parallel unit squares. Given a set of points X and a region R (such as a disk), when
referring to R as a range (namely, a subset of X) we actually mean R ∩X.

A range-space (X,R) is a T -type range-space if R ⊆ T . We are interested in
situations in which the dual of a T -type range-space is isomorphic to a T -type range-
space.

Definition 2.1. A set of regions T is self dual if the dual range-space of every
T -type range-space is isomorphic to a T -type range-space.

For example, it is not hard to verify that the set of all unit disks is self dual. On
the other hand, the set of all disks (or even disks of different radius) is not self dual.
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The following claim states a condition on T that is sufficient for T to be self dual
when X is a set of points in the plane.

Claim 2.2. Let C be a fixed centrally symmetric region in the plane, and let T
be the set of all regions congruent (via translation, not rotation) to C. Then T is self
dual.

Proof. Given a T -type range-space (X,R), let Y denote the set of centers of the
ranges in R. For a point x in the plane, let C(x) denote the region congruent to C

that is centered at x. For a set X of points in the plane, let C(X)
�
= {C(x) : x ∈ X}

denote the set of regions congruent to C centered at points of X. The range-space
(Y, C(X)) is obviously a T -type range-space. To see that this system is isomorphic to
the dual range-space (R, X∗), we identify every range R ∈ R with its center. Since C
is centrally symmetric, it follows that y ∈ C(x) if and only if x ∈ C(y) for every two
points x, y. This means that a center y ∈ Y is in C(x) if and only if the range C(y)
contains the point x ∈ X. Hence, for every point x ∈ X, the set C(x) ∩ Y equals the
set of centers of ranges in N(x), and the claim follows.

As a corollary of Claim 2.2 we obtain the following.

Corollary 2.3. Let C be a fixed centrally symmetric region in the plane, and
let T be the set of all regions congruent (via translation, not rotation) to C. Then the
CF-coloring arrangement of T -type regions is equivalent to CF-coloring points with
respect to a T -type set of ranges.

We rely on Corollary 2.3 in the proof of part 2 of Theorem 1.2 and in the proof
of Theorem 1.5.

3. CF-coloring points with respect to ranges. In this section we present
CF-coloring algorithms for points with respect to ranges. The colorings require
O(log n) colors, where n denotes the number of points.

3.1. Intuition. We begin this subsection by presenting a high level description
of our algorithm. We then briefly discuss how it can be applied to the special case
where X is a set of n points in the plane and the ranges in R are intersections of X
with disks.

The algorithm works in an iterative manner, where in iteration i it selects the sub-
set of points that are colored by color number i. Let Xi denote the set of points that
are colored by the color i, and let X<i (respectively, X≤i) denote the set

⋃
j<iXj (re-

spectively,
⋃

j≤iXj). When determining Xi, the algorithm ensures that the following
condition holds:

For every range S ∈ R, either (i) S can be served by a point colored
j < i (i.e., there exists j < i : |S ∩Xj | = 1), or (ii) S ∩Xi contains
at most one point, or (iii) S contains a point that is not colored yet
(i.e., S � X≤i).

Correctness follows because if either (i) or (ii) holds, then S can be served by a point
colored j ≤ i, while if neither (i) nor (ii) holds, then there will be a point colored
by a color greater than i that can serve S. In fact, a coloring that obeys the above
condition has the following property: For every range S ∈ R, the highest color of a
point contained in S has multiplicity 1.

Observe that we can trivially obey the above condition by selecting Xi to consist
of a single point in X \X<i, so that each point is colored by a different color. However,
the total number of colors in this case is |X| = n, while we are interested in using
only O(log n) colors. To obtain O(log n) colors, we show that (for the sets of ranges
we consider), in each stage it is possible to select at least a constant fraction of the
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remaining points (i.e., |Xi| ≥ 1
4 · |X \X<i|).

To make the above more concrete, consider the special case of coloring a set of
points X with respect to disks. First assume that the points all lie on a straight
line. In such a case, the choice of Xi involves simply picking every other point of
X \ X<i (see Figure 3.1). By convexity, if a disk D contains two (or more) points
from Xi, then it must contain all the points in between these two points. Between
every two points in Xi there must exist at least one point not in X≤i. It follows that

the condition required from Xi holds. Since |Xi| =
⌈ |X\X<i|

2

⌉
, the number of colors

used is O(log n), as desired.

Fig. 3.1. Selection of Xi when the points lie on a straight line. The points drawn are those in
X \X<i. The points of Xi are denoted by filled dots. The unfilled dots denote points in X \X≤i.
The disk on the left contains two points in Xi and hence also an unfilled dot. The disk on the right
contains only a single point in Xi.

The choice of Xi when the points are in general position in the plane is more
involved. In this case, we construct the Delaunay graph Gi of the set X \X<i: Two
points pi and pj form an edge in Gi if and only if there is a closed disk D that contains
pi and pj on its boundary and does not contain any other point in X \ X<i. The
graph Gi is planar and hence is 4-colorable. The largest color class contains at least
1
4 of the remaining points and is an independent set in Gi. In Claim 3.4 below we
prove that the largest color class is a good candidate for Xi.

3.2. A general framework. We start by presenting a general framework for
CF-coloring a set X of points with respect to a set R ⊆ 2X of ranges, and describe
sufficient conditions under which the resulting coloring uses O(log n) colors. Since
every range R ∈ 2X that contains a single point from X is trivially served by that
point, we assume that every range in R contains at least two points from X.

Definition 3.1. Let X be a set of points and R ⊆ 2X a set of ranges. A
partition (X1, X2) of X is R-useful if X1 �= ∅ and

∀S ∈ R : |S ∩X1| = 1 or S ∩X2 �= ∅.

Algorithm 1. CF-color(X,R)—CF-color a set X with respect to a set of
ranges R.
1: Initialization: i← 1, X1 ← X, R1 ← R. (i denotes an unused color, Xi is the

set of points not yet colored, and Ri is the set of ranges that contain more than
one point in Xi and cannot be served by points colored j, for j < i.)

2: while Xi �= ∅, do
3: Find an Ri-useful partition (X1, X2) of Xi. (See Claim 3.4 below.)
4: Color: ∀x ∈ X1 : χ(x)← i.
5: Project: Xi+1 ← X2 and Ri+1 ← {S ∩ X2 : S ∈ Ri, |S ∩ X1| �= 1, and

|S ∩X2| ≥ 2}.
6: Increment: i← i+ 1.
7: end while
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Claim 3.2. The coloring of X computed by CF-color(X,R) is a CF-coloring
of X with respect to R.

Proof. Consider a range S ∈ R. Let i denote the last iteration in which Xi ∩S ∈
Ri. In other words, in the ith iteration, theRi-useful partition (X1, X2) ofXi satisfies
either |X1 ∩ S| = 1 or |X2 ∩ S| = 1. In the first case, S can be served by the single
element x ∈ X1 ∩ S (which is colored i). In the second case, S can be served by the
single element x ∈ X2 ∩ S (which is colored j, for j > i). Observe that if at the end
of iteration i the range-space Ri+1 becomes empty while Xi+1 is not empty, then the
partition (Xi+1, ∅) is trivially Ri+1-useful, and all the points in Xi+1 can be colored
with the color i+ 1.

Note that Algorithm CF-color computes a CF-coloring in which every range
S ∈ R is served by the point with the highest color among the points in S.

3.2.1. Sufficient conditions for using O(log |X|) colors. If in every iter-
ation i we have |X1| = Ω(|Xi|), then Algorithm CF-color uses O(log |X|) colors.
We formalize a condition guaranteeing that |X1| is a constant fraction of |Xi|. The
condition is phrased in terms of a special graph that is attached to the range-space
(Xi,Ri).

We refer to ranges S ∈ Ri as minimal if they are minimal with respect to in-
clusion. Recall that we initially assume that for every S ∈ R, |S| ≥ 2 (since ranges
of size one are served trivially). The algorithm ensures that, in each iteration, every
range in Ri contains at least two points. Hence, minimal ranges contain at least two
points.

Definition 3.3. A Delaunay graph of a set system (X,R) is a graph DGR(X,E),
defined as follows. For every minimal S ∈ R, pick a pair u, v ∈ S and define
e(S) = (u, v). The edge set E is defined by E = {e(S) : S ∈ R and S is minimal}.

A Delaunay graph of a set system is not uniquely defined if there exist minimal
ranges that contain more than two points. To simplify the presentation, we abuse
notation and refer to the Delaunay graph of a set system as if it were unique.

We now discuss how Definition 3.3 is an extension of the standard definition of the
Delaunay graph of a set of points in the plane. The Delaunay graph of a set of points
X in the plane is defined as the dual graph of the Voronoi diagram of X [BKOS97].
Theorem 9.6 in [BKOS97] suggests an equivalent definition: Two points pi and pj
form an edge in the Delaunay graph of X if and only if there is a closed disk D that
contains pi and pj on its boundary and does not contain any other point in X. This
equivalent definition implies that the edge set of a Delaunay graph corresponding to
X equals the set of minimal ranges containing two points induced by disks. We leave
it as an exercise to prove that every minimal range induced by a disk contains exactly
two points. Hence, in the case of points in the plane and disks, DGR(X,E) is the
standard Delaunay graph of X.

The next claim shows how an R-useful partition can be found by Algorithm
CF-color.

Claim 3.4. If X1 ⊆ X is an independent set in DGR, then the partition
(X1, X \X1) is R-useful.

Proof. Assume for the sake of contradiction that there exists an independent set
X1 such that (X1, X \X1) is not an R-useful partition of X. That is, there exists a
range S ∈ R such that |S ∩X1| �= 1 and S ∩ (X \X1) = ∅. Note that assuming that
S ∩ (X \ X1) = ∅ necessarily implies that S ⊆ X1, and so we may replace the first
condition (i.e., |S ∩X1| �= 1) by |S ∩X1| ≥ 2.

Let S′ denote a minimal range that is a subset of S (hence S′ ⊆ X1). By the
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Fig. 3.2. An illustration of the execution of Algorithm 1 in the case of disks in the plane. In
panel A we see the given set of points. In panel B, the Delaunay graph is depicted. Recall that there
is an edge between every pair of points p, q that are separated from the rest of the points by a disk.
Two such disks are depicted for this graph. C–G depict five steps of the algorithm. In each step
we see the Delaunay graph over the remaining uncolored points, where the newly colored points are
marked by arrows. (The previously colored points also appear in the figure, but they are not part of
the Delaunay graph.) In H we see the final coloring of all points, and an example of a disk and the
point that can serve it. (In general, there may be more than one such point.)

definition of the set of edges E in the Delaunay graph DGR of (X,R), it follows that
there is an edge e(S′) between two points in S′. But this contradicts the assumption
that X1 is an independent set, and the claim follows.

The method we use to show that Delaunay graphs have large independent sets is
to show that Delaunay graphs are planar. Another easy way to show that there exists
a large independent set is, for example, to show that the number of edges is linear.
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Claim 3.5. If in each iteration of the algorithm the Delaunay graph of (Xi,Ri)
is planar, then Algorithm 1 uses O(log |X|) colors.

Proof. By Claim 3.4, it suffices to show that, in every iteration of Algorithm CF-
color, the Delaunay graph has an independent set X1 that satisfies |X1| = Ω(|Xi|).
The existence of a large independent set X1 in the Delaunay graph DGRi(Xi, E)
follows from the planarity of DGRi . Planarity implies that the graph is 4-colorable
[AH77a, AH77b], and therefore, the largest color-class is an independent set of size
at least |Xi|/4. (Recall that planar graphs can be 4-colored in polynomial time
[AH77a, AH77b, RSST96]. For our purposes, a coloring using six colors suffices. One
could easily color planar graphs using six colors, since the minimum degree is at
most 5. This means that a greedy algorithm could be used to find an independent set
of size at least |Xi|/6.)

In the rest of this section we apply Algorithm CF-color to three types of range-
spaces: disks in the plane, half-spaces in R3, and homothetic centrally symmetric
convex regions in the plane. For each of these cases we prove that the premise of
Claim 3.5 is satisfied—that is, that the Delaunay graph of the corresponding range-
space is planar. Moreover, for disks, half-spaces in R3, and scaled translations of a
convex polygon, the corresponding Delaunay graphs are computable in polynomial
time, which implies that Algorithm CF-color is polynomial.

3.3. Disks in the plane. Recall that, in the case of disks in the plane, the
Delaunay graph that we attach to the set system (X,R) is the standard Delaunay
graph. Hence, the Delaunay graph is planar [BKOS97, Theorem 9.5]. We may now
apply Claim 3.5 to obtain the following lemma.

Lemma 3.6. Let X denote a set of n points in the plane. Let R denote the
collection of all subsets of X of size at least 2 obtained by intersecting X with a
(closed) disk. Then it is possible to color X with respect to R using O(log n) colors.

3.4. Half-spaces in R3. Given a hyperplane H (not parallel to the z-axis), the
positive half-space H+ is the set of all points that either lie on or are above H. We
denote by H+ the set of all positive half-spaces in R3.

Lemma 3.7. Let X be a set of n points in R3. Let R denote the collection of all
subsets of X of size at least two obtained by intersecting X with a half-space in H+.
Then there exists a CF-coloring of X with respect to R that uses O(log n) colors.

Let CH (X) denote the convex hull of X. We make the following simplifying
assumption: Every point in X is an extreme point of CH (X). If not, then all the
points of X that are not extreme points of CH (X) may be colored by a unique
“passive” color. The coloring of nonextreme points by a passive color means, in
effect, that these points are removed. This reduction is justified by the fact that
every half-space H+ that intersects the convex hull of X must contain an extreme
point of X. The coloring will be a CF-coloring of the extreme points of CH (X) with
respect to positive half-spaces, and hence X ∩H+ will be served as well.

Claim 3.8. Every minimal range in the range-space (X,R) is a pair of points.
Proof. Consider a range R ∈ R defined by half-space H+. Translate H upward as

much as possible so that every further translation upward reduces the range defined
by the positive half-space to less than two points. Let H1 denote the plane parallel to
H obtained by this translation. Let R1 denote the range corresponding to the positive
half-space H+

1 . If R1 contains more than two points, then either R1 is contained in
the plane H1 or all but one of the points in R1 are in the plane H1. Assume that
R1 ⊂ H1. Consider a line & in H1 that passes through two adjacent vertices u, v (i.e.,
an edge) in the polygon corresponding to the (two-dimensional) convex hull of R1
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relative to the plane H1. Tilt the plane H1 slightly, where the line & serves as the
axis of rotation. It is possible to rotate H1 so that the resulting plane H2 satisfies
X ∩ H+

2 = {u, v}. A similar argument applies if there is a single point in R1 \ H1,
and the claim follows.

Proof of Lemma 3.7. Claim 3.8 implies that the Delaunay graph DGR = (X,E)
of the range-space (X,R) is defined by (u, v) ∈ E if and only if there exists a positive
half-space H+ such that X ∩H+ = {u, v}. Recall that we assumed that every point
in X is an extreme point of CH (X). Two points x, y ∈ X are adjacent if there
exists a supporting plane H of CH (X) such that H ∩X = {u, v}. The skeleton graph
G′ = (X,E′) of CH (X) is the graph over the points in X with edges between adjacent
points. The skeleton graph is drawn on the boundary of CH (X) using straight lines
without crossings. Since the boundary of CH (X) is homeomorphic to a sphere, it
follows that the skeleton graph is planar.

By definition, the edge set of the Delaunay graph is contained in the edge set of
the skeleton graph. Hence the Delaunay graph is planar and, by Claim 3.5, X can be
CF-colored with respect to R using O(log |X|) colors.

3.5. Scaled translations of a convex region in the plane. In this subsection
we prove Theorem 1.7. We first introduce some definitions and notation.

For a closed region C let ∂C denote the boundary of C, and let C̊ denote the
interior of C. We next recall the definition of homothecy (cf. [C69, p. 68]).

Definition 3.9. A transformation τ : R2 → R2 is a homothecy if there exist
a point O (called the homothetic center) and a nonzero real number λ (called the
similitude ratio) such that

1. O is a fixed point of τ (namely, O = τ(O));
2. every point P �= O is mapped to a point τ(P ) where (i) τ(P ) is on the line
OP , and (ii) the length of the segment Oτ(P ) satisfies |Oτ(P )| = λ · |OP |.

We use the notation C ′ ∼ C to denote that C ′ is a scaled translation of C. For
a homothetic transformation τ : R2 → R2, we denote the image of a set S ⊆ R2

under τ by τ(S). Note that if the similitude ratio of a homothecy τ is positive, then
τ(C) ∼ C.

Definition 3.10. A range S ∈ R is induced by a region C if S = C ∩ X. A
range S ∈ R is boundary-induced by a closed region C if S = ∂C∩X and C̊∩X = ∅.

Recall that, for the purpose of CF-coloring, ranges that contain one point as well
as the empty range are trivial. Hence, we do not consider the empty set and subsets
that contain a single point to be ranges. Therefore, we define the range-space R
induced by a collection of regions C by

R = {C ∩X : C ∈ C and |C ∩X| ≥ 2}.
It follows that minimal ranges contain at least two points.

Let C denote a compact convex region in the plane. Let X ⊂ R2 denote a finite
set of points in the plane. Let (X,R) denote the range-space induced by the set of
all scaled translations of C. By Claim 3.5, in order to prove Theorem 1.7, it suffices
to prove that the Delaunay graph of (X,R) is planar. To this end we first show the
following.

Claim 3.11. Every minimal range S ∈ R is boundary-induced by a region
C ′ ∼ C.

Proof. Since S is a range, there exists a scaled translation CS ∼ C such that
X ∩ CS = S. By contracting CS , if necessary, we may guarantee that the boundary
of CS contains a point from S. The interior of CS contains at most one point of
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C ′

x

CS

y′

y

Fig. 3.3. An illustration for the proof of Claim 3.11.

S. Otherwise, by an infinitesimal contraction, we are left with a range S′ � S that
contains at least two points, thus contradicting the minimality of S.

We now show how to find a region C ′ ∼ C such that all of S lies on the boundary
of C ′. Let x ∈ S denote a point on the boundary of CS . If S is not boundary-induced
by CS , then there is a unique point y ∈ S ∩ C̊S . The region C ′ is the image of C with
respect to the homothecy τ that is defined as follows. Let y′ denote the intersection
point of the boundary of CS with the half-open ray emanating from x toward y. Set x
to be the homothetic center, and set the similitude ratio to be the ratio |xy|/|xy′|. By
definition of τ , both x and y are on the boundary of C ′. By minimality of S, it follows
that C ′ ∩X = S. By definition of τ and convexity of C, it follows that C ′ ⊆ CS . If
a point z ∈ S is in the interior of C ′, then it is in the interior of CS ; hence z = y,
which contradicts y ∈ ∂C ′. It follows that every point in S is in the boundary of C ′,
and the claim follows. For an illustration, see Figure 3.3.

We now show that a planar drawing of the Delaunay graph DGR = (X,E)
is obtained if its edges are drawn as straight line segments. Consider two edges
(x0, y0), (x1, y1) ∈ E. For i = 0, 1, assume that xi, yi ∈ Si for a minimal range
Si ∈ R, where S0 �= S1. Let Ci ∼ C denote scaled translations of C such that Si is
boundary-induced by Ci. If C0 ∩ C1 = ∅, then the segments x0y0 and x1y1 do not
cross each other. If C0 ∩ C1 �= ∅, then the boundaries ∂C0 and ∂C1 intersect.

We first consider the case in which ∂C does not contain a straight side. Namely,
no three points on ∂C are colinear. Under this assumption, since Ci is a scaled
translation of C for i = 0, 1, it follows that ∂C0 ∩ ∂C1 contains at most two points.

If ∂C0 ∩ ∂C1 contains a single point p, then one can separate the convex regions
C0 and C1 using a straight line passing through p. This separating line implies that
the segments x0y0 and x1y1 cannot cross each other.

If ∂C0 ∩ ∂C1 contains two points, denote these points by p and q. The boundary
∂Ci is partitioned into two simple curves, each delimited by the points p and q; one
curve is contained in ∂Ci \ C̊1−i, and the second curve is ∂Ci ∩ C1−i. We denote the
curve ∂Ci \ C̊1−i by γi, and we denote the curve ∂Ci ∩C1−i by γ′i. Since the interior

C̊1−i lacks points of X, it follows that xi and yi are in γi.
In order to prove that the segments x0y0 and x1y1 do not cross each other, it

suffices to show that the line pq separates γ0 \ {p, q} and γ1 \ {p, q}. (Intersection
of two edges means that the edges share an interior point, which cannot be p or q.)
Assume, for the sake of contradiction, that γ0 \ {p, q} and γ1 \ {p, q} are on the same
side of the line pq. These curves do not intersect, and together with the segment pq,
one must contain the other, contradicting their definition.

The case in which ∂C contains a straight side (and so ∂C0 ∩ ∂C1 may contain a
subsegment of such a straight side) is dealt with similarly to the case in which ∂C
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does not contain a straight side. It is not hard to verify that in such a case ∂C0∩∂C1

consists of at most two connected components (each either straight line or a single
point). By picking p to be any point from one component and q to be any point from
the other component, we can apply essentially the same argument used above.

This concludes the proof of Theorem 1.7.

4. CF-colorings of arrangements of disks. In this section we prove Theo-
rems 1.2 and 1.3 stated in the introduction.

4.1. Proof of Theorem 1.2. Part 2 of Theorem 1.2 is proved as follows. The
disk centers X ⊂ R2 are given. Consider a radius r (which is not given to the
algorithm!), and apply Corollary 2.3 to the arrangement A(Sr(X)). Let Y denote the
set consisting of representatives from every cell in cells(Sr(X)). The dual range-space
is isomorphic to a range-space with (i) a ground set X and (ii) ranges induced by
Sr(Y ). We extend the range-space to ranges induced by all the disks (of all radiuses).
A CF-coloring of the points in X with respect to the set of all disks is also a CF-
coloring of every arrangement A(Sr(X)). Part 2 of Theorem 1.2 now follows directly
from Lemma 3.6.

We now turn to proving part 1 of Theorem 1.2.

A transformation to points and half-spaces. In what follows, we show that the
problem of CF-coloring n arbitrary disks in the plane reduces to CF-coloring of a set
of points X in R3 with respect to the set of ranges H+(X) determined by all positive
half-spaces containing at least two points from X.

We use a fairly standard dual transformation that transforms a point p = (a, b)
in R2 to a plane p∗ in R3, with the parameterization z = −2ax− 2by + a2 + b2, and
transforms a disk S in R2, with center (x, y) and radius r ≥ 0, to a point S∗ in R3,
with coordinates (x, y, r2 − x2 − y2).

It is easily seen that, in this transformation, a point p ∈ R2 lies inside (respectively,
on the boundary of, outside) a disk S if and only if the point S∗ ∈ R3 lies above
(respectively, on, below) the plane p∗. Indeed, a point (a, b) lies inside a disk with

center (x, y) and radius r if and only if (a− x)
2

+(b− y)2 < r2. After rearrangement,
this is equivalent to −2ax − 2by + a2 + b2 < r2 − x2 − y2. Now this inequality is
equivalent to the condition that the point (x, y, r2 − x2 − y2) = S∗ lies above the
plane z = −2ax − 2by + a2 + b2, as asserted. The cases of a point lying on the
boundary of a disk or outside a disk are treated analogously.

Given a collection S = {S1, . . . , Sn} of n distinct disks in the plane, one can use
the above transformation to obtain a collection S∗ = {S∗

1 , . . . , S
∗
n} of n points in R3

such that any CF-coloring of S∗ with respect to H+(S∗), with k colors, induces a
CF-coloring of the disks of S with the same set of k colors.

As shown in subsection 3.4 (Lemma 3.7), it is possible to apply Algorithm 1 to
obtain a CF-coloring of the points in S∗ with respect to H+(S∗) using O(log n) colors.
Recall that part 1 of Theorem 1.2 states that the number of colors is of the order of

the minimum between log n and
∑log(ρ)+1

i=1 log φ2i(Si). Recall that ρ is the size-ratio
of S, Si is the subset of disks in S whose radius is in the range [2i−1, 2i), and φ2i(Si)
is the maximum number of disks in Si whose centers reside in a common 2i × 2i

square. To obtain the latter bound we proceed in two steps: First we assume that
the size-ratio is at most 2, and then we deal with the more general case.

The tiling. Assume that the size-ratio ρ is at most 2. By scaling, we may assume
that every radius is in the interval [1, 2]. We partition the plane into 2 × 2 square
tiles. We say that a disk S belongs to tile T if the center of S is in T . We denote the
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subset of disks in S that belong to T by S(T ). Note that the union of the disks in
any given tile intersects at most nine different tiles. We assign a palette (i.e., a subset
of colors) to each tile using nine different palettes, where the disks belonging to a
particular tile are assigned colors from the tile’s palette. Palettes are assigned to tiles
by following a periodic 3× 3 assignment. This assignment has the property that any
two disks that belong to different tiles either do not intersect or their tiles are given
different palettes (so that necessarily the two disks are assigned different colors). By
the definition of local density we have that |S(T )| ≤ φ2(S) for every tile T . Since
we can color the set of disks S(T ) belonging to tile T using O(log |S(T )|) colors, and
the total number of palettes is nine, we get the desired upper bound of O(log φ2(S))
colors. The general case of arbitrary size-ratio is dealt with by first partitioning the
set of disks into classes according to their radius. The ith class, denoted Si, consists
of disks, the radiuses of which are in the interval [2i, 2i+1). Within each class, the
size-ratio is bounded by 2; hence we can CF-color each class using O(log φ2i(Si))
colors. By using a different (super-)palette per class, we obtain the desired bound on

the number of colors, i.e.,
∑log ρ+1

i=1 O(log φ2i(Si)).
4.2. Bicriteria CF-coloring algorithms. In this section we prove Theorem

1.3. The first part of the theorem reveals a trade-off between the number of colors
used and the fraction of the area that is served. The second part of the theorem
reveals a trade-off between the number of colors used to serve the union of the unit
disks and the radiuses of the serving disks.

We first derive the following corollary from Theorem 1.2.
Corollary 4.1. Let S be a set of unit disks, and let dmin(S) be the minimum

distance between the centers of disks in S. If dmin(S) ≤ 2, then every arrangement
A(S) of unit disks can be CF-colored using O

(
log

(
min

{|S|, 1
dmin(S)

}))
colors.

Observe that if dmin(S) > 2, then a single color suffices since the disks are disjoint.
Proof. Obviously φ1(S) ≤ |S|. Since a unit square can be packed with at

most O( 1
dmin(S(T ))2 ) many disks of radius dmin(S(T )), it follows that φ1(S) =

O( 1
dmin(S(T ))2 ).

Let X ⊂ R2 denote a finite set of centers of disks. Recall that Sr(X) = {B(x, r) |
x ∈ X}, where B(x, r) denotes a disk of radius r centered at x. Let Ar(X) =⋃

x∈X B(x, r). The area of a region A in the plane is denoted by |A|. Let Lr(X)
denote the length of the boundary of Ar(X). In order to prove Theorem 1.3 we shall
need the following two lemmas, which are proved subsequently.

Lemma 4.2. For every finite set X of points in the plane,

|A1(X)| ≥ 1

2
· L1(X).

Lemma 4.3. For every finite set X of points in the plane and every ε > 0,

|A1+ε(X)−A1(X)| ≤ (2ε+ ε2) · L1(X).

Proof of Theorem 1.3. We start with the second part. Let X ′ ⊆ X denote a
maximal subset with respect to inclusion such that ||x1−x2|| ≥ ε for every x1, x2 ∈ X ′.
Observe that

⋃S1(X) ⊆ ⋃S1+ε(X
′). Corollary 4.1 implies that S1+ε(X

′) can be CF-
colored using O(log 1+ε

ε ) colors. The second part follows.
We now turn to the first part. Let ε1 = ε/6 andX ′ as above. Corollary 4.1 implies

that there exists a CF-coloring χ of S1(X ′) using O
(
log 1

ε

)
colors. To complete the
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Q1 Q2

Fig. 4.1. An illustration for the proof of Lemma 4.4.

proof we need to show that

|A1(X)−A1(X ′)|
|A1(X)| ≤ ε.

Since A1(X) ⊆ A1+ε1(X ′) and A1(X ′) ⊆ A1(X), it suffices to prove that

|A1+ε1(X ′)−A1(X ′)|
|A1(X ′)| ≤ ε.

By Lemmas 4.2 and 4.3 it follows that

|A1+ε1(X ′)−A1(X ′)|
|A1(X ′)| ≤ (2ε1 + ε21) · L1(X ′)

1
2 · L1(X ′)

= 4 · ε1 + 2ε21.

Since ε < 1, it follows that 4 · ε1 + 2ε21 ≤ 6 · ε1 = ε, and the corollary follows.

4.2.1. Proving Lemmas 4.2 and 4.3. We denote a sector by sect(Q,α, r),
where Q is its center, α is its angle, and r is its radius. A boundary sector of A1(X)
is a sector sect(Q,α, 1) such that Q ∈ X and its arc is on the boundary of A1(X).
A boundary sector is maximal if it is not contained in another boundary sector. We
measure angles in radians. Therefore, in a unit disk, (1) the angle of a sector equals
the length of its arc, and (2) the area of a sector equals half its angle.

Lemma 4.4. The intersection of every two different maximal boundary sectors in
A1(X) has zero area.

Proof. The lemma is obvious if the boundary sectors belong to the same disk. Let
Q1, Q2 ∈ X, and let Di denote the circles centered at Qi, for i = 1, 2, as depicted in
Figure 4.1. Let sect i denote a boundary sector that belongs to circle Di, for i = 1, 2.
Let & denote the line defined by the intersection points of the circles D1 and D2. The
line & separates the centers Q1 and Q2 so that they belong to different half-planes.
The sector sect i is contained in the half-plane that contains Qi, and hence sect1∩sect2
contains at most two points. The lemma follows.

Proof of Lemma 4.2. The sum of the angles of the maximal boundary sectors of
A1(X) equals L1(X). By Lemma 4.4, the maximal boundary sectors are disjoint, and
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hence the sum of their areas is bounded by |A1(X)|. However, the area of a sector of
radius 1 whose angle equals α is α/2.

Lemma 4.5. Let X denote a finite set of points in the plane. For every P ∈
A1+ε(X) − A1(X), there exists a point Q ∈ X such that (1) P ∈ B(Q, 1 + ε) and
(2) the segment PQ contains a boundary point of A1(X).

Proof. Let Q denote a closest point in X to P . Since P ∈ A1+ε(X) − A1(X), it
follows that P ∈ B(Q, 1 + ε). Let Y denote the point at distance 1 from Q along the
segment QP . All we need to show is that Y is on the boundary of A1(X). If not,
then Y is in the interior of a disk B(Q′, 1) for Q′ ∈ X −{Q}. The triangle inequality
implies that Q′ is closer to P than Q, a contradiction. The lemma follows.

Proof of Lemma 4.3. Lemma 4.5 implies that, for every point P ∈ A1+ε(X) −
A1(X), there exists boundary sector sect(Q,α, 1) of A1(X) (where Q ∈ X) such that

P ∈ sect(Q,α, 1 + ε)− sect(Q,α, 1).

It follows that

|A1+ε(X)−A1(X)| ≤
∑

sect(Q,α,1)

|sect(Q,α, 1 + ε)− sect(Q,α, 1)|

=
∑

sect(Q,α,1)

α · (2ε+ ε2),

where sect(Q,α, 1) ranges over all maximal boundary sectors of A1(X). The claim
follows by observing that the sum of the angles of the boundary sectors of A1(X)
equals L1(X).

5. Proof of Theorem 1.5. Theorem 1.5 follows from Theorem 1.7 similarly to
the way that part 2 of Theorem 1.2 was shown to follow from Lemma 3.6.

Specifically, let C be a centrally symmetric convex region with a center point
O, and X the set of centers that we are given. Consider a particular scaling factor
r, and apply Corollary 2.3 to the arrangement A(Cr,O(X)). Let Y denote the set
consisting of representatives from every cell in cells(Cr,O(X)). The dual range-space
is isomorphic to a range-space with (i) a ground set X and (ii) ranges induced by
Cr,O(Y ). We extend the range-space to ranges induced by all scaled translations of C.
A CF-coloring of the points in X with respect to all scaled translations of C is also
a CF-coloring of every arrangement A(Cr,O(X)). Theorem 1.5 now follows directly
from Theorem 1.7.

6. Chains and CF-coloring of chains. In this section we introduce a com-
binatorial structure that we call a chain. Chains are used to establish the tightness
of Theorem 1.2. They are also central to our O(1) approximation algorithms for
rectangles and hexagons.

6.1. Combinatorial structure. Consider an arrangement A(S) of a collection
of regions in the plane S. We associate with every cell v ∈ cells(S) the subset
N(v) ⊆ S of regions that contain the cell, namely, N(v) = {S ∈ S : v ⊆ S}.

A set S of regions in the plane is said to be indexed if the regions are given indexes
from 1 to |S|. In the following definition we identify a region with its index. We refer
to a set {i, i+ 1, . . . , j} of consecutive integers as an interval and denote it by [i, j].

Definition 6.1. Let S denote an indexed set of n regions. The arrangement
A(S) satisfies the interval property if N(v) is an interval [i, j] ⊆ [1, n] for every cell
v ∈ cells(S).
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1 13 32

[1,1] [1,2] [1,3] [3,3][2,3]

[2,2]

[2,2]
2

[1,1] [1,2]

[2,2]

[2,3] [3,3]

Fig. 6.1. On the left is an arrangement of three disks that satisfies the full interval property, and
on the right is an arrangement that satisfies the interval property but not the full interval property.
In particular, in both cases the disks are unit disks and their centers reside on a line. However, in
the arrangement on the right, the first and the third disk do not intersect, and hence there is no cell
v such that N(v) = [1, 3].

The arrangement A(S) satisfies the full interval property if it satisfies the interval
property and if, in addition, for every interval [i, j] ⊆ [1, n], there exists a cell v ∈
cells(S) such that N(v) = [i, j].

For an illustration of the interval and full interval properties, see Figure 6.1. The
definition of the (full) interval property is sensitive to the indexing. Indexes of regions
are usually based on the order of appearance of the regions along the boundary of
the union of the regions. We refer, in short, to an arrangement of an indexed set of
regions that satisfies the full interval property as a chain.

The definition of a chain implies that an arrangement A(S) is a chain if and only
if the dual range-space is isomorphic to ({1, . . . , n}, {[i, j] : 1 ≤ i ≤ j ≤ n}), where
n = |S|. The next lemma, which follows directly from this observation, shows that
the chain property is hereditary.

Lemma 6.2. Let S denote an indexed set of regions. Let S ′ ⊆ S, and let the
indexes of regions S ′ agree with their order in S. If A(S) is a chain, then A(S ′) is
also a chain.

Before discussing colorings of chains, we observe that it is easy to construct chains.
Consider a set S of n unit disks with centers positioned along a straight line at distance

1
n+1 apart. Index the disks from 1 to n according to the position of their centers from
left to right. The arrangement A(S) is depicted on the top of Figure 6.2. Observe
that every two disks in the arrangement intersect.

We apply duality to prove that the arrangementA(S) is a chain. The arrangement
is the range-space (cells(S),S). Let X denote a set of representatives of cells in
cells(S), and let Y denote the centers of unit disks in S. The dual range-space is
the pair (Y, {N(x)}x∈X). Since the disks are unit disks, it follows that N(x) is the
intersection of Y with a unit disk centered at x. The set Y is indexed, and its points
are located along a line sufficiently close so that they are included in a unit disk.
Hence the collection of sets {N(x)}x∈X is simply the set of all intervals [i, j] ⊆ [1, n].
It follows that the arrangement A(S) is a chain, as claimed. For an illustration, see
Figure 6.2 (bottom).

6.2. CF-colorings of chains. In this subsection we show that the number of
colors both necessary and sufficient for CF-coloring a chain of n regions is Θ(log n).

Lemma 6.3. Every CF-coloring of a chain of n regions uses Ω(log n) colors.
Proof. Let Ia,b denote the set {[i, j] : a ≤ i ≤ j ≤ b}, namely, the set of all

subintervals of [a, b]. By definition, the dual range-space of a chain is isomorphic
to the range-space ([1, n], I1,n). Therefore, CF-coloring a chain is equivalent to CF-
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[3,6][1,10] [4,8]
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[1,10]

Fig. 6.2. On the top is a chain of disks, where the disks are numbered 1, . . . , 10 from left to
right. The three cells that are marked correspond to the three respective intervals. On the bottom is
an illustration of the dual range-space. In the dual space there is a point for every disk in the primal
space, and a subset for every cell in the primal space. Since the cells in the primal space correspond
to intervals, the subsets in the dual space correspond to intervals [i, j] = {i, i+ 1, . . . , j} as well.

coloring [1, n] with respect to I1,n. We hence focus on the latter problem. Let f(n)
denote the minimum number of colors required for such a coloring.

Consider an optimal CF-coloring χn of [1, n] with respect to I1,n. Let i denote the
index that serves the interval [1, n]. It follows that for every index j �= i, χ(j) �= χ(i).
Since χ(i) is unique, it follows that every subinterval that contains i can be served
by i.

We partition I1,n into three sets as follows: (i) I1,(i−1), the set of all subintervals
of [1, i− 1]; (ii) I ′, the set of all subintervals of [1, n] that contain i; and (iii) I(i+1),n,
the set of all subintervals of [i + 1, n]. (Observe that if i = 1 (respectively, i = n),
then I1,(i−1) (respectively, I(i+1),n) is empty.)

Since i can serve only intervals in I ′, we are left with two range-spaces that are
the dual of (shorter) chains. Namely, the range-space ([1, (i − i)], I1,(i−1)) and the
range-space ([(i+ i), n], I(i+1),n).

Since χ(j) must differ from χ(i) for every j �= i, it follows that f(n) satisfies the
following recurrence equation:

f(n) ≥ 1 + max
i
{f(i− 1), f(n− i)}.

Therefore, f(n) = Ω(log n), and the lemma follows.
Lemma 6.4. Every indexed arrangement of n regions that satisfies the interval

property can be CF-colored with O(log n) colors.
It suffices to prove the above lemma for chains. (In terms of the dual range-

space, this simply means that we add constraints.) In fact, in section 3.1 we already
presented a proof of the above lemma in the special case of unit disks whose centers
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Fig. 6.3. An illustration for Lemma 6.4. The 15 points in the figure are the points of the dual
range-space. Point number 8 is colored with the “highest color” (corresponding to the densest filling
in the illustration). Points 4 and 12 are colored with the next highest color, and points 2, 6, 10,
and 14 with the next. The remaining points (all odd-numbered points) are colored with the lowest
color. If we now consider, for example, the intervals (ranges in the dual space) [5, 14] and [2, 6],
then the first can be served by point number 8, and the latter by point number 4.

reside on a line. In section 6.1 we showed that a chain can be obtained from an
arrangement of unit disks whose centers are collinear. Hence, the lemma follows. We
provide an alternative proof of the above lemma that follows the spirit of the proof
of the lower bound stated in Lemma 6.3.

Proof. We use the same notation as in the proof of the previous lemma. Without
loss of generality the dual range-space is isomorphic to ([1, n], I1,n). (Adding ranges
does not make CF-coloring a set of points with respect to a set of ranges any easier.)
Hence, we focus on CF-coloring of such a dual range-space.

We show by induction that f(n) ≤ �log n� + 1 (see Figure 6.3). The induction
basis n = 1 is trivial. For n > 1, let i = �n/2� and color it with the color �log n�. The
index i serves all the subintervals of [1, n] that contain i. A subinterval of [1, n] that
does not contain i is either in I1,(i−1) or in I(i+1),n. The induction hypothesis implies
that the range-spaces ([1, (i−1)], I1,(i−1)) and ([(i+1), n], I(i+1),n) can each be colored
by 1 + �log(n/2)� = �log n� colors. Since the ground sets of these range-spaces are
disjoint, we may use the same set of colors for each. It follows that at most �log n�+1
colors are used, as required.

7. An approximation algorithm for rectangles. In this section we prove
Theorem 1.4 for the case of axis-parallel rectangles. For simplicity, most of the proof
deals with the special case of axis-parallel unit squares. In section 7.4 we point out
the modifications required for rectangles.

We begin with a high level description of the algorithm (for the special case of
axis-parallel unit squares). The algorithm starts by partitioning the plane into square
tiles of side-lengths 1/2. Given a set of S of unit squares, we say that a square
s ∈ S belongs to a tile if its center resides inside the tile. Hence the tiling induces a
partition of S. We first observe that squares that belong to sufficiently distant tiles
do not intersect. Therefore, as shown for the case of disks, we may assign each tile
a palette of colors so that the total number of palettes used is constant, and any
two different tiles whose squares may intersect are assigned different palettes. At this
point we could simply apply Theorem 1.5 to separately color the squares that belong
to each tile. This would give us a CF-coloring that uses O(log φ(S)) colors, where φ(S)
is the maximum number of centers of squares in S that are contained in a square tile
of side-lengths 1/2. However, the resulting coloring may be far from optimal (recall
that we are interested in a constant-ratio approximation algorithm). The reason is
that squares whose centers reside in different, but neighboring, tiles may interact with
each other in a manner that allows us to save in the number of colors used. For an
illustration, see Figure 7.1.

Instead of coloring all squares as suggested above, our algorithm selects only a
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Fig. 7.1. An example illustrating how, by taking into account intersections between squares that
belong to different tiles, we may significantly reduce the number of colors required in a CF-coloring.
Here there is a large number of squares that belong to the middle tile and constitute a chain. If we
color the squares of each tile separately, the number of colors used is logarithmic in the size of the
chain. However, there is a CF-coloring that uses only five colors: Simply color each of the thick
squares by a distinct color and use the fifth color for the remaining squares.

T

T’

Fig. 7.2. An illustration of the selection of squares that intersect an orphan tile T with an
edge. The tile T is the dashed square, the selected squares are marked in bold, and the remaining
unserved region T ′ is shaded.

subset of squares, which are “essential” for serving the area covered by the union of
the squares. Once this stage is over, we can “return” to each tile from which squares
were requested, and color the requested squares by applying Theorem 1.5. The notion
of essentialness is formalized later on in this section. It enables us to show that the
total number of colors used is indeed necessary, up to a constant. Clearly, every tile
that contains the center of at least one square can be completely served by any one
of the squares that belong to it. Thus the main issue is serving tiles that lack centers
of squares. We refer to such tiles as “orphan” tiles. In what follows we describe how
an orphan tile selects the squares that are used to serve it.

Consider an orphan tile T (for which the set of squares that intersect it is
nonempty). The squares that intersect it (and may hence serve parts of it) can
be partitioned into two types: those that intersect it with an edge and those that
intersect it with a corner. Each type can be further partitioned into four subtypes
according to the edge type (respectively, corner type) with which they intersect T .
We first observe that, within each subtype of squares that intersect T with an edge,
we can select a single square that can serve the entire area within T that is covered
by squares of this subtype. After selecting one square from each subtype, we are
essentially left with the problem of serving a rectangular region, denoted by T ′, that
is contained in T . For an illustration, see Figure 7.2.
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2

3

1

T’ T’

Fig. 7.3. On the left is a subset of squares that intersect the rectangular region T ′ with their
top-right corner. In order to cover the intersection of T ′ with their union it is necessary to select
all squares. On the right is the same set of squares, together with one more square, which intersects
T ′ with its bottom-left corner. Now only the 3 bold squares (labeled 1, 2, and 3) are necessary.

Suppose that we now separately consider each subset of squares that intersect T ′

with a common corner type (e.g., top-right). For each corner type, it suffices to focus
on the subset of squares that participate in the envelope of the squares that intersect
T ′. However, the envelopes of squares corresponding to different corner types may
intersect in T ′. Such intersections may help in reducing the number of squares needed
to cover the intersection of T ′ with the union of all squares. For an illustration, see
Figure 7.3.

In order to address the issue of “intersections” between envelopes of subsets of
squares corresponding to different corner types, we consider these subsets of squares
in pairs. Specifically, we first deal with “adjacent” pairs whose corresponding corners
have a common edge (e.g., top-right and top-left), and then with “opposite” pairs
(top-right with bottom-left, and bottom-right with top-left). For the first class of
adjacent pairs, we show that by selecting at most two squares per pair we can serve
the region of the intersection of each pair. For the second class of “opposite” pairs,
we describe a procedure that selects a subset of squares that is at most a constant
factor larger than necessary. Further details for these more involved steps are given
in subsections 7.2 and 7.3.

7.1. Preliminaries. Let R be a set of axis-parallel rectangles of side-length
at least 1. We denote a set of axis-parallel unit squares by S. For simplicity, we
assume that the rectangles (respectively, squares) in R (respectively, S) are arranged
in general position (i.e., no two corners of two distinct rectangles have the same x-
coordinate or y-coordinate). Let Γ = {�, �, �, �} denote the set of corner types. We
denote the top-right corner of a rectangle R by �(R). In general, for a corner γ ∈ Γ,
we denote the γ-corner of R by γ(R). The x-coordinate (y-coordinate) of a γ-corner
of a rectangle R is denoted by xγ(R) (yγ(R)). Let op : Γ→ Γ denote the permutation
that swaps opposite corners (i.e., op = (�, �)(�, �)). The center of a rectangle R is
the intersection point of its two main diagonals.

The tiling. We partition the plane into “half-open” square tiles having side-lengths
1/2, namely, Ti,j = [i/2, (i+1)/2)× [j/2, (j+1)/2). We say that a rectangle R belongs
to tile T if the center of R is in T . We denote the set of rectangles in R that belong to
tile T by R(T ). A tile T is an orphan if R(T ) = ∅. A tile is bare if no rectangle in R
intersects it. We say that two tiles are e-neighbors (respectively, v-neighbors) if they
share an edge (respectively, a corner). The v-neighbor of T that shares its γ-corner
with the op(γ) corner of T is denoted Tγ .

Tiles are half-open, and their side-length is defined to be half the minimum side-
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P1,4

P1,4
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2
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[2,4]

7

0

Fig. 7.4. An illustration of a corner-chain consisting of six rectangles (the two dotted rectangles,
numbered 0 and 7, are only for the sake of the analysis in the proof of Claim 7.3). The cell
corresponding to the interval [2, 4] is filled, and its four defining corners are marked.

length of a rectangle so that (i) if a rectangle R belongs to a tile T , then rectangle R
covers the tile T ; and (ii) a tile can contain at most one corner of a rectangle.

In the case of a set S of unit squares, squares belonging to Tγ intersect T with
their γ-corner. Moreover, the corners of a unit square S ∈ S(T ) reside in v-neighbors
of T . Hence, a square S intersects only the tile it belongs to and the neighbors of that
tile.

Corner-chains. We next consider chains determined by rectangles having the
same corner in a common region. Let T be a fixed tile, and let Q ⊆ T denote a
rectangle. Let γ ∈ Γ denote a corner type. Let R(Q, γ) denote the set of rectangles
R ∈ R that satisfy γ(R) ∈ Q. The size of the tile T implies that every rectangle of
side length at least 1 has at most one corner in T . Define the Q-envelope of R(Q, γ)
to be the boundary of R(Q, γ) that is in Q (see Figure 7.4). The vertices of a Q-
envelope are either corners γ(R), for R ∈ R(Q, γ), or intersections of sides of two

rectangles. Let R̃(Q, γ) denote the subset of rectangles in R(Q, γ) that participate in
the Q-envelope of R(Q, γ).

The next claim shows that the corner γ determines whether the Q-envelope is
nonincreasing or nondecreasing.

Claim 7.1. Let Q be a rectangular region with side-lengths at most 1/2. If
γ ∈ {�, �}, then the Q-envelope of R(Q, γ) is nonincreasing, and if γ ∈ {�, �}, then
the Q-envelope of R(Q, γ) is nondecreasing.

Proof. We prove the claim for γ = �. An analogous argument holds for the other
cases. Let R1, . . . , Rm (m = |R̃(Q, γ)|) be an ordering of R̃(Q, γ) which satisfies
x�(R1) < x�(R2) < · · · < x�(Rm). We show that y�(R1) > y�(R2) > · · · > y�(Rm).

Assume, in contradiction, that for some pair of squares Rk, R� ∈ R̃(Q, γ), where
k < & (so that x�(Rk) < x�(R�)), we have that y�(Rk) < y�(R�). In such a case we
would have that (x�(Rk), y�(Rk)) ∈ R�, contradicting the fact that Rk belongs to the

envelope R̃(Q, γ).

The next definition will be useful in all that follows.

Definition 7.2. Let Q be a region, and let S be an indexed set of regions. Let SQ
denote the set of regions {Q ∩ S}S∈S . Assume that each region Q ∩ S ∈ SQ inherits
the index of S. We say that S is a chain with respect to Q if the arrangement A(SQ)
is a chain.

Claim 7.3. Let Q be a rectangular region with side-lengths at most 1/2. Index the
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rectangles of R̃(Q, γ) according to the x-coordinate of their γ-corner. Then R̃(Q, γ)
is a chain with respect to Q.

Claim 7.3 justifies referring to R̃(Q, γ) as a corner-chain.

Proof. We prove the claim for γ = �. The other three cases can be reduced to
this case by “turning the picture.” Let R1, . . . , Rm (m = |R̃(Q, γ)|) be an ordering

of R̃(Q, γ) according to the x coordinates of their �-corner. Let R0 and Rm+1 be
two “fictitious” rectangles, where the right side of R0 coincides with the left side
of Q, and the top side of Rm+1 coincides with the bottom side of Q. Let Pi,j , for
0 ≤ i ≤ j ≤ m + 1, denote the intersection of the right side of Ri and the top side
of Rj . Note that for every 1 ≤ i ≤ m, Pi,i = �(Ri), Pi,m+1 is the intersection of
Ri with the bottom side of Q, and P0,i is the intersection of Ri with the left side
of Q. By Claim 7.1, it follows that Pi,j is well defined and that Pi,j ∈ Q for every

1 ≤ i ≤ j ≤ m + 1. The arrangement of R̃(Q, γ) in Q is a set of rectangular-
shaped cells, the corners of which are the set of points {Pi,j}. Specifically, for every
1 ≤ i ≤ j ≤ m, the cell v for which N(v) = [i, j] is the rectangle whose corners are
Pi−1,j+1, Pi−1,j , Pi,j , and Pi,j+1.

Disjoint palettes. In the case of unit squares we assign a palette (i.e., a subset of
colors) to each tile, using in total nine disjoint palettes. Palette distribution is such
that neighboring tiles are assigned different palettes (i.e., we periodically assign nine
different palettes to blocks of 3 × 3 tiles). The tile size implies that if two squares
belong to different tiles that are assigned the same palette, then the squares have an
empty intersection.

7.2. Main lemmas. In this section we lay the ground for our algorithm and
its analysis by presenting our main lemmas. For simplicity we focus on a collection
S of unit squares. In subsection 7.4 we discuss how to perform the extension to
general rectangles. Specifically, in this section we provide our main lemmas concerning
interactions between corner-chains of opposite corners and corner-chains of adjacent
corners.

7.2.1. Corner-chains of adjacent corners. Consider a rectangle Q with side-
lengths at most 1/2. Let S̃� = S̃(Q, �) and S̃� = S̃(Q, �) denote corner-chains cor-
responding to adjacent corners � and �. (The other three cases of pairs of adjacent
corners can be reduced to this case by “turning the picture.”) We show that, by pick-
ing at most one square from each corner-chain, it is possible to “separate” between
the chains. That is (as formalized in the next lemma), after picking one square from
each chain, the squares having smaller indexes than those picked form a chain with
respect to the remaining region.

Let {Si}mi=1 (respectively, {S′
i}m

′
i=1) denote the ordering of the squares in S̃� (re-

spectively, S̃�) in increasing (respectively, decreasing) order of the x-coordinate of

their centers (or corners in Q). By Claim 7.3, both indexed sets S̃� and S̃� are chains
with respect to Q.

Lemma 7.4. There exist two squares, Sk ∈ S̃� and S′
� ∈ S̃�, such that

1. the prefixes {S1, . . . , Sk−1} and {S′
1, . . . , S

′
�−1} are disjoint; namely, for every

Sk′ and S′
�′ such that k

′ < k and &′ < &, we have Sk′ ∩ S′
�′ = ∅;

2. each of the prefixes {S1, . . . , Sk−1} and {S′
1, . . . , S

′
�−1} is a chain with respect

to Q \ (Sk ∪ S′
�);

3. the union of Sk and S
′
� covers every point in Q that is covered by a square in

one of the suffixes; namely, (
⋃m

t=k+1(St ∩Q))
⋃

(
⋃m′

t=�+1(S′
t ∩Q)) ⊆ Sk ∪ S′

�.
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Q

P

Sk S′
�

Fig. 7.5. An illustration for Lemma 7.4. The region Q is depicted by a dashed rectangle. Only
the corners of squares in the corner-chains are depicted. The two filled squares are the selected
squares Sk and S′

�.

The implication of this lemma is that it is possible to select two squares Sk and

S′
� to serve all cells that are contained in the union (

⋃m
t=k(St ∩Q)) ∪ (

⋃m′

t=�(S
′
t ∩Q)).

Furthermore, each of the prefixes is a chain with respect to the remaining region.

Proof. Consider the Q-envelopes of the two corner-chains. Both envelopes are
“stairs” curves. By Claim 7.1, the Q-envelope of S̃� (S̃�) is nonincreasing (nonde-
creasing). Hence the Q-envelopes intersect at most once. If they do not intersect,
then the claim is trivial (pick the last square from each chain). Otherwise, let P
denote the intersection point. Let the selected squares Sk and S′

� be the squares that
intersect in point P . We assume that P is along the horizontal upper side of S′

� (i.e.,
Py = y�(S′

�)) and along the vertical right side of Sk (i.e., Px = x�(Sk)). (The reverse
case is reduced to this case by “flipping the picture.”)

Part 1 of the lemma follows by showing that the vertical line passing through
P separates the prefixes. Namely, if A ∈ Sk′ , k′ < k, then Ax < Px (i.e., the x-
coordinate of point A is less than the x-coordinate of point P ). Similarly, if B ∈ S′

�′ ,

&′ < &, then Bx > Px. Consider first any square Sk′ ∈ S̃�, where k′ < k. By our
assumption that P is along the vertical right side of Sk, we have that Px = x�(Sk). By

the ordering of the squares in S̃�, we have that x�(Sk′) < x�(Sk), and hence for every
A ∈ Sk′ , Ax ≤ x�(Sk′) < x�(Sk). It directly follows that Ax < Px. Next consider

a square S′
�′ ∈ S̃�, where &′ < &. By our assumption that P is along the horizontal

upper side of S′
�, and by the ordering of the squares in S̃�, necessarily x�(S′

�′) > Px.
But, for every point B ∈ S′

�′ , Bx ≥ x�(S′
�′), and so Bx > Px.

To prove part 2 of the lemma it suffices to show that (i) (Sk′ \ Sk) ∩ S′
� = ∅ if

k′ < k, and (ii) (S′
�′ \ S′

�) ∩ Sk = ∅ if &′ < &. This is sufficient since S̃� (respectively,

S̃�) is a chain with respect to Q. Hence, every cell corresponding to an interval

[i, j] ⊆ [1, k−1] (respectively, [i, j] ⊆ [1, &−1]) of S̃� (respectively, S̃�) in Q is disjoint
from Sk ∪ S′

�, and the full interval property is preserved. For example, consider the
two squares in Figure 7.5 that belong to the �-chain and are above S′

�. If we denote
them by S1 and S2, then we see that the regions S1 \ S′

� and S2 \ S′
� are both disjoint

from Sk and that {S1, S2} form a chain with respect to Q \ (Sk ∩ S′
�).

In order to verify (i), consider a square Sk′ for k′ < k. To show that (Sk′ \Sk) ∩
S′
� = ∅, consider a point A ∈ (Sk′ \Sk). The ordering of S̃� implies that Ay > y�(Sk),

and by the definition of P , y�(Sk) ≥ Py. Since Py = y�(S′
�), we get that A is above

S′
� and, in particular, A /∈ S′

� as claimed in (i). Item (ii) is proved analogously, and
part 2 of the lemma follows.

It remains to prove part 3 of the lemma. Consider a point A ∈ Sk′ ∩ Q, for
k′ > k. There are two possibilities. (i) Ax ≤ Px: In this case, Ay ≤ y�(Sk′) ≤ y�(Sk).
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i

i− 1

j

j + 1
B

SB

Fig. 7.6. The construction in the proof of Lemma 7.6.

Since Px = x�(Sk), we get that A ∈ Sk. (ii) Ax > Px: If Ay ≥ Py, then �(Sk′)
is above and to the right of P , and hence P ∈ Sk′ , a contradiction. It follows that
Ay < Py = y�(S′

�). Since Px ≥ x�(S′
�), we get that A ∈ S′

�. Therefore, the suffix of

S̃� is covered by Sk ∪ S′
�. The proof for the suffix of S̃� is analogous, and part 3 of

the lemma follows.

7.2.2. Corner-chains of opposite corners. Consider a rectangle Q with side
lengths at most 1/2. Let S̃� = S̃(Q, �) and S̃� = S̃(Q, �) denote corner-chains cor-
responding to opposite corners � and �. (The case of the �-corner and �-corner is
reduced to this case by “flipping or rotating the picture.”) Let Q� = Q∩⋃S∈S̃� S and
Q� = Q∩⋃S∈S̃� S. Our goal is to select an approximately minimum subset from each
corner-chain so as to cover Q� ∪Q�. To this end, we find minimal covers of Q� \Q�,
Q� \Q�, and Q� ∩Q�.

Definition 7.5. A subset S̃m� ⊆ S̃� is a minimal cover of Q�\Q� if (i) S̃m� covers

Q� \Q�, and (ii) no proper subset of S̃m� covers Q� \Q�.
The following lemma shows that minimal covers of (Q� \ Q�) are chains with

respect to (Q� \Q�).

Lemma 7.6. If S̃m� ⊆ S̃� is a minimal cover of Q� \Q�, and the squares in S̃m�
are indexed according to the x-coordinate of their �-corners, then S̃m� is a chain with
respect to Q� \Q�.

Proof. Let S̃m� = {S′
1, . . . , S

′
k}. Since S̃� is a chain with respect to Q, it follows

that S̃m� is also a chain with respect to Q�. For simplicity, add “dummy” squares S′
0

and S′
k+1 to S̃m� , where �(S′

0) = �(Q) and �(S′
k+1) = �(Q). Note that these dummy

squares do not assist in covering Q� \Q�. For the sake of contradiction, assume that

S̃m� is not a chain with respect to Q� \Q�. Since S̃m� is not a chain, it is not empty.
Consider an interval [i, j], for 0 < i ≤ j < k + 1, such that the corresponding cell in

A(S̃m� ) is contained in Q�. (See Figure 7.6 for an illustration of this case.) Consider
the corner B of the cell [i, j] in Q defined by the intersection of the sides of S′

i−1 and

S′
j+1 in Q. Since the cell [i, j] is in Q�, so is the point B. Let SB ∈ S̃� denote a

square that contains B. It follows that the whole cell [i, j] as well as �(S′
i−1), �(S′

i),
�(S′

j), and �(S′
j+1) are in SB . It is easy to see that we may omit both S′

i and S′
j from

S̃m� while still covering Q� \Q�, contradicting the assumption that S̃m� is a minimal
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1
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4

5

6
7

(A) (B)

Fig. 7.7. A minimal cover of the union of opposite corner-chains. (A) The rectangle Q is
depicted by a dashed rectangle. The union of the “upper” corner-chain Q� is shaded (so that Q� \Q�
is the unshaded region within Q). A minimal cover S̃m

� ⊆ S̃� is depicted by thick �-corners. (B) An
explanation of how S̃m

� is greedily computed. Here only the boundary of Q� is depicted. Cells [1, 1],
[2, 4], and [5, 7] are shaded. Since cell [1, 1] is not completely covered by Q�, we add square 1 to the
cover. Cells [2, 2] and [2, 3] are covered by Q�, but cell [2, 4] is not; therefore, square 4 is added to
the cover. Now cells [5, 5] and [5, 6] are covered by Q�, but cell [5, 7] is not; therefore, square 7 is
added to the minimal cover.

cover.
An algorithm for finding a minimal cover. We now describe a greedy algorithm

for finding a subset S̃m� ⊆ S̃� that is a minimal cover of Q� \ Q�. Let S1, . . . , Sm be

an ordering of the squares in S̃� according to the increasing value of x�(Si). Recall

that S̃� is a chain with respect to Q, and therefore every subset of S̃� is a chain with
respect to Q. For any two indexes 1 ≤ a ≤ b ≤ m, let S̃�[a, b] denote the cell v in the

arrangement A(S̃�) such that N(v) = {Sa, . . . , Sb}.
The greedy algorithm works in an iterative fashion. Let k be the index of the

square selected in the last iteration (where initially k = 0 and S̃m� = ∅). Consider

all cells S̃�[k + 1, &], where (k + 1) ≤ & ≤ m, such that S̃�[k + 1, &] ∩ Q is not fully
contained in Q�. If there is no such cell, then the algorithm terminates. Otherwise,
let & be the minimum index such that S̃�[k + 1, &] is not fully contained in Q�, and

add S� to S̃m� . For an example, see Figure 7.7(B).

Claim 7.7. The greedy algorithm computes a minimal cover S̃m� ⊆ S̃� of Q�\Q�.
By “rotating the picture,” we can obtain an analogous claim concerning a minimal

cover S̃m� ⊆ S̃� of Q� \Q�.

Proof. Let k1 < k2 < · · · < kr denote the sequence of squares added to S̃m� by

the greedy algorithm. We show that the algorithm computes a cover S̃m� of Q� \Q�,
by showing that the following invariant holds throughout the algorithm:

(Q� \Q�) ∩
kt⋃
i=1

Si ⊆
t⋃

j=1

Skj .

The invariant holds trivially when the algorithms starts (as kt = 0). Assume, for the

sake of contradiction, that a cell S̃�[i, j] (for i ≤ j < kt) in Q� \ Q� is not covered
by

⋃
j≤t Skj . If i ≤ kt−1, then there are two cases: (i) j ≤ kt−1, in which case the

induction hypothesis already implies that cell S̃�[i, j] is contained in
⋃

j<t Skj , and

(ii) j > kt−1, in which case cell S̃�[i, j] is contained in Skt−1 . Both cases lead to a

contradiction, so we assume that i > kt−1. It can be verified that if the cell S̃�[i, j]
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kt−1

kt−1 + 1

[kt−1 + 1, j]

j

i

[i, j]

Fig. 7.8. An illustration for the case i > kt−1 in the proof of Claim 7.7.

D’

D

P

U’

U

Fig. 7.9. An illustration for Lemma 7.8. The point P ∈ Q� ∩ Q� is in D ∩ U , where neither
D ∈ S̃m

� nor U ∈ S̃m� . Here D′ ∈ S̃m
� (the square that covers the cell that contains the point slightly

to the left of �(U)) is such that y�(D′) > Py. Finally, U ′ = B�(D′), that is, it is the last square

from S̃� that intersects D′.

is in Q� \Q�, then the cell S̃�[kt−1 + 1, j] is also in Q� \Q�, but in such a case, the
greedy algorithm would have chosen Skt

such that kt−1 + 1 ≤ kt ≤ j, a contradiction.
For an illustration of this case, see Figure 7.8.

The stopping condition of the algorithm, combined with the invariant, guarantees
that, when the algorithm terminates, S̃m� covers Q� \Q�.

Minimality of S̃m� is proved as follows. Consider a square Sj ∈ S̃m� . When Sj was

added to S̃m� , it was added due to a cell [i, j], with i greater than the index of the

square added to S̃m� just before Sj . The cell [i, j] is covered only by Sj (among the

squares in S̃m� ), and hence minimality follows.

Let m� = |S̃m� |, and let m� = |S̃m� |. Let m = max{m�,m�}. In the next lemma

we show that it is possible to cover Q� ∪Q� by O(m) squares from S̃� ∪ S̃�.

Lemma 7.8. There exists a subset S ′ ⊆ S̃� ∪ S̃� of O(m) squares that covers
Q� ∪Q�.

Proof. Since S̃m� (respectively, S̃m� ) covers Q� \ Q� (respectively, Q� \ Q�) and

|S̃m� ∪ S̃m� | ≤ 2m, the remaining problem is to cover Q� ∩ Q� using O(m) squares.

For every square S ∈ S̃m� consider the set S̃�(S) of squares in S̃� that intersect
S. Define A�(S) (respectively, B�(S)) to be the first (respectively, last) square in

S̃�(S) when sorted according to the y-coordinates of their �-corners. We claim that⋃
S∈S̃m

�
(A�(S)∪B�(S)) covers (Q�∩Q�)\ (S̃m� ∪S̃m� ). Hence, we need to add at most

two squares from S̃� per square in S̃m� to cover (Q� ∩Q�) \ (S̃m� ∪ S̃m� ).

Consider a point P ∈ Q� ∩ Q�. Let D ∈ S̃� (respectively, U ∈ S̃�) denote a

square that contains P . If D ∈ S̃m� or U ∈ S̃m� , then we are done. Otherwise,

consider the cell in A(S̃�) that contains a point slightly to the left of �(U). This

cell is in Q� \ Q�, and therefore there exists a square D′ ∈ S̃m� that covers this
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cell. If P ∈ D′, we are done. Otherwise, we consider two cases: y�(D′) ≥ Py and
y�(D′) < Py. In the first case consider the square U ′ = B�(D′). Such a square exists
since U intersects D′. We can now bound the coordinates of �(U ′) to show that
P ∈ U ′ as follows: (i) x�(U ′) ≤ x�(D′) < Px (the first inequality holds because U ′

and D′ intersect, and the second inequality holds because y�(D′) ≥ Py while P /∈ D′);
(ii) y�(U ′) ≤ y�(U) ≤ Py (the first inequality holds because U ′ = B�(D′), and the
second by the premise of this case). Thus P ∈ U ′. For an illustration of this case, see
Figure 7.9. The second case in which y�(D′) < Py is treated analogously, where here
we let U ′ = A�(D′). The claim follows.

Remark 1. Lemmas 7.6 and 7.8 and Claim 7.7 regarding opposite corner-chains
were stated with respect to a rectangle Q that is contained in a tile. The same lemmas
and claim hold with respect to a region Q ⊆ T that satisfies the following properties.

The region Q contains two designated points C� and C�. (When Q is a rectangle,
then C� is the bottom-left corner and C� is the top-right corner.) The point C� is

contained in every square in S̃�, and the point C� is contained in every square in S̃�.
Moreover, if a square S ∈ S̃� (respectively, S ∈ S̃�) contains the point C� (respectively,
C�), then Q� \Q� = ∅ (respectively, Q� \Q� = ∅).

As we discuss in more detail shortly, if Lemma 7.4 is applied to separate corner-
chains of adjacent corners, then the remaining uncovered region in a tile is a region
that satisfies the above condition. Hence, after separating corner-chains of adjacent
corners, we may apply Claim 7.7 and Lemma 7.8 for the covering of the remaining
region in the tile.

Remark 2. After the separation of adjacent corner-chains in a tile, it is not
possible for both pairs of opposite corner-chains to intersect. Namely, at most one
pair of opposite corner-chains may intersect. We do not rely on this property, the
proof of which is easy.

7.3. Coloring arrangements of squares. In this section we prove Theo-
rem 1.4 for unit squares. The goal of the algorithm is to pick an “essential” subset
of squares per tile whose union must be served. The coloring of the essential squares
per tile is done according to Theorem 1.5. Recall that a tile is an orphan tile if it
does not contain a center of a square. As noted at the start of this section, the main
thrust of the algorithm and its analysis is in serving the covered regions in orphan
tiles (i.e., the union of the squares minus the union of nonorphan tiles). The task
of selecting a subset of squares that serves the covered parts of orphan tiles is “done
independently” by the orphan tiles. The set of essential squares per nonorphan tile
is the set of squares that belong to the tile and have been selected by one of the
neighboring orphan tiles.

7.3.1. Selection of squares by nonbare orphan tiles. Consider a nonbare
orphan tile T . In this section we describe how squares from neighboring tiles are
selected by T so that these squares serve the area that is the intersection of T with
their union.

Selection of squares consists of three steps: (1) selection of at most one square
from each e-neighbor—this step maximizes service from e-neighbors; (2) selection of
at most two squares from each v-neighbor—this step resolves all interactions between
chains of squares corresponding to adjacent corners; (3) final selection of squares
from the remaining chains corresponding to corners—this step takes into account
interactions between chains corresponding to opposite corners.

Selecting squares from e-neighbors. Consider the tile T and the set of squares that
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belong to an e-neighbor T e of T . For brevity, assume that T e is to the left of T and
that S(T e) �= ∅. Every square S ∈ S(T e) covers a vertical strip of T . If we select the
rightmost square S in S(T e), then we get that for every S′ ∈ S(T e), S′ ∩ T ⊆ S ∩ T .
In the same fashion, we select the closest square to T from each e-neighbor of T . By
selecting at most one square from each e-neighbor of T , the first substep covers all
the points in T ∩⋃

T e∈e-neighbors(T ) S(T e).

After this step, the region within the tile T that still needs to be served is a
rectangle. Let us denote this rectangle by T ′. Note that the union of squares in S
may either fully cover or partly cover the rectangle T ′. In any case, only squares that
belong to v-neighbors of T intersect T ′. An illustration of this step was provided in
Figure 7.2.

Selecting squares from v-neighbors: Adjacent corners. Consider the rectangle
T ′ ⊆ T and a corner γ. The squares of S(T ′, γ) that participate in the T ′-envelope

are denoted by S̃(T ′, γ). By Claim 7.3, S̃(T ′, γ) is a chain with respect to T ′ when
indexed according to the x-coordinate of its centers (or γ-corners). By applying
Lemma 7.4 to the four appropriate pairs of chains corresponding to adjacent corners,
we obtain at most eight squares that serve as “separators” between the pairs of chains.
The selected squares cover all points in T ′ that are covered by squares in the tails of
the chains. Each corner-chain is reduced to a consecutive block of squares between
the two selected squares in that chain. The remaining portions of adjacent corner-
chains are disjoint. Let T ′′ denote the subregion consisting of T ′ minus the union of
the (at most eight) selected squares. By our notational convention, S̃(T ′′, γ) denotes
the subset of squares in S(T ′′, γ) that participate in the T ′′ envelope. Note that, by

Lemma 7.4, S̃(T ′′, γ) is a chain with respect to T ′′.
Selecting squares from v-neighbors: Opposite corners. In the third step we apply

Claim 7.7 and Lemma 7.8 to each pair of subsets S̃(T ′′, γ) and S̃(T ′′, op(γ)). This

application determines the subsets of S̃(T ′′, γ) (and S̃(T ′′, op(γ))) that suffice to serve
the intersection of T ′′ with the union of each pair of chains. Note that, due to the
separation of adjacent corner-chains (see Lemma 7.4), at most one pair of opposite
corner-chains may intersect.

A subtle issue to be addressed is whether the remaining region T ′′ ⊆ T ′ ⊆ T in
the beginning of this step satisfies the premises of Remark 1 for each pair of opposite
corner-chains. Consider, for example, the subset S̃(T ′′, �). This subset is a consecutive

block of squares from S̃(T ′, �). Let Sf� and S�� denote the squares in S̃(T ′, �)\S̃(T ′′, �)

that “hug” this block (i.e., Sf� and S�� were selected in the adjacent corner-chain stage).

The designated point C� ∈ T ′′ is the intersection of the right side of Sf� and the top
side of S��. One can define in this fashion all four designated points Cγ for γ ∈ Γ. We

can now apply Lemma 7.8 to each pair of subsets S̃(T ′′, γ) and S̃(T ′′, op(γ)), where
the corresponding designated points that satisfy the premise of Remark 1 are Cop(γ)

and Cγ . For an illustration, see Figure 7.10.

7.3.2. Coloring the essential squares. In the previous steps, each orphan
tile To selected a subset of squares used to serve the points in To ∩

⋃S. Given a
nonorphan tile T , let sel(T ) ⊆ S(T ) denote the subset of squares whose centers reside
in T that are selected by some tile in order to participate in its cover. If no square
in S(T ) is requested from orphan tiles, then we select an arbitrary square in S(T ) to
serve T , and let sel(T ) contain only this square. At this stage we apply Theorem 1.5
and color each subset sel(T ) by O(log |sel(T )|) colors; these colors are taken from the
palette assigned to the tile T .
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Fig. 7.10. An illustration for the choice of points Cγ and Cop(γ) that satisfy the premise of
Remark 1. The selected squares, which determine the two points, are labeled and marked in bold.
The dashed bold corners of squares correspond to the four other selected squares that belong to the
adjacent chains S̃(T ′, �) and S̃(T ′, �). The thin dashed rectangle is T ′, and T ′′ is the region obtained
by removing the four bold and four dashed-bold squares from T ′.

Recall that at most one square from S(T ) was requested from each of its four
e-neighbors. Each of its four v-neighbors initially requested at most two squares (as
“separators” between chains). These requests amount to at most twelve squares. The
main contribution to sel(T ) is due to the subsets of squares that were requested by
v-neighbors of T in the last selection step, that is, in the step that deals with opposite
corner-chains.

For each corner type γ, let selγ(T ) denote the subset of squares in sel(T ) that
were selected by Top(γ) in the opposite-corners selection step. The γ-corners of squares
in selγ(T ) are contained in the tile Top(γ). Let mγ(T ) = |selγ(T )|. Since |sel(T )| =
O(maxγ∈Γ {mγ(T )}), and since there are nine palettes, the next corollary follows.

Corollary 7.9. For any given set of unit squares S, it is possible to CF-color
S using O (log (maxT,γ {mγ(T )})) colors.

7.3.3. A lower bound for optimal CF-coloring. In this section we lower-
bound the number of colors required by an optimal CF-coloring. Recall that, for a
tile T and corner γ ∈ Γ, the set of squares that intersect T with corner type γ is
denoted by S(T, γ). Recall that S̃(T, γ) denotes the subset of squares from S(T, γ)
that appear in the T -envelope.

Let T be any (orphan) tile, and let γ be a corner. The following lemma states a

lower bound on χopt(S) in terms of the size of a subset S ′ ⊆ S̃(T, γ) that is a chain
with respect to the region Q = T \ {S : S /∈ S(T, γ)}. That is, the region Q is what
remains of T after we remove all squares that intersect T with the exception of squares
in S(T, γ).

Lemma 7.10. Let T denote a tile, γ a corner type, and let Q = T \ {S :

S /∈ S(T, γ)}. Let S ′ ⊆ S̃(T, γ) be a chain with respect to Q. Then every CF-coloring
of A(S) requires Ω(log |S ′|) colors.

The proof of Lemma 7.10 follows the same outline as the proof of Lemma 6.3.
In fact, the same lower bound holds also for CF-multicoloring, implying Theorem 9.2
(see section 9). The only difference is that here we need to take into account that
squares from S(T, γ) \ S ′ may cover points in Q and hence can potentially serve cells
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Fig. 7.11. Illustration for the proof of Lemma 7.10. The squares of S′ are labeled from 1 to 7.
The region Q is the nonshaded region within the dashed rectangle. The point P is the top-right

corner of v1,7 (which here equals v
Q
1,7). On the left is an illustration of the case in which P is served

(in an optimal CF coloring) by a square S such that S ∩Q ⊆ S3 ∩Q. The point P ′ in this case is
the top-right corner in a cell of the chain determined by S4, . . . , S7. On the right is an illustration
of the case in which P is served by a square S whose top-right corner does not reside in any square
of S′.

in the chain S ′. For an illustration of the proof of the lemma, see Figure 7.11.

Proof. We consider the case γ = �. All other cases are proved analogously. Let
S1, . . . , Sm be an ordering of the squares in S ′ so that x�(S1) < · · · < x�(Sm). For
every 1 ≤ i ≤ j ≤ m, let vi,j denote the cell in the arrangement A(S ′) for which
N(vi,j) = {Si, . . . , Sj}. (Recall that for a cell v, N(v) denotes the subset of regions

that contain v.) Let vQi,j = vi,j ∩ Q, where we know that vQi,j is nonempty for every
1 ≤ i ≤ j ≤ m because S ′ is a chain with respect to Q. Since we are dealing
with squares (or, more generally, rectangles), we know that each vi,j is a rectangle.

However, it may be the case that vQi,j is not a rectangle. The exact structure of vQi,j
is actually immaterial to the proof. What will be needed is the following subclaim
(where we assume that m > 3 or else Lemma 7.10 holds trivially).

Subclaim. For every 1 ≤ i, j ≤ m such that i ≤ j − 2, the top-right corner of vi,j
is contained also in vQi,j .

Proof of subclaim. Assume that the subclaim does not hold. This means that
there exists some square S′ /∈ S(T, �) that contains the top-right corner of vi,j . But
in such a case either S′ ⊇ vi+1,j or S′ ⊇ vi+1,j−1 or S′ ⊇ vi,j−1, contradicting the
premise of the lemma that S ′ is a chain with respect to Q. The subclaim is thus
established. For an illustration, see Figure 7.12.

Now consider an optimal CF-coloring χopt of S. Let P be the top-right corner of

v1,m. By the above subclaim (assuming m > 3), P ∈ vQ1,m. Since P ∈ Q, only squares
in S(T, �) contain P . Let S ∈ S(T, �) be a square that serves P in the coloring χopt.
We first consider the case that �(S), the top-right corner of S, is contained in some
Sk ∈ S ′ (in particular, Sk may equal S). In this case, S ∩Q ⊆ Sk ∩Q.

We make two observations. The first is that both {S1, . . . , Sk−1} and {Sk+1, . . . ,
Sm} are chains with respect to Q \ S. This is true since {S1, . . . , Sm} is a chain
with respect to Q, (hence both subsets must be chains with respect to Q \ Sk), and
Q ∩ S ⊆ Q ∩ Sk. Thus, S cannot fully serve any of the cells in these two subchains.
The second observation is that every square S′ ∈ S(T, �) that serves the top-right
corner P ′ of a cell in one of these chains (that corresponds to an interval of size at
least 3) must also contain P . This is true because every top-right corner of such a
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Fig. 7.12. An illustration for the proof of the subclaim in the proof of Lemma 7.10: (i) i = 2,
j = 7, and S′ covers v3,7; (ii) i = 3, j = 5, and S′′ covers v4,4; and (iii) i = 1, j = 4, and S′′′
covers v1,3.

cell dominates P (i.e., the x and y coordinates of such corners are not smaller than
Px and Py, respectively). Since S serves P , it follows that the color of every square
that contains P must be different from χopt(S).

If �(S), the top-right corner of S, is not contained in any Sk ∈ S ′ = {S1, . . . , Sm},
then define k as follows: k = max{i : x�(Si) < x�(S)}. Since S ′ is a chain with respect
to Q, it follows that {S1, . . . , Sk} and {Sk+1, . . . , Sm} are chains with respect to Q\S.
Furthermore, similarly to what was shown above, for any square S′ ∈ S(T, �) that
can serve the top-right corner of a cell in one of these chains (that corresponds to an
interval of size at least 3) χopt(S

′) �= χopt(S). In either case we get the recurrence
relation

|χopt({S1, . . . , Sm})|
≥ 1 + min

1≤k≤m
{max {|χopt({S1, . . . , Sk−1}) |, |χopt({Sk+1, . . . , Sm})|}},

where for any subset S ′′ of less than three squares, |χopt(S ′′)| ≥ 1. Hence |χopt(S)| =
Ω(log |S ′|), and the lemma follows.

For any nonorphan tile T and corner γ, let selγ(T ) and mγ(T ) (= |selγ(T )|) be as
defined preceding Corollary 7.9. Using Lemma 7.10, we establish the following lower
bound.

Lemma 7.11. For any given set of unit squares S, we have that |χopt(S)| =
Ω (log (maxT,γ {mγ(T )})).

Proof. Consider a tile T and a corner type γ such that mγ(T ) is maximal. Let
W denote the tile Top(γ), which selected the squares in selγ(T ). Let Q denote the
region remaining in W when the γ-corner chain and op(γ)-corner chain are considered
in W . Assume, without loss of generality, that γ = �. The set sel�(T ) consists of

two kinds of squares: (i) squares that belong to the a minimal cover S̃m� of Q� \ Q�
(these squares are selected by the greedy algorithm) and (ii) pairs of squares that
were selected according to the procedure defined in Lemma 7.8. Let m′ denote the
number of squares of the first kind, and let m′′ denote the number of squares of the
second kind.

We consider first the case that m′ ≥ m′′. The separation procedure of adjacent
corner-chains combined with Lemma 7.6 implies that S̃m� is a chain with respect to
W \ {S : S /∈ S(W, �)}. By Lemma 7.10 we get that the number of required colors is
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Ω(logm′) = Ω(m�(T )).

We next consider the case that m′′ > m′. Let V denote the tile W�. The squares
in sel�(V ) were also selected by the tile W . The number of squares in sel�(V ) that

belong to a minimal cover S̃m� of Q� \ Q� is at least m′′/2. By applying the same
argument now on the tile V and the �-corner, the lemma follows.

7.3.4. Wrapping up the proof of Theorem 1.4 for unit squares. Combin-
ing Corollary 7.9 and Lemma 7.11, and noting that the computational complexity of
the algorithm is due only to sorting squares according their coordinates, Theorem 1.4
for unit squares directly follows.

7.4. General rectangles. Consider a collection R of rectangles with size-ratio
ρ. Our goal is to prove the existence of an efficient algorithm for CF-coloring R that
uses O((log ρ)2) · |χopt(R)| colors. This means that if the size-ratio ρ is constant, then
the algorithm is a constant-ratio approximation algorithm.

By separately scaling the x-axis and the y-axis, we may assume that the minimum
width and height of rectangles in R are equal to 1. Hence, all side-lengths are in the
range [1, ρ].

The algorithm proceeds in two steps (as in the proof of Theorem 1.2). First,
consider the case of ρ ≤ 2. For this case we show that O(|χopt(R)|) colors suffice. For
the more general case of ρ > 2, we partition the set of rectangles into log2 ρ classes.
For 1 ≤ i, j < log ρ + 1, the class Ri,j consists of rectangles whose width is in the
interval [2i−1, 2i) and whose height is in the interval [2j−1, 2j). Each class is colored
using a distinct palette, to obtain a CF-coloring that uses O((log ρ+ 1)2) · |χopt(R)|
colors, as required.

7.4.1. Rectangles with ρ ≤ 2. We outline the algorithm for the case ρ ≤ 2
below.

1. The tiling is the same as in the case of unit squares. The tiles are assigned
25 different palettes (instead of nine).

2. An orphan tile may now be completely covered by a rectangle. An orphan
tile that is completely covered by a rectangle selects such a rectangle (this
type of selection does not exist in the case of unit squares).

3. Instead of selecting closest rectangles from e-neighbors, every nonbare orphan
tile that is not completely covered by a single rectangle selects the rightmost
rectangle (if any) whose right edge intersects both the bottom and top side
of the tile. The same selection takes place in the other three axis-parallel
directions. In this stage an orphan cell selects at most four rectangles.

4. A nonbare orphan tile that still contains a region covered by R but not by
the rectangles selected so far selects rectangles from the corner-chains as in
the algorithm for unit squares. The reason that the same techniques apply is
that the intersection of a rectangle with a tile contains at most one corner.

5. The essential (selected) rectangles from each tile are colored as described in
the following paragraph.

Coloring the essential rectangles. Given a nonorphan tile T , let sel(T ) denote the
set of rectangles that belong to T and were selected in the previous stages. For a corner
type γ and a nonbare orphan tile W , let R′(W,γ) be the subset of rectangles selected
by W whose γ-corner resides in W . Finally, let m = maxW,γ{|R′(W,γ)|} denote the
maximum (over all tiles W and corner types γ) of the number of rectangles selected
by an orphan tile W due to their participation in a γ-corner-chain within the tile.
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H�

H❂

H�

H�

T H❁

H�

Fig. 7.13. An illustration for the proof of Lemma 7.12. The thickest rectangles belong to all four
chains. The second-thickest rectangles belong to the top-left and top-right chains, and the thinnest
rectangles belong only to the top-right chain.

In this section we show that for every nonorphan tile T , (i) |sel(T )| ≤ O(m), and
(ii) sel(T ) can be CF-colored using O(log |sel(T )|) colors.

We begin by counting the number of rectangles in sel(T ). Since the side-length
of every rectangle is in the range [1, 2], and all the rectangles in sel(T ) are centered in
T , it follows that

⋃
S∈sel(T ) S intersects at most 25 tiles. Therefore, |sel(T )| = O(m)

for every tile T .

Similarly to Lemma 7.11, |χopt(R)| = Ω(logm). To obtain the constant-ratio
approximation algorithm, we next show that sel(T ) can be CF-colored using
O(log |sel(T )|) colors. Note that Theorem 1.5 is not applicable in this case since
the rectangles are not congruent.

Lemma 7.12. Let R′ be a set of axis-parallel rectangles with minimum width
(height) at least 1. Assume that all centers of rectangles in R′ reside in a square tile
of side-length 1/2. Then it is possible to CF-color R′ using O(log(|R′|)) colors.

Proof. Let T be the 1/2 × 1/2 tile that contains the centers of the rectangles
in R′. Extend the sides of T into lines, and consider the subdivision of the plane
into nine regions by these four lines. The subdivision consists of (i) the tile itself
T , (ii) four corner regions denoted by H�, H�, H�, and H�, and (iii) four remaining
regions denoted by H�, H�, H❁, and H❂. These regions are depicted in Figure 7.13.

Since each of the four regions H�, H�, H❁, and H❂ is of height/width 1/2, it
suffices to select one rectangle for each and give it a unique color in order to serve
the intersection of R′ with each of them. In particular, for H� we take the rectangle
whose top edge has the largest y coordinate; for H�, the rectangle whose bottom edge
has the smallest y coordinate, and similarly for H❁ and H❂. Any one of these (at
most) four rectangles can serve all of T as well.
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Next we observe that in order to serve each of the four corner regions H�, H�,
H�, and H�, it suffices to focus on four corner-chains. Let R̃′

�, R̃′
�, R̃′

�, and R̃′
�,

respectively, denote the set of rectangles that appear in the envelope of R′ in each
of the four corner parts. That is, those rectangles in R′ whose corresponding corners
(� in H�, � in H�, and, in general, γ in Hγ) are not contained in any other rectangle in
R′. The intersection of any other rectangle in R′ with each Hγ , γ ∈ Γ, is contained in

the intersection of the corresponding subset R̃′
γ with Hγ . Note that the four subsets

are not necessarily disjoint.
By a slight variant of Claim 7.3, each corner-chain R̃′

op(γ) is indeed a chain with
respect to Hγ . While it is possible to apply Lemma 6.4 to each of these chains, we
do not directly obtain a single consistent coloring because the different chains are not
necessarily disjoint. Instead, we partition the rectangles into 24 − 1 = 15 disjoint
subsets, where each subset consists of rectangles that belong to the same nonempty
subset of corner-chains (e.g., R̃′

� and R̃′
� but not R̃′

� and R̃′
�).

The important observation regarding the envelope of R′ is that if every boundary
segment is given a symbol that corresponds to the rectangle it belongs to, then the
sequence of symbols is a Davenport–Schinzel sequence DS(n, 2) [SA95]. Namely, no
two consecutive symbols are equal, and there is no alternating subsequence of length 4
(i.e., no “. . . a . . . b . . . a . . . b . . . ” for every pair of symbols a �= b).

As a consequence, if two rectangles belong to more than one chain (that is to two,
three, or even all four chains), then they appear in the same order (up to reversal)
in all chains they belong to. Hence we can color each of the 15 subsets separately in
a consistent manner (using 15 different palettes). The total number of colors used is

hence O(log(|R̃|)), as required.

8. Coloring arrangements of regular hexagons. In this section we prove
Theorem 1.5 for the case of regular hexagons. The proof follows the ideas used in
the proof for the case of rectangles. We therefore provide a sketch of the proof (with
accompanying illustrations) but do not give the full details of the proof.

8.1. Preliminaries. The sets of regular hexagons that we consider are axis-
parallel; namely, two of the sides of the hexagons are parallel to the x-axis. The type
of a vertex is determined by the slope of the segment connecting the center of the
hexagon with the vertex (see Figure 8.1). In the same fashion, we define the type of
an edge of the hexagon.

bottom-left bottom-right

middle-right

top-righttop-left

middle-left

Fig. 8.1. A hexagon and its vertices.

The tiling. In the case of hexagons we consider a tiling of the plane by equilateral
triangles with unit side-lengths; one side of each triangular tile is horizontal (see
Figure 8.2). Triangular tiles have two possible orientations: In the up orientation, the
vertex opposite the horizontal edge is above that edge, and in the down orientation,
that vertex is below the horizontal edge.
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Fig. 8.2. The triangular tiling and a pair of hexagons. The tile borders are depicted by dotted
lines. Both centers of the hexagons are in the middle tile. Both hexagons completely cover the
middle tile. Larger hexagons may intersect more than the 12 neighboring tiles.

We adapt the notation of section 7 as follows. The set of hexagons is denoted
by H. We assume that the side-length of every hexagon is in the range [1, ρ]. For a
tile T , we let H(T ) denote the set of hexagons in H that belong to T (that is, whose
center resides in T ). A tile T is an orphan if H(T ) = ∅, and it is bare if no hexagon
in H intersects it.

Since the tiles are equilateral triangles of side-length 1, the following holds for
any set of hexagons H with side-lengths at least 1.

Observation 1. For every tile T and hexagon H ∈ H, (i) if H ∈ H(T ), then
T ⊂ H; (ii) T contains at most one vertex of H; (iii) if T intersects two edges e1, e2
of a hexagon H, then these edges are adjacent and T contains also the vertex e1∩e2.

Disjoint palettes. As in the case of disks (cf. Theorem 1.2), we reduce the problem
to the case of size-ratio 2 by paying a factor of log ρ. Henceforth, we assume that
ρ ≤ 2. We assign a palette to every tile T . The colors assigned to hexagons in H(T )
belong to the palette assigned to T . Palettes are disjoint, and the distribution of
palettes is such that intersecting hexagons from different tiles are assigned different
colors. This requires only a constant number of palettes. For example, consider a tiling
of the plane with hexagonal supertiles that contain a constant number of triangular
tiles. Assign every triangular tile within a hexagonal supertile a different palette, and
extend this coloring periodically according to the hexagonal supertiles. The resulting
assignment of palettes is as required.

8.2. Coloring arrangements of hexagons. As in the case of rectangles, the
algorithm has two stages. In the first stage, each nonbare orphan tile T selects a
subset of hexagons whose union serves the covered regions in T . For each nonorphan
tile T , let sel(T ) denote the subset of hexagons in H(T ) that were selected by orphan
tiles in the first stage. In the second stage, the hexagons in sel(T ) are CF-colored,
for every nonorphan tile T , using colors from the palette assigned to T .

8.2.1. Selection of hexagons by nonbare orphan tiles. Consider a nonbare
orphan tile T . If there exists a hexagon that covers all of T , then we simply select one
of these hexagons to serve it and no more selections are required. We now consider
nonbare orphan tiles that are not covered by a single hexagon.

For an edge type e, let H(T, e) denote the set of hexagons that intersect T with
an edge that is of type e (i.e., a nonempty intersection, but no vertex of the hexagon
is contained in T ). We claim that a single hexagon covers the intersection of T
with hexagons from H(T, e). For example, let e be the top horizontal edge. The
set of hexagons that intersect T with their top horizontal edge is hence denoted by
H(T, e). Among these hexagons, pick the hexagon H with the highest center. The
hexagon H covers the intersection of T with every hexagon in H(T, e). This completes
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T’

Fig. 8.3. Let T be the central triangular tile in the figure, which is an orphan tile. The figure
illustrates the choice of hexagons that intersect T with an edge. The selected hexagons are the two
thick hexagons, and the region T ′ ⊂ T that remains after their selection is filled.

Fig. 8.4. An example of a top-right chain. For simplicity, in this figure T ′ = T . That is, the
dotted triangle is a tile T .

the discussion of the selection of hexagons that intersect T with an edge. For an
illustration, see Figure 8.3.

We denote by T ′ the region contained in T that remains after this choice of at
most six hexagons (one per edge type). Note that if T ′ is nonempty, then T ′ is a
polygon with at least three edges and at most six edges. The edges of Q are parallel
to those of the hexagons in H.

We now consider the selection of hexagons that intersect T ′ with a vertex. Let
γ denote a vertex type (e.g., top-right), and let H(T ′, γ) denote the set of hexagons

whose γ-vertex is in T ′. Among the hexagons in H(T ′, γ), let H̃(T ′, γ) denote the
hexagons that participate in the envelope of H(T ′, γ) in T ′. Similarly to the analysis
in the case of rectangles, the latter cover all of the intersection of T ′ with the former,
and furthermore they constitute a (corner) chain with respect to T ′. We refer to
the chain in terms of the vertex type (e.g., top-right chain). For an illustration, see
Figure 8.4.

Thus, there are at most six corner-chains intersecting T ′, one for each vertex
type. Here we have three types of “interactions” between chains, depending on the
distance between the corresponding vertex types on the hexagons—that is, distance-
one (e.g., top-right and top-left), distance-two (e.g., top-right and middle-left), and
distance-three (e.g., top-right and bottom-left).

Interactions between distance-one and distance-two chains. Interactions between
distance-one chains and distance-two chains are analogous to the interactions between
corner-chains of adjacent corners in the case of rectangles. Specifically, for each such
pair of chains, we can select a single hexagon from each chain so that (1) the union
of the two selected hexagons covers the intersection between the chains, and (2) the
remaining hexagons (not covered by the two selected hexagons) constitute disjoint
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chains with respect to T ′ minus the two hexagons. For an illustration, see Figure 8.5.

Fig. 8.5. The two “benign” interactions between corner-chains in a tile T . On the left side
is a distance-one interaction between a top-right chain and a top-left chain. On the right is a
distance-two interaction between a top-right chain and a middle-left chain. In each figure, the two
bold hexagons are those selected from the two chains.

It follows that, by selecting at most four hexagons from each of the six chains
that intersect T ′, it is possible to service all areas of intersections between such pairs
of subsets of hexagons. Let T ′′ ⊆ T ′ denote the remaining region in T ′ ⊆ T that is
not covered by these selected hexagons.

Interactions between pairs of distance-three (opposite) chains. The case of interac-
tions between distance-three chains is analogous to the interaction between opposite
chains in the case of rectangles. In particular, it is possible to select an approximately
minimum subset of hexagons from the two chains so as to serve all the area in their
union (within the region T ′′). For an illustration, see Figure 8.6.

8.3. Coloring the selected hexagons. We now return to each nonorphan tile
T and assign colors to the hexagons requested from it. Note that Theorem 1.5 is not
applicable since the hexagons are not congruent.

Lemma 8.1. Let H̃ be a subset of axis-aligned hexagons with side-lengths at
least 1, which all belong to the same tile T . Then it is possible to CF-color H̃ using
O(log(|H̃|) colors.

Proof sketch. First, we assume, without loss of generality, that every hexagon in
H̃ participated in the envelope (i.e., contains a vertex in

⋃
H∈H̃H).

Similarly to the proof of Theorem 1.4 for rectangles, we extend the sides of a
tile to partition the area covered by H̃ into several subregions (see Figure 8.7). The
number of resulting regions is seven (including the tile T itself, which is covered by

every hexagon in H̃). Three of these subregions have a common vertex with T (and
are referred to as the “angular” subregions), and three have a common edge (and are

referred to as the “trapeze” subregions). The vertices of every hexagon in H̃ are in
the trapeze subregions. Hence, it is possible to select at most three hexagons to serve
the angular subregions. Each of these hexagons is assigned a unique color (and thus
T itself is also served).

We now deal with serving points in the trapeze regions. We wish to identify
two chains in each trapeze region. Fix a trapeze region R. Every hexagon has two
adjacent vertices in the trapeze region (as well as the edge connecting these vertices).
Let u and v denote the vertex types that appear in R. Pick the hexagon HR whose
edge is farthest away from the corresponding edge of the triangular tile. Consider the
sequence of vertices along the envelope of H̃ in R. This sequence starts with a block
of vertices of type u and ends with a block of vertices of type v. The two vertices
of HR in R appear consecutively in this envelope. By picking HR and assigning it
a unique color, the envelope in R is separated into two parts. Moreover, the region
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Fig. 8.6. An interaction between the distance-three (opposite) chains top-right and bottom-left.
The selected hexagons are bold.

Trapeze shaped region

Angular region

Fig. 8.7. The partitioning of the area covered by hexagons that belong to the same tile. The
six subregions HR outside the tile are determined by the dashed lines that are extensions of sides of
the tile. There are three angular regions, which can each be served by a single hexagon, and three
trapeze-shaped regions. The two dotted lines within the top-left trapeze-shaped region are determined
by the hexagon selected as in the proof (sketch) of Lemma 8.1. Each of the two dotted lines, paired
with one of the dashed lines bounding the trapeze-shaped region, define the (angular) subregion that
contains a (disjoint) corner-chain.

(R \HR) ∩ (
⋃

H∈H̃H) consists of two disjoint connected parts. The hexagons whose
vertices appear in the envelope in each part are chains with respect to R \HR. Thus,
by picking at most six hexagons and assigning them unique colors, we have identified
six disjoint chains.

As in the proof of Lemma 7.12, hexagons that belong to multiple chains appear in
the same order (up to reversal) in these chains. Hence we partition the hexagons that
appear in chains into at most 26 − 1 subsets, where within each subset all hexagons
belong to the same chains. (A finer counting argument is based on showing that for
every three or more chains there can be at most one hexagon that belongs to all these
chains. Hence we actually focus on subsets of hexagons that belong to one or two
chains.) Each such subset is provided with a disjoint palette and can be colored using
a logarithmic (in its size) number of colors.

Finally, the proof of Theorem 1.4 for regular hexagons follows by combining the
above lemma with a lower bound analogous to Lemma 7.10, the basic properties of
the tiling, and the requesting process from orphan tiles.
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9. Consequences.

9.1. Universal bounds for noncongruent rectangles and hexagons. As a
corollary of Lemma 7.12 we also obtain a universal bound for the case of rectangles
that is analogous to the case of disks (part 1 of Theorem 1.2).

Specifically, for each pair of integers i, j ≥ 1, let Ri,j denote the subset of rect-
angles in R whose width is in the range [2i−1, 2i) and whose height is in the range
[2j−1, 2j). Let φ2i,2j (Si,j) denote the maximum number of centers of rectangles in
Ri,j that are contained in a rectangular tile of width 2i and height 2j . We refer to
φ2i,2j (Ri,j) as the local density of Ri,j (with respect to rectangular tiles of width 2i

and height 2j).

Theorem 9.1. There exists an algorithm that, given a set R of axis-parallel
rectangles with side-lengths in the interval [1, ρ], finds a CF-coloring χ of R using

O
(
min

{∑log(ρ)+1
i=1

∑log(ρ)+1
j=1 (1 + log φ2i,2j (Ri,j)), log |R|}) colors.

Lemma 8.1 implies an analogous theorem for hexagons.

9.2. CF-multicoloring. An interesting by-product of Theorem 1.4 and its anal-
ysis has to do with minimum CF-multicoloring. A CF-multicoloring of a collection S
is a mapping χ from S to subsets of colors. The requirement is that for every point
x ∈ ⋃

S∈S S there exist a color i such that {S : x ∈ S, i ∈ χ(S)} contains a single
subset. It has been observed by Bar-Yehuda ([B01], based on [BGI92]) that every
set-system (X,S) can be CF-multicolored using O(log |X| · log |S|) colors. Since the
problem of minimum graph coloring can be reduced to CF-coloring of set-systems, it
follows that there exist set-systems for which there is an exponential gap between the
minimum number of colors required in a CF-coloring and the minimum number of
colors required in a CF-multicoloring. In particular, this is true when the set-system
(X,S) corresponds to a clique G = (V,E) as follows: There is a set Sv for every
vertex v ∈ V , and there is a point xe ∈ X for every edge e ∈ E. The set Sv contains
the point xe if and only if v is an endpoint of e. The number of colors required to
CF-color this set-system is |S| = |V |, in contrast to the O(log2 |S|) colors that are
sufficient for CF-multicoloring.

A natural question is whether, in the geometric setting that we study, the number
of colors required for CF-multicoloring is significantly smaller than that required for
CF-coloring. An example in which CF-multicoloring saves colors is a “circle” of five
congruent squares such that every adjacent pair of squares intersects and no three
squares intersect. Since the number of squares is odd, three colors are needed for CF-
coloring. However, CF-multicoloring requires only two colors: Color the first square
with two colors, and then color the rest of the squares with alternating colors. The
lower bound proved in Lemma 6.3 also applies to CF-multicoloring, and hence CF-
multicoloring does not save colors in chains. Furthermore, it follows from our analysis
(cf. Lemma 7.10) that CF-multicoloring reduces the number of colors by at most a
constant in the case of congruent squares (or hexagons).

Theorem 9.2. Let S denote a set of congruent axis-parallel squares, and let
χmulti

opt (S) denote an optimal CF-multicoloring of S. Then |χmulti
opt (S)| = Θ(|χopt(S)|).

Acknowledgments. We thank the reviewers of this manuscript for careful read-
ing and many helpful remarks. We thank an anonymous FOCS reviewer for suggesting
that the NP-completeness of coloring intersection graphs of unit disks could be used
to prove the NP-completeness of CF-coloring arrangements of unit disks. We thank
Micha Sharir for helpful discussions.



136 G. EVEN, Z. LOTKER, D. RON, AND S. SMORODINSKY

REFERENCES

[AHK+01] K. Aardal, S. van Hoesel, A. Koster, C. Mannino, and A. Sassano, Models
and Solutions Techniques for Frequency Assignment Problem, ZIB Report 01-
40, Konrad-Zuse-Zentrum für Informationstechnik Berlin, Berlin, Germany, 2001;
available online at http://www.zib.de/PaperWeb/abstracts/ZR-01-40/.

[AKM+01] Z. Abrams, J. Könemann, A. Meyerson, K. Munagala, and S. Plotkin, Facil-
ity Location with Interference, Working paper 2001-E23, GSTA, Carnegie Mellon
University, Pittsburgh, PA, 2001.

[AH77a] K. Appel and W. Haken, Every planar map is 4-colorable—1: Discharging, Illinois
J. Math., 21 (1977), pp. 421–490.

[AH77b] K. Appel and W. Haken, Every planar map is 4-colorable—2: Reducibility, Illinois
J. Math., 21 (1977), pp. 491–567.

[BGI92] R. Bar-Yehuda, O. Goldreich, and A. Itai, On the time-complexity of broadcast in
multi-hop radio networks: An exponential gap between determinism and random-
ization, J. Comput. System Sci., 45 (1992), pp. 104–126.

[B01] R. Bar-Yehuda, personal communication, Technion, Israel Institute of Technology,
Haifa, Israel, 2001.

[BKOS97] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwartzkopf, Compu-
tational Geometry—Algorithms and Applications, Springer-Verlag, Berlin, New
York, 1997.

[CCJ90] B. N. Clark, C. J. Colburn, and D. S. Johnson, Unit disks graphs, Discrete Math.,
86 (1990), pp. 165–177.

[C69] H. S. M. Coxeter, Introduction to Geometry, 2nd ed., Wiley, New York, 1969.
[DBJC98] N. W. Dunkin, J. E. Bater, P. G. Jeavons, and D. A. Cohen, Towards High Or-

der Constraint Representations for the Frequency Assignment Problem, Technical
report CSD-TR-98-05, Computer Science Department, Royal Holloway, Univer-
sity of London, London, 1998; available online at http://www.dcs.rhbnc.ac.uk/
research/constraints/publications/index.shtml.

[FK98] U. Feige and J. Kilian, Zero knowledge and the chromatic number, J. Comput.
System Sci., 57 (1998), pp. 187–199.

[GGRV00] M. Galota, C. Glasser, S. Reith, and H. Vollmer, A Polynomial-Time Approxi-
mation Scheme for Base Station Positioning in UMTS Networks, Technical report
264, Institut für Informatik, Universität Würzburg, Würzburg, Germany, 2000.

[HS03] S. Har-Peled and S. Smorodinsky, On conflict-free coloring of points and simple
regions in the plane, in Proceedings of the 19th Annual ACM Symposium on
Computing Geometry, San Diego, CA, 2003, pp. 114–123.

[H01] X. Huang, Automatic Cell Planning for Mobile Network Design: Optimization Models
and Algorithms, Ph.D. dissertation, Universität Karlsruhe, Karlsruhe, Germany,
2001.

[KMR01] S. O. Krumke, M. V. Marathe, and S. S. Ravi, Models and approximation al-
gorithms for channel assignment in radio networks, invited paper in Wireless
Networks, 7 (2001), pp. 575–584.

[MBH+95] M. V. Marathe, H. Breu, H. B. Hunt, III, S. S. Ravi, and D. J. Rosenkrantz,
Simple heuristics for unit disk graphs, Networks, 25 (1995), pp. 59–68.
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