
Distributed Construction of Connected Dominating
Set in Wireless Ad Hoc Networks

Peng-Jun Wan� Khaled M. Alzoubi� Ophir Frieder�

Abstract—Connected dominating set (CDS) has been proposed as virtual
backbone or spine of wireless ad hoc networks. Three distributed approxi-
mation algorithms have been proposed in the literature for minimum CDS.
In this paper, we first reinvestigate their performances. None of these al-
gorithms have constant approximation factors. Thus these algorithms can
not guarantee to generate a CDS of small size. Their message complexities
can be as high as O

�
n2

�
, and their time complexities may also be as large

as O
�
n2

�
and O

�
n3

�
. We then present our own distributed algorithm

that outperforms the existing algorithms. This algorithm has an approxi-
mation factor of at most 8, O (n) time complexity and O (n log n) message
complexity. By establishing the 
 (n log n) lower bound on the message
complexity of any distributed algorithm for nontrivial CDS, our algorithm
is thus message-optimal.

I. INTRODUCTION

Wireless ad hoc networks can be flexibly and quickly de-
ployed for many applications such as automated battlefield,
search and rescue, and disaster relief. Unlike wired networks
or cellular networks, no physical backbone infrastructure is in-
stalled in wireless ad hoc networks. A communication session
is achieved either through a single-hop radio transmission if the
communication parties are close enough, or through relaying by
intermediate nodes otherwise. In this paper, we assume that all
nodes in a wireless ad hoc network are distributed in a two-
dimensional plane and have an equal maximum transmission
range of one unit. The topology of such wireless ad hoc net-
work can be modeled as a unit-disk graph [6], a geometric graph
in which there is an edge between two nodes if and only if their
distance is at most one (see Figure 1).

Fig. 1. Model the topology of wireless ad hoc networks by unit-disk graphs.

Although a wireless ad hoc network has no physical backbone
infrastructure, a virtual backbone can be formed by nodes in a
connected dominating set of the corresponding unit-disk graph

�Department of Computer Science, Illinois Institute of Technology, Chicago,
IL 60616. Email: fwan, alzoubi, ophir g@cs.iit.edu.

[1][7][10]. Such virtual backbone, also referred to as spine,
plays a very important role in routing, broadcasting and con-
nectivity management in wireless ad hoc networks [1]. In gen-
eral, a dominating set (DS) of a graph G = (V;E) is a subset
V 0 � V such that each node in V �V 0 is adjacent to some node
in V 0, and a connected dominating set (CDS) is a dominating
set which also induces a connected subgraph. A (connected)
dominating set of a wireless ad hoc network is a (connected)
dominating set of the corresponding unit-disk graph. To sim-
plify the connectivity management, it is desirable to find a mini-
mum connected dominating set (MCDS) of a given set of nodes.
However, finding an MCDS in unit-disk graphs is NP-hard [6],
and thus only distributed approximation algorithms in polyno-
mial time are practical for wireless ad hoc networks. In this
paper, we further show that any distributed algorithm for non-
trivial CDS requires at least O (n logn) messages, where n is
the number of nodes and the message length has the same order
of the number of bits representing the node IDs.

Since the networking nodes in wireless ad hoc networks are
very limited in resources, a virtual backbone should not only
be “thinner”, but should also be constructed with low commu-
nication and computation costs. In addition, the communica-
tion and computation costs should be scalable as the wireless ad
hoc networks are typically deployed with large network size. In
this paper, we first reinvestigate the performance of the three
known distributed approximation algorithms for MCDS, pro-
posed by Das et al. in [1][7][10], by Wu and Li in [12], and
by Stojmenovic et al. in [11], respectively. While the first one
has a logarithmic approximation factor, the other two both have
linear approximation factors. Thus none of them can guaran-
tee to generate a CDS of small size. The algorithms also have
very high implementation cost in terms of message complexity
and/or time complexity. We thus present our own distributed
algorithm that always outputs a nontrivial CDS. This algorithm
has an approximation factor of at most 8, O (n) time complexity
and O (n logn) message complexity. As 
 (n logn) is a lower
bound on the message complexity of any distributed algorithm
for nontrivial CDS, our algorithm is thus a message-optimal dis-
tributed algorithm for nontrivial CDS.

A remark is that this paper focuses on the generation of a
CDS. The maintenance of suboptimal (in terms of approxima-
tion factor) CDS in a mobile environment is not presented in this
paper. This is a topic of future study, and the results would be
presented later.

The remaining of this paper is organized as follows. In Sec-
tion II, we establish a 
 (n logn) lower bound on the message
complexity of any distributed algorithm for nontrivial CDS. In

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.



Section III, Section IV and Section V, we analyzes the per-
formances of the three existing algorithms by Das et al. in
[1][7][10], by Wu and Li in [12], and by Stojmenovic et al. in
[11], respectively. In Section VI, we present a better distributed
algorithm and analyze its performance. Finally, we conclude
this paper in Section VII.

II. LOWER BOUND ON MESSAGE COMPLEXITY

In this section, we establish the 
 (n logn) lower bound on
the message complexity for distributed algorithms for leader
election, spanning tree and nontrivial CDS in wireless ad hoc
networks. The reduction is made from the following well-
known bound on the message complexity of distributed leader
election in asynchronous ring networks with point-to-point
transmission.

Theorem 1: [2] In asynchronous rings with point-to-point
transmission, any distributed algorithm for leader election in
sends at least 
 (n logn) messages.

Theorem 2: In asynchronous wireless ad hoc networks whose
unit-disk graph is a ring, any distributed algorithm for leader
election sends at least 
 (n logn) messages.

Proof: Let A be any distributed algorithm for leader elec-
tion in wireless ad hoc networks whose unit-disk graph is a ring.
LetA� be the algorithm by replacing each wireless transmission
by two point-to-point transmissions. Then A� is a distributed
algorithm for leader election in asynchronous rings with point-
to-point transmission. Note that the algorithm A� sends twice
messages of that sent by A. Thus from Theorem 1, A must also
send at least 
 (n logn) messages.

Theorem 3: In asynchronous wireless ad hoc networks whose
unit-disk graph is a ring, any distributed algorithm for spanning
tree sends at least 
 (n logn) messages.

Proof: Let A be any distributed algorithm for spanning
tree in wireless ad hoc networks whose unit-disk graph is a ring.
Note that any spanning tree of a ring consists of all edges in the
ring except one. Thus it has exactly two leaves which are also
neighbors. Thus after an spanning tree is completed, the two
leaves can exchange a message to select the leader between them
according to some symmetry-breaking criterion, for example by
their IDs. After the leader is identified, it then notifies all other
nodes in linear number of message. Thus from algorithm A,
we can derive a distributed algorithm for leader election whose
message complexity is �(n) more than the number of messages
sent by A. From Theorem 2, the message complexity of A is at
least 
 (n logn) :

A distributed algorithm for leader election in wireless ad hoc
networks has been proposed in [5]. This algorithm has message
complexity O (n logn) and therefore is message-efficient. Its
actual implementation also constructs a spanning tree rooted at
the leader.

Theorem 4: In asynchronous wireless ad hoc networks whose
unit-disk graph is a ring, any distributed algorithm for nontrivial
CDS sends at least 
 (n logn) messages.

Proof: Let A be any distributed algorithm for CDS in
wireless ad hoc networks whose unit-disk graph is a ring. Note
that for any nontrivial CDS of a ring consists of all nodes except
either a unique node or two neighboring nodes. So after an non-
trivial CDS is completed, the leader can be elected as follows. A
dominatee declares itself as the leader if both its neighbors are
dominators, or one of its neighbor is a dominatee but has larger
ID. The leader then notifies all other nodes in linear number of
message. Thus from algorithmA, we can derive a distributed al-
gorithm for leader election whose message complexity is �(n)
more than the number of messages sent by A. From Theorem 2,
the message complexity of A is at least 
 (n logn) :

III. DAS ET AL.’S ALGORITHM

The centralized version of the distributed algorithm proposed
by Das et al. consists of three stages. The first stage finds an
approximation to Minimum Dominating Set, which is essen-
tially the well-studied Set Cover problem. Not surprisingly, the
heuristic proposed by das et al. in [1][7][10] is a translation of
Chvatal’s greedy algorithm [4] for Set Cover, and thus guaran-
tees an approximation factor of H (�), where � is the maxi-
mum degree and H is the harmonic function. Let U denote the
dominating set output in this stage. The second stage constructs
a spanning forest F . Each tree component in F is a union of
stars centered at the nodes in U . The stars are generated by let-
ting each dominatee node pick up an arbitrary neighbor in U .
The third stage expands the spanning forest F to a spanning tree
T . All internal nodes in T form a CDS. It is easy to show that
the CDS generated in this way contains at most 3 jU j nodes, and
therefore is a 3H (�)-approximation of MCDS.

Figure 2 shows a family of instances for which the size of the
solution computed by the above greedy algorithm is larger than
the optimum solution by a logarithm factor. All points lie in a
rectangle whose horizontal side has length one and whose ver-

tical side has length 2

r
1�

�
1

2(k�1)

�2
. The two nodes v1 and

vk are the centers of the left and right vertical sides respectively.
The k � 2 nodes v2; v3; � � � ; vk�1 are evenly distributed within
the line segment between v1and vk from left to right. The two
nodes u1and u2 are the centers of the two sub-rectangles above
and below the segment between v1and vk respectively. The rest
points lie in the two horizontal sides. In each horizontal side,
20 = 1 node lies to the left of (and excluding) the perpendicular
bisector of v1v2, 2k�1 nodes lie to the right of (and excluding)
the perpendicular bisector of vk�1vk, and 2i�1 nodes lie be-
tween (and excluding) the perpendicular bisector of vi�1vi and
the perpendicular bisector of vivi+1. Thus, the total number of
nodes is

n = k + 2 + 2

kX
i=1

2i�1 = k + 2k+1:

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.



2

u

u2

v2
vkv1

1

k-120 21

20 2k-121

# of nodes

# of nodes

Fig. 2. Instance for which the size of the solution output by Das et al.’s algo-
rithm, fv1; v2; � � � ; vkg, is larger than the optimum solution, fu1; u2g, by
a logarithm factor.

Note that u1 is adjacent to all nodes lying in the top sub-
rectangle, u2 is adjacent to all nodes lying in the bottom sub-
rectangle, and they are adjacent to each other. Thus, fu1; u2g
forms an MCDS. On the other hand, the above greedy algorithm
would add vk; vk�1; � � � ; v1 sequentially to the dominating set
in the first stage and output the set fv1; v2; � � � ; vkg as the CDS
at the end of the second stage. This can be proven by induction
as follows.

Initially, the degree of node vi is

2 � 2i�1 + (k � 1) + 2 = 2i + k + 1;

the degrees of the node u1 and u2 are both

kX
i=1

2i�1 + k + 1 = 2k + k;

and the degree of any other node is

kX
i=1

2i�1 � 1 + 1 + 1 = 2k:

So vk is the first node to be selected. Now we assume that the
nodes vk; vk�1; � � � ; vj have been added to the dominating set.
For any node vi with i < j, the number of its neighbors that
have not been dominated yet is 2 � 2i�1 = 2i; for the node u1
or u2, the number of its neighbors that have not been dominated
yet is

j�1X
i=1

2i�1 = 2j�1 � 1;

and for any other rest node, the number of its neighbors that
have not been dominated yet is

j�1X
i=1

2i�1 � 1 = 2j�1 � 2:

So the node vj�1 is then added to the dominating set. Therefore,
by induction, the nodes vk ; vk�1; � � � ; v1 are added sequentially
to the dominating set. Note that fv1; v2; � � � ; vkg is a CDS. The
first stage will stop after v1 is added, and the second stage would
add no more nodes.

Since n = k + 2k+1 and � = 2k + k + 1, we have k >

logn� 2 and k > log �� 1. Therefore, the instance shown in
Figure 2 implies the lower bounds logn

2 � 1 and log�
2 � 1

2 on
the approximation factor of the greed algorithm.

The distributed implementation of the above greedy algorithm
proposed in [1][7][10] has very high time complexity and mes-
sage complexity. Indeed, both time complexity and message
complexity can be as high as �

�
n2
�
. We also notice that such

distributed implementation is technically incomplete. For exam-
ple, the distributed implementation consists of multiple stages,
but the implementation lacks lack mechanisms to bridge two
consecutive stages. Thus, individual nodes have no way to tell
when the next stage should begin. While these technical incom-
pleteness are possibly to be fixed, we will not take such effort
here as the approximation factor of the greedy algorithm is in-
trinsically poor.

In summary, we have the following performance results of the
distributed algorithm in [1][7][10].

Theorem 5: The approximation factor of the distributed algo-
rithm proposed by Das et al. in [1][7][10] is between log�

2 � 1
2

and 3H (�). Both its message complexity and time complexity
are O

�
n2
�
.

IV. WU AND LI’S ALGORITHM

While the algorithm proposed by Das et al. first finds a DS
and then grow this DS into a CDS, the algorithm proposed by
Wu and Li in [12] takes an opposite approach. The algorithm
in [12] first finds a CDS and then prune certain redundant nodes
from the CDS. The initial CDS U consists of all nodes which
have at least two non-adjacent neighbors. A node u in U is con-
sidered as locally redundant if it has either a neighbor in U with
larger ID which dominates all other neighbors of u, or two ad-
jacent neighbors with larger IDs which together dominates all
other neighbors of u. The algorithm then removes all locally re-
dundant nodes from U . This algorithm applies only to wireless
ad hoc networks whose unit-disk graph is not a complete graph.
As indicated in [12], the approximation factor of this algorithm
remains unspecified. Obviously, the MCDS of any wireless ad
hoc network whose unit-disk graph is not complete graph con-
sists of at least two nodes. On the other hand, any CDS contains
at most n nodes. Thus, the approximation factor of the above

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.



algorithm is at most n
2 where n is the number of nodes. Next,

we show that the approximation factor of the above algorithm
is exactly n

2 : This means that the above algorithm does perform
extremely poorly over certain instances.

When n is even, we consider the instance illustrated in Figure
3(a). These nodes are evenly distributed over the two horizon-
tal sides of a unit-square. Each node has exactly m neighbors,
one in the opposite horizontal side and the rest in the same hor-
izontal side. Any MCDS consists of a pair of nodes lying in a
vertical segment. However, the CDS output by the algorithm in
[12] consists of all nodes. Indeed, for each node u, the unique
neighbor lying in the opposite horizontal side is not adjacent to
all other neighbors of u. Thus, the initial CDS U consists of all
nodes. In addition, no single neighbor of a node u can dominate
all other neighbors of u. Furthermore, if a pair of neighbors of
u are adjacent, they must lie in the same horizontal side as u;
and therefore neither of them is adjacent to the unique neigh-
bor of u lying in the opposite horizontal side. So no node is
locally redundant. Consequently the output CDS still consists
of all nodes.

*

(b)(a)

u

Fig. 3. Instance for which the CDS output by Wu and Li’s algorithm consists of
all nodes but the MCDS consists of only two nodes.

When n is odd, we consider the instance illustrated in Figure
3(b). The node with the largest ID, denoted by u�, is the center
of the left vertical side of a unit-square, and all other n � 1
nodes are evenly distributed over the two horizontal sides of the
unit-square. The two nodes at the left two corners of the unit-
square forms an MCDS. On the other hand, the CDS output by
the algorithm in [12] also consists of all nodes. In fact, following
the same argument as in the even case, all nodes other than u�

are in the initial CDS U . The node u� is also in the initial CDS
U as well. Since u� is not adjacent to the two nodes at the right
corners of the unit-square, all nodes other than u� are not locally
redundant. The u� itself is also not locally redundant as it has
the maximum ID. Therefore, the output CDS still consists of all
nodes.

The distributed implementation of the above algorithm given
in [12] runs in two phases. In the first phase, each node first
broadcasts to its neighbors the entire set of its neighbors, and
after receiving this adjacency information from all neighbors it
declares itself as dominator if and only if it has two nonadjacent

neighbors. These dominators form the initial CDS. In the second
phase, a dominator declares itself as a dominatee if it is locally
redundant. Note a dominator can find whether it is locally re-
dundant from the adjacency information of all its neighbors. It is
claimed in [12] that the total message complexity is O (n�) and
the time complexity at each node is O

�
�2
�
. A more accurate

message complexity is �(m) where m is the number of edges
in the unit-disk graph, as each edge contributes two messages
in the first phase. The O

�
�2
�

time complexity, however, is not
correct. In fact, in order to decide whether it is locally redun-
dant in the second phase, a node u in the initial CDS may have
to examine as many as O

�
�2
�

pairs of neighbors, and for each
pair of neighbors, as much as O (�) time may be taken to find
out whether such pair of neighbors together dominates all other
neighbors of u. Therefore, the time complexity at each node
may be as high as O

�
�3
�
, instead of O

�
�2
�
. Note that m and

� can be as many as O
�
n2
�

and O (n) respectively. Thus, the
message complexity and the time complexity of the distributed
algorithm in [12] are O

�
n2
�

and O
�
n3
�

respectively. The in-
stances shown in Figure 3 do require such complexities.

In summary, we have the following performance results of the
distributed algorithm in [12].

Theorem 6: The approximation factor of the distributed algo-
rithm proposed by Wu and Li in [12] is exactly n

2 . Its message
complexity is �(m) and its time complexity is O

�
�3
�
.

V. STOJMENOVIC ET AL.’S ALGORITHM

In the context of clustering and broadcasting, Stojmenovic et
al. [11] presented three synchronized distributed constructions
of CDS. In each of the three constructions, the CDS consists
of two types of nodes: the cluster-heads and the border-nodes.
The cluster-heads form a maximal independent set (MIS), i.e., a
dominating set in which any pair nodes are non-adjacent. A
node is a border-node if it is not a cluster-head and there at
least two cluster-heads within its 2-hop neighborhood. The set
of cluster-heads is induced by a ranking of nodes which give
rise to a total ordering of all nodes. Three rankings are used:
the ID only [8][9], an ordered pair of degree and ID [3], and
an order pair of degree and location [11]. The selection of the
cluster-heads is given by a synchronized distributed algorithm,
which can be generalized to the following framework. Initially
all nodes are colored white. In each stage of the synchronized
distributed algorithm, all white nodes which have the lowest
rank among all white neighbors are colored black; then all white
nodes adjacent to the these black nodes are colored gray; finally
the ranks of the remaining white nodes are updated. The algo-
rithm ends when all nodes are colored either black or gray. All
black nodes then form the cluster-heads.

Regardless of the choice of the ranking, the algorithms in [11]
have a �(n)approximation factor. Such inefficiency stems from
the non-selective inclusion of all border-nodes. In fact, if the
rank is ID only, Figure 4 shows a family of instances which
would imply the approximation factor to be exactly n, the worst

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.



possible. In these instances, the node with the largest ID is lo-
cated at the center of a unit-disk and all other nodes are evenly
distributed in the boundary of the unit-disk. After the cluster-
heads are selected, all other nodes become border-nodes. Thus
the CDS would consist of all nodes. On the other hand, the node
at the center dominates all other nodes. If the rank is an ordered
pair of degree and ID or an order pair of degree and location,
the instances shown in Figure 3 imply that their approximation
factors are at least n

2 .

Fig. 4. Instance for which the CDS output by Stojmenovic et al.’s algorithm
consists of all nodes but the MCDS consists of only one node.

All algorithms in [11] have O
�
n2
�

message complexity and

 (n) time complexity. This can be illustrated in the following
instance: All n nodes are evenly distributed in an interval of
length n� 1 with two nodes being the endpoints of the interval.
The ith node from the left endpoint of interval has ID i (i.e., the
IDs increase from left to right).

In summary, we have the following performance results of the
distributed algorithm in [11].

Theorem 7: The distributed algorithms proposed by Stoj-
menovic et al. in [11] have an approximation factor of n

2 or
n, O

�
n2
�

message complexity, and 
 (n) time complexity.

VI. A BETTER DISTRIBUTED ALGORITHM

Our distributed algorithm for CDS consists of two phases.
These two phases construct a maximal independent set (MIS),
and a dominating tree, respectively. They are described and an-
alyzed in the next three subsections.

A. MIS Construction

By definition, any pair of nodes in an MIS are separated by at
least at two hops. However, a subset of nodes in an MIS may be
three hops away from the subset of the rest nodes in this MIS.
The MIS constructed in this section guarantees that the distance
between any pair of its complementary subsets is exactly two
hops. Our construction uses a carefully chosen rank definition.
The ranking is induced by an arbitrary rooted spanning tree T ,

which can be constructed by the distributed leader-election al-
gorithm in [5] with O (n) time complexity and O (n logn) mes-
sage complexity. Given a rooted spanning tree T , the (tree) level
of a node is the number of hops in T between itself and the root
of T . (Thus the level of the root is 0.) The rank of a node is then
given by the ordered pair of its level and its ID. Such ranking
gives rise to a total ordering of the nodes in the lexicographic
order. The following distributed process enables each node to
calculate its own rank and the number of lower-ranked neigh-
bors.

Each node maintains two local metering variables x1 and x2.
The variable x1 counts the number of neighbors whose levels
have not yet been identified and is thus initialized to the num-
ber of neighbors. The variable x2 counts the number of children
who have not yet reported the completion and is thus initialized
to the number of children. Each node also maintains a levelList
that records the levels of its neighbors and is initially empty,
and a local variable y which stores the number of lower-ranked
neighbors. After the rooted spanning tree T is constructed, the
root announces its level 0 by broadcasting a LEVEL message.
Upon receiving a LEVEL message, a node appends an entry
consisting of the sender’s ID and level to levelList and then
decrements x1 by 1. If the sender is its parent in T , it sets its
own level to one plus the sender’s level, and then announce this
level by broadcasting a LEVEL message. If x1 = 0, it sets y
to the number of lower-ranked neighbors which can be calcu-
lated from levelList. If it is a leaf in T (i.e. x2 = 0 initially)
and its own level has been determined, it transmits a LEVEL-
COMPLETE message to its parent. Upon receiving a LEVEL-
COMPLETE message towards itself, a node decrements x2 by
1; if x2 = 0 after the update and it is not the root, a node
transmits a LEVEL-COMPLETE message to its parent and then
resets x2 to the number of children. When the local variable
x2 = 0 at the root, the root simply resets x2 to the number of
children. By this time, all nodes knows the ranks of its own and
all its neighbors and thus the root will move on the construction
of the MIS by a color-marking process.

All nodes are initially marked with white color and will be
marked with either gray or black eventually. Each node also
maintains a blackList which records the IDs of its black neigh-
bors. Note that the blackList can contain at most five black
nodes. The root first marks itself black and broadcasts a BLACK
message. Upon receiving a BLACK message, a node adds the
sender’s ID to blackList, and if its color is still white, it marks
itself gray and broadcasts a GRAY message which contains its
level. Upon receiving a GRAY message, if the rank of the sender
is lower than its own, a white node decrements y by 1; if y = 0
after the update, it marks itself black and broadcasts a BLACK
message. When a leaf node is marked with either gray or black,
it transmits a MARK-COMPLETE message to its parent. Upon
receiving a MARK-COMPLETE message towards itself, a node
decrements x2 by 1; if x2 = 0 after the update and it is not the
root, a node transmits a MARK-COMPLETE message to its par-
ent. By the time when the local variable x2 = 0 at the root, all
nodes have been marked with either gray of black and thus the
root will move on the construction of the CDS.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.



4

5

6

8

9

10

11

12

0

71

2

3

4

5

6

8

9

10

11

12

0

71

2

3

4

5

6

8

9

10

11

12

0

71

2

3

4

5

6

8

9

10

11

12

0

71

2

3

4

5

6

8

9

10

11

12

0

71

2

3

4

5

6

8

9

10

11

12

0

71

2

3

4

5

6

8

9

10

11

12

0

71

2

3

4

5

6

8

9

10

11

12

0

71

2

3

4

5

6

8

9

10

11

12

0

71

2

3

4

5

6

8

9

10

11

12

0

71

2

3

4

5

6

8

9

10

11

12

0

71

2

3

(a)

(h)

(e)

(g)

(b)

(i)

(c)

(f)(d)

(k)(j)

Fig. 5. An example of the MIS construction (a)-(g) and dominating tree con-
struction (h)-(k).

Figure 5 illustrates the algorithm for color marking in this
phase. In the graph, the IDs of the nodes are labelled beside
the nodes, and node 0 is the leader elected in the first phase.
The solid lines represent the edges in the rooted spanning tree
T , and the dashed lines represents other edges in the unit-disk
graph. The ordering of the nodes by rank is given by 0, 4, 12, 2,
5, 8, 10, 3, 6, 9, 11, 1, 7. A possible execution scenario is shown
in Figure 5(a)–(g). The nodes 0, 5, 3, and 7 are the black nodes
and form a CDS.

The construction of the CDS in the next phase relies on the
following property of the black nodes.

Theorem 8: All black nodes form an MIS and any pair of
complementary black subsets are separate by exactly two hops.

Proof: Let U = fui : 1 � i � kg where ui is the ith node
which is marked black. From the construction, any pair of black
nodes are not adjacent to each other and thus U is an MIS. For
any 1 � j � k, let Hj be the graph over fui : 1 � i � jg in
which a pair of nodes is connected by an edge if and only if
their graph distance in G is two. We prove by induction on j

that in Hj is connected. Since H1 consists of a single vertex, it
is connected trivially. Assume that Hj�1 is connected for some
j � 2. When the node uj is marked black, its parent in T

must be already marked gray. Thus, there is some node ui with
1 � i < j which is adjacent to uj’s parent in T . So (ui; uj) is an
edge in Hj . As Hj�1 is connected, so must be Hj . Therefore,
Hj is connected for any 1 � j � k. The connectedness of

Hk then implies that any pair of complementary subsets of U is
exactly two.

B. Dominating Tree Construction

The second phase constructs a dominating tree T � whose in-
ternal nodes would become a CDS. Each node maintains a local
boolean variable z which is initialized to 0 and set to 1 after
the node joins the tree T �. Each node also maintains a local
variable parent which stores the ID of its parent in T � and is
initially empty, and a chidrenList which records the IDs of its
children in T � and is initially empty. The root of T � is a (gray)
neighbor of the root of T which has the largest number of black
neighbors. To select the root for T �, the root of T also maintains
a variable root and a variable degree which is initialized to 0.

The root of T first resets the local variable x1 to the num-
ber of its neighbors and then broadcasts a QUERY message.
Upon receiving a QUERY message, a (gray) node transmits to
the sender a REPORT message which contains the number of its
black neighbors. Upon receiving a REPORT message towards
itself, the root of T decrements x1 by one, and if the number
of the black neighbors of the sender is greater than the value of
degree, it resets degree to the number of the black neighbors
of the sender and also resets the variable root to the ID of the
sender. If x1 = 0 after the update, the root of T transmits a
ROOT message to the node whose ID is stored in the local vari-
able root. Upon receiving the ROOT message towards itself, a
node becomes the root of T �. It sets z = 1 and then broad-
casts an INVITE2 message. All other nodes joins the tree T �

according to the following principle.
� Upon receiving an INVITE2 message, a black node with z =
0 sets z = 1 and parent to the ID of the sender, transmits a JOIN
message towards the sender, and then broadcasts an INVITE1
message.
� Upon receiving an INVITE1 message, a gray node with z = 0
sets z = 1 and parent to the ID of the sender, transmits a JOIN
message towards the sender, and then broadcasts an INVITE2
message.
� Upon receiving a JOIN message towards itself, a node adds
the ID of the sender to chidrenList.

Theorem 8 guarantees that whenever there is any black node
outside the current T �, at least one black node would join T �.
Thus eventually all black nodes will join T �. Consequently, all
gray nodes will join T � eventually. The internal nodes of T �.

Figure 5 (h)-(k) illustrates a possible scenario of the dominat-
ing tree. The thick links are edges in the dominating tree. The
internal nodes 12, 0, 5, 7, 2, 3 form a CDS.

C. Performance Analysis

We first analyze the message complexity and time complexity
of our distributed algorithm. After the rooted spanning tree T is
constructed, the MIS construction in the first phase additionally

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.



uses linear messages and takes at most linear time. The con-
struction of the dominating tree T � also uses linear messages
and takes at most linear time. Thus besides the construction of
the tree T , our algorithm uses O (n) messages and takes O (n)
time. Since the algorithm in [5] used for the construction of T
hasO (n logn) message complexity andO (n) time complexity,
our algorithm has O (n logn) message complexity and O (n)
time complexity in overall. Note that the message complexity
of our algorithm is dominated by the construction of a rooted
spanning tree.

Next we analyze the size of the out CDS, which is the number
of internal nodes in T �. Let OPT be any minimum CDS and
let opt denote the size of OPT . We begin with the following
property of the independent sets.

Lemma 9: The size of any independent set in a unit-disk
graph G = (V;E) is at most 4opt+ 1.

Proof: Let U be any independent set of V , and let T 0

be any spanning tree of OPT . Consider an arbitrary preorder
traversal of T 0 given by v1; v2; � � � ; vopt. Let U1 be the set of
nodes in U that are adjacent to v1. For any 2 � i � opt, let
Ui be the set of nodes in U that are adjacent to vi but none of
v1; v2; � � � ; vi�1. Then U1; U2; � � � ; Uopt form a partition of U .
As v1 can be adjacent to at most five independent nodes, jU1j �
5. For any 2 � i � opt, at least one node in v1; v2; � � � ; vi�1
is adjacent to vi. Thus Ui lie in a sector of at most 240 degree
within the coverage range of node vi (see Figure 6). This implies
that jUij � 4. Therefore,

jU j =

optX
i=1

jUij � 5 + 4 (opt� 1) = 4opt+ 1:

This completes the proof.

Uiiv

Fig. 6. Ui lie in a sector of at most 240 degree within the coverage range of
node vi.

Lemma 9 and its proof implies the following upper-bound on
the size of the CDS generated by our algorithm.

Lemma 10: The number of internal nodes in T � is at most
8opt� 2.

Proof: If there is a black node in OPT , then following the
similar proof to Lemma 9 we can show that the total number of
black nodes is at most

1 + 4 (opt� 1) = 4opt� 3:

Since each internal gray node in T � has at least one black child,
the total number of internal gray nodes in T � is no more than the
number of black nodes. Thus the total number of internal nodes
in T � is at most

2 (4opt� 3) = 8opt� 6:

Now we assume that no black node is in OPT . Let k be the
number of black nodes adjacent to the root of T �. Then k � 5,
and following the similar proof to Lemma 9 we can show that
the total number of black nodes is at most k+4 (opt� 1). Note
that the root of T � has exactly k black children and any internal
gray node other than the root of T � has at least one black child.
Thus the total number of internal gray nodes in T � other than
the root of T � is at most 4 (opt� 1). So the number of internal
nodes in T � is at most

4 (opt� 1) + k + 1 + 4 (opt� 1)

= 8opt� 7 + k � 8opt� 7 + 5 = 8opt� 2:

Thus the lemma is true in either case.

In summary, we have the following performance results of our
distributed algorithm.

Theorem 11: Our distributed algorithm has an approximation
factor of at most 8, O (n) time complexity, andO (n logn) mes-
sage complexity.

VII. CONCLUSION

In this paper, we have established a 
 (n logn) lower bound
on message complexity of any distributed algorithm for non-
trivial CDS. We then reinvestigated three known distributed ap-
proximation algorithms for MCDS. After that we presented our
own algorithm. The performance comparison of these four al-
gorithms is listed in Table I. From this table, we can conclude
that our algorithm outperforms the existing algorithms.

[1][7][10] [12] [11] This paper
Approx. factor �(log n) n n

2
; n � 8

Msg. complexity O
�
n2

�
�(m) O

�
n2

�
O (n log n)

Time complexity O
�
n2

�
O

�
�3

�

 (n) O (n)

Nontrivial Yes No No Yes

TABLE I

PERFORMANCE COMPARISON.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.



REFERENCES

[1] V. Bharghavan and B. Das, “Routing in Ad Hoc Networks Using Mini-
mum Connected Dominating Sets”, International Conference on Commu-
nications’97, Montreal, Canada. June 1997.

[2] J. Burns, “A Formal Model for Message Passing Systems”, Technical Re-
port TR-91, Computer Sceince Department, Indiana University, May 1980.

[3] G. Chen and I. Stojmenovic, “Clustering and routing in wireless ad hoc
networks”, Technical Report TR-99-05, Computer Science, SITE, Univer-
sity of Ottawa, June 1999.

[4] V. Chvátal. A greedy heuristic for the set-covering problem. Mathematics
of Operation Research, 4(3):233–235, 1979.

[5] I. Cidon and O. Mokryn, “Propagation and Leader Election in Multihop
Broadcast Environment”, 12th International Symposium on DIStributed
Computing (DISC98), September 1998, Greece. pp.104–119.

[6] B. N. Clark, C. J. Colbourn, and D. S. Johnson, “Unit Disk Graphs”, Dis-
crete Mathematics, 86:165–177, 1990.

[7] B. Das, R. Sivakumar, and V. Bhargavan, “Routing in Ad-Hoc Networks
Using a Spine”, International Conference on Computers and Communica-
tions Networks ’97, Las Vegas, NV. September 1997.

[8] M. Gerla, and J. Tsai, “Multicluster, mobile, multimedia radio net-
work”, ACM-Baltzer Journal of Wireless Networks, Vol.1, No.3, pp.255-
265(1995).

[9] C.R. Lin and M. Gerla, “Adaptive Clustering for Mobile Wireless Net-
works”, IEEE Journal on Selected Areas in Communications, Vol. 15, No.
7, Sept. 1997, pp. 1265-1275

[10] R. Sivakumar, B. Das, and V. Bharghavan, “An Improved Spine-based In-
frastructure for Routing in Ad Hoc Networks”, IEEE Symposium on Com-
puters and Communications ’98, Athens, Greece. June 1998.

[11] I. Stojmenovic, M. Seddigh, J. Zunic, “Dominating sets and neighbor
elimination based broadcasting algorithms in wireless networks”, Proc.
IEEE Hawaii Int. Conf. on System Sciences, January 2001.

[12] J. Wu and H.L. Li, “On calculating connected dominating set for efficient
routing in ad hoc wireless networks”, Proceedings of the 3rd ACM inter-
national workshop on Discrete algorithms and methods for mobile com-
puting and communications, 1999, Pages 7–14.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.


