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Abstract 

We consider routing problems in ad hoc wireless net- 
works modeled as unit graphs in which nodes are points 
in the plane and two nodes can communicate if the dis- 
tance between them is less than some fixed unit. We 
describe the first distributed algorithms for routing that 
do not require duplication of packets or memory at the 
nodes and yet guaranty that a packet is delivered to its 
destination. These algorithms can be extended to yield 
algorithms for broadcasting and geocasting that do not 
require packet duplication. A byproduct of our results 
is a simple distributed protocol for extracting a planar 
subgraph of a unit graph. We also present simulation 
results on the performance of our algorithms. 

1 Introduction 

Mobile ad hoc networks (MANETS) consist of wireless 
hosts that communicate with each other in the absence 
of fixed infrastructure. Two nodes in a MANET can com- 
municate if the distance between them is less than the 
minimum of their two broadcast ranges [l]. For health 
and efficiency reasons, it is generally not possible (or 
desirable) for all hosts in a MANET to be able to commu- 
nicate with each other directly. Thus, sending messages 
between two hosts in a MANET may require routing the 
message through intermediate hosts. 

In many cases, MANETS are pieced together in an 
uncontrolled manner, changes in topology are frequent 
and unstructured, and hosts may not know the topol- 
ogy of the entire network. In this paper, we consider 
routing in MANETS for which hosts know nothing about 
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the network except their location and the locations of 
the hosts to which they can communicate directly. GPS 
(global positioning system) provides each host with its 
geographic location and global timing [ll]. In partic- 
ular, we consider the case in which all hosts have the 
same broadcast range. 

Let S be a set of points in the plane. Then the unit 
graph U(S) is a geometric graph that contains a vertex 
for each element of S. An edge (u, v) is present in U(S) 
if and only if dist(u, v) 5 1, where dist(s, y) denotes the 
Euclidean distance between x and y. Unit graphs are 
a reasonable mathematical abstraction of wireless net- 
works in which all nodes have equal broadcast ranges. 

In this paper we describe algorithms for routing on 
unit graphs which do not require global information 
about U(S). Each vertex v E U(S) represents a trans- 
mission station, and has no information about U(S) 
except the set of nodes N(w) to which it is adjacent. 
A packet that is stored at vertex v can be transmitted 
to any vertex in N(u). In accordance with other pa- 
pers [l, 3, 7, 91, it is assumed that the source knows 
from the beginning the exact geographical position of 
the destination. 

In the muting problem, the source v,, and destina- 
tion v&t are points of S and v&t must receive a message 
originating at v,,. In the geocasting problem [6, 111 the 
source v,, is a point in S while the destination r&t is 
a region, and all vertices in r&t must receive a message 
originating at v,,. In this work we take r&t to be a 
disk, but our algorithms generalize to arbitrary convex 
regions. Broadcasting is then a special case of geocast- 
ing in which r&t is a disk with infinite radius. 

Previous algorithms for online routing in unit graphs 
can be broadly classified into two categories: 

Greedy algorithms apply some type of greedy path- 
finding heuristic that does not guarantee that a packet 
ultimately reaches (all of) its destination(s). These in- 
clude the geographic distance routing (GEDIR) algorithm 
of Lm and Stojmenovic 191, the directional routing (DIR), 
a.k.a, compass routing algorithm of Basagni et al [l], 
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Ko and Vaidya [6], and Kranakis et al [8], the MFR al- 

gorithm of Takagi and Kleinrock [15], and their 2-hop 
variants [9]. 

Flooding algorithms use some type of controlled packet 
duplication mechanism to ensure that every destination 
receives at least one copy of the original packet . These 
are exemplified by the location-aided routing (LAR) pro- 
tocols of Ko and Vaidya [7, 61. In order for flooding 
algorithms to terminate, packets in the network must 
remember which packets they have previously seen. 

In contrast, our routing algorithms always guarantee 
that a packet will be delivered to (all of) its intended 
recipient(s) so long as the unit graph U(S) is static 
.and connected. Our algorithms do not make use of any 
memory at the nodes of U(S) and require only that a 
packet carry a small constant amount of information 
in addition to its message. Our algorithms also never 
require duplication of a packet, so that at any point in 
time there is exactly one copy of each message in the 
network. Although the delivery is guaranteed only for 
fixed graphs, it may be possible to apply our algorithms 
to moving hosts, in conjunction with location update 
techniques [l, 71. 

Our algorithms work by finding a connected planar 
subgraph of U(S) and then applying routing algorithms 
for planar graphs on this subgraph. In Section 2 we 
show how to find a connected planar subgraph of U(S) 
in an online distributed manner. In Section 3 we de- 
scribe algorithms for routing, broadcasting, and geo- 
casting in planar graphs. In Section 4 we describe sim- 
ulation results for our algorithm. Finally, in Section 5 
we summarize and conclude with open problems in the 
area. 

2 Extracting a Connected Planar Subgraph 

In this section we describe a distributed algorithm for 
extracting a connected planar subgraph from U(S). In 
order to run the algorithm, the only information needed 
at each node is the position of each of its neighbors in 
U(S). Our algorithm works by computing the intersec- 
tion of U(S) with a well-known planar graph. 

Let di&(u, u) be the disk with diameter (.u, v). Then, 
the Gabriel graph [5] GG(S) is a geometric graph in 
which the edge (u, v) is present if and only if disk(u, w) 
contains no other points of S. The following lemma 
shows that the Gabriel graph is useful for extracting a 
connected subgraph from U(S). 

Lemma 1. If U(S) is connected then GG(S) n U(S) 
is connected. 

Proof. It is well known that a minimum spanning tree 
MST(S) is a subset of GG(S) [13]. Thus, we need only 
prove that MST(S) c U(S) if U(S) is connected. As- 
sume for the sake of contradiction that MST(S) con- 

tains an edge (21, w) whose length is greater than 1. Re- 
moving this edge from MST(S) produces a graph with 
two connected components, &(S) and C,,(S). Since 
U(S) is connected it contains an edge (w,z) of length 
not greater than 1 such that w E C,(S) and z E C,(S). 
By replacing the edge (u,v) with (w,z) in MST(S) we 
obtain a connected graph on S with weight less than 
MST(S), a contradiction. 0 

Let (u, w) be an edge of U(S) such that (u,v) $! 
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GG(S). Then, by the definition of GG(S) there exists 
a point w that is contained in the disk with u and ‘u as 
diameter, and this point acts as a witness that (21, w) 4 
GG(S). The following lemma shows that every such 
edge can be identified and eliminated by u and w using 
only local information. 

Lemma 2. Let u and w be points of U(S) such that 
(u, w) 4 GG(S) and 1 t e w be a witness to this. Then 
(u, w) E U(S) and (w,w) E U(S). 

Proof. Let m be the midpoint of (.u, w). Then dist(u, m) 5 
l/2, dist(w,m) 5 l/2 and dist(w,m) 5 l/2. Therefore, 
by the triangle inequality, dist(u, w) 5 1, dist(w, 20) < 1 
and (2~, w) and (v, w) are in U(S). cl 

Thus, upon reaching a vertex w E S, a packet can 
eliminate the edges incident on w that are not in U(S) fl 
GG(S) by simply eliminating any edge that is not in 
GG(N(w) U {w}). This leads to the following algorithm 
that is executed by each vertex w E S. 
Algorithm: GABRIEL 

1: for each 2~ E N(v) do 
2: if disk(u, w) n (N(w) \ {u, w}) # 0 then 
3: delete (u, w) 
4: end if 
5: end for 

Lemma 1 guarantees that if we apply this algorithm 
to each vertex of S then the resulting graph is con- 
nected. Since GG(S) is planar [12, 10, 51, the resulting 
graph is also planar. As described above, the algorithm 
requires O(d2) time, where d is the degree of w. By 
using efficient algorithms for constructing the Voronoi 
diagram (VD) and Delaunay triangulation (DT) [12,13] 
of N(v) U {v}, and keeping edges of DT that intersect 
corresponding edges of VD [lo, 51, this can be reduced 
to O(dlogd). 

Theorem 1. If U(S) . as connected then algorithm GABRIEL 

computes a connected planar subgraph of U(S). The 
cost of the computation performed at vertex w E S is 
O(d log d) where d is the degree of w. 

Remark: More realistically, the elimination of edges 
not in GG(S) could be done when the network is ini- 
tialized or when changes in network topology occur. 



Figure 1: Routing from w,, to vdst using FACE-~. 

3 Routing in Planar Graphs 

In this section we describe online algorithms for rout- 
ing, broadcasting, and geocasting in a connected planar 
graph G. Since we have shown that a connected pla- 
nar subgraph of U(S) is easily computable by a routing 
algorithm, these algorithms also apply to unit graphs. 

3.1 Routing 

In this section we describe algorithms for routing in pla- 
nar graphs. The first algorithm, called FACE- 1, is due to 
Kranakis et al [8]. The second algorithm, called FACE-Z, 
is a modification of their algorithm that performs better 
in practice. 

A connected planar graph G partitions the plane into 
faces that are bounded by polygonals made up of edges 
of G. Given a vertex v on a face F, the boundary of F 
can be traversed in the counterclockwise (clockwise if F 
is the outer face) direction using the well-known right 
hand rmle [2]. Treating this face traversal technique as 
a subroutine, Kranakis et al [8] give the following algo- 
rithm for routing a packet from v,, to ‘U&t. 
Algorithm: FACE- 1 

1: P+~src 
2: repeat 
3: let F be the face of G with p on its boundary that 

intersects line segment (p, 2)&t) 
4: for each edge (u, V) of F do 
5: if (u,v) intersects (p,v,jst) in a point p’ and 

dist(p’, ‘U&t) < dist(p, wdst) then 
6: P + P’ 
7: end if 
8: end for 
9: Traverse F until reaching the edge (u, v) contain- 

ing P 
lo: until p = v&t 

The operation of algorithm FACE-~ algorithm is illus- 
trated in Figure 1. The following theorem summarizes 
the performance of this algorithm. 

Theorem 2 (KSU 1999 [8]). Algorithm FACE-~ reaches 
u&t after at most 41Ej steps, where IEl is the number 
of edges in G. 

Notice that this algorithm traverses the entire face 

Figure 2: Routing from w,,, to ‘U&t using FACE-2. 

F to determine the point p’, and then must return to 
the point p’. The bound 4lE( stated in the theorem can 
be reduced to 3lEI by having the return trip to p’.be 
along the shorter of the two possible paths around F. 
However, in practice, as we will show in Section 4, the 
following modified version of FACE-~ works even better. 
Algorithm: FACE-2 

1: p+vsrc 
2: repeat 
3: let F be the face of G with p on its boundary that 

intersects (p, v&t) 
4: traverse F until reaching an edge (u, w) that in- 

tersects (p, ‘U&t) at some point p’ # p 
5: P + P’ 
6: until p = V&t 

The operation of FACE-:! is illustrated in Figure 2. 
Clearly this algorithm also terminates in a finite number 
of steps, since the distance to V&t is decreasing during 
each round. However, in pathological cases it may visit 
fl(n2) edges of G. 

Theorem 3. Algorithm FACE-2 reaches v&t in a finite 
number of steps. 

3.2 Broadcasting 

De Berg et al [4] describe an algorithm for enumerating 
all the faces, edges, and vertices of a connected embed- 
ded planar graph G. It requires no memory at the nodes 
of the graph and uses only O(1) additional memory in 
the packet that is traveling around the network. The al- 
gorithm works by defining a spanning tree on the faces 
of G and performing depth first search on this spanning 
tree in O(n”) time, where n is the number of vertices 
of G.l This algorithm can be made into a routing algo- 
rithm that allows a single packet to visit every vertex 
in G. We refer to this algorithm as BROADCAST. 

Theorem 4. In at most O(n2) steps algotithm BROAD- 
CAST terminates after having visited every vertex of G. 

‘Actually, the algorithm has running time 0 (xi IFi I”) where 

IFi ( denotes number of edges in the ith face of G. 
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3.3 Geocasting 

De Berg et al also extend their results to window queries 
in which all the faces intersecting a rectangular or cir- 
cular query region r&t are to be visited. To start their 
algorithm, a vertex of a face that intersects r&t must 
be given as part of the input. 

By applying Algorithm FACE-~, such a face can be 
found in O(n) steps by setting the value of v&t to the 
center of the query region. The algorithm should ter- 
minate when it reaches a vertex v contained in T&t or 
when it can no longer make progress, i.e., it visits the 
same face twice. In the first case we apply the algo- 
rithm of de Berg et al to have the packet visit every 
vertex in the query region, while in the second case we 
can quit, since there is no vertex of G contained in the 
query region. We call this algorithm GEOCAST. 

Theorem 5. In at most O(n+ic2) steps algorithm GEO- 
CAST terminates after having visited every vertex of G 
contained in T&t, where k is the complexity of all faces 
of G that intersect r&t. 

Remark: The delivery time for a message in the broad- 
casting and geocasting algorithms can be improved in 
practice by traversing subtrees of the spanning tree in 
parallel, at the cost of having several copies of the same 
packet in the network simultaneously. 

4 Experimental Results 

In this section we measure the quality of the paths found 
by our routing algorithms. Our test sets consist of ran- 
domly constructed unit graphs. Test cases were gener- 
ated by uniformly selecting n points in the unit square 
as vertices, sorting all the n(n - 1)/2 interpoint dis- 
tances and setting the value of a “unit” to achieve the 
desired average degree. Any such random graph that 
did not result in a connected graph was rejected. For 
each graph generated, routing was performed between 
all n(n - 1) ordered pairs of vertices in the graph. Ev- 
ery data point shown in our graphs is the average of 200 
independent trials conducted on 200 different randomly 
generated graphs. The results of these trials are given 
as 95% confidence intervals in Appendix A. 

For comparison purposes the performance of our al- 
gorithms were measured against, and in combination 
with, geographic distance routing (GEDIR) as described 
by Lin and StojmenoviC [9]. The GEDIR algorithm is a 
greedy algorithm that always moves the packet to the 
neighbour of the current vertex whose distance to the 
destination is minimized. The algorithm fails when the 
packet crosses the same edge twice in succession. The 
GEDIR algorithm was chosen for comparison purposes 
because, of the three basic algorithms tested by Lin and 
StojmenoviC, GEDIR had the best performance in terms 
of delivery rate and average dilation (defined below). 

Figure 3: Delivery rates for the GEDIR algorithm. 

The experiments measured two quantities. Let X be 
the set of pairs of vertices (u, w) E G, u # ‘u such that 
routing algorithm A succeeds in finding a path from 
u to v and let 1x1 denote the cardinality of X. The 
delivery rate of A is defined as 

D&(G) = IXl/(n(n - 1)) . 

Note that, because our algorithms guarantee the deliv- 
ery of a packet, they have a delivery rate of 1. The 
average dilation of A is defined as 

ADA(G) = (l/lx/> c AP(%v)/SP(u,v) , 
(%V)EX 

where AP(u, v) is the number of edges in the path from 
u to v found by A and SP(u, v) is the number of edges 
in the shortest path from u to o. Note that having a low 
average dilation is only useful if the delivery rate is high 
since an average dilation of 1 is easily achieved by (for 
example) an algorithm that only succeeds in routing 
between two nodes if they axe directly adjacent. 

To illustrate the importance of having guaranteed 
delivery of messages, Figure 3 shows the delivery rate 
of GEDIR on graphs with varying average degrees and 
number of nodes. These results show that delivery fail- 
ures are not uncommon with the GEDIR algorithm, and 
in very sparse graphs delivery rates can be as low as 
50%. I.e., there are some vertices from which half of 
the graph is unreachable. 

Figure 4 compares the FACE-~ algorithm with the 
FACE-~ algorithm in terms of average dilation for vary- 
ing average degrees and number of nodes. Not surpris- 
ingly, FACE-~ outperforms FACE- 1 due to the fact that it 
does not require the packet to travel all the way around 
each face. What may be surprising is that the average 
dilation for both strategies seems to increase as the av- 
erage degree increases. This can be explained by the 
fact that the subgraph GG(S) n U(S) on which these 
algorithms operate is a planar graph and therefore has 
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Figure 4: Average dilation of the FACE-~ and FACE-2 
algorithms. 

Figure 5: Average dilation of the GEDIR and 
GEDIR+FACE-2 algorithms. 

average degree at most 6, but they are being compared 
to the shortest path in U(S) whose average degree is in- 
creasing. Thus, the algorithms are handicapped “from 
the start.” 

Although these observations may lead one to believe 
that algorithms FACE-~ and FACE-2 are not very good 
on their own, they may nevertheless be useful in com- 
bination with another algorithm. We tested two such 
combinations and compared their average dilation with 
the average dilation of GEDIR. 

Figure 5 shows the results of combining the GEDIR 
algorithm with FACE-~ by applying the GEDIR algorithm 
until it either failed or reached the destination. If the 
GEDIR algorithm failed, routing was then completed us- 
ing the FACE-2 algorithm. In this scenario FACE-2 can 
be viewed as acting as a backup for the GEDIR algorithm. 
We refer to this algorithm as GEDIR+FACE-2. 

Figure 6 shows the results of applying GEDIR un- 
til the packet reaches a node v such that all of v’s 
neighbours are further from the destination than v is. 
The FACE-2 algorithm was then applied until the packet 

Figure 6: Average dilation of the GEDIR and GFG algo- 
rithms. 

reached another vertex u that was strictly closer to the 
destination than Y at which point the GEDIR algorithm 
was resumed. In this scenario, FACE-2 can be seen as 
a means of overcoming local minima in the objective 
function (distance to the destination). We refer to this 
algorithm as GFG. 

Both these hybrid algorithms exhibit similar perfor- 
mance with the GFG algorithm showing a slight advan- 
tage in very sparse graphs. These results show that the 
average dilation of GEDIR is consistently low, but this 
comes at the price of low delivery rate in sparse graphs. 
On the other hand, the combined algorithms sometime 
have high average dilation, but this only occurs when 
the delivery rate of GEDIR is low and the combined algo- 
rithms are often forced to apply the FACE-2 algorithm. 
The combined algorithm simultaneously enjoys the ad- 
vantages guaranteed delivery in sparse graphs and low 
average dilation in dense graphs. 

5 Conclusions 

We have described algorithms for routing, broadcasting, 
and geocasting in unit graphs. The algorithms do not 
require duplication of packets or memory at the nodes 
of the graph and yet guarantee that a packet is always 
delivered to (all of) its destination(s). The empirical 
results for our routing algorithms suggest that although 
the FACE-~ and FACE-2 algorithms are not very efficient 
on their own, they can be useful in conjunction with 
simpler algorithms that do not guarantee delivery. 

The BROADCAST and GEOCAST algorithms are prob- 
ably not very applicable in practice due to their quadratic 
message count and delivery time behaviour. An in- 
teresting open problem that is currently under inves- 
tigation is whether or not algorithms exist that do not 
require memory at the nodes of U(S) and takes sub- 
quadratic time to visit all vertices of U(S). 

Results for static networks like those in this and 



other papers [9] help in finding the most promising can- 
didates for the design of routing protocols in mobile 
networks. There are a number of directions in which 
the work presented here can be extended and/or gener- 
alized, including results for dynamically changing net- 
works, networks in three-dimensional space, nodes with 
unequal transmission ranges, and power-aware routing 
schemes [ 141. 
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d 4 5 7 9 11 
n 
20 
30 
40 
50 
60 
70 
80 
90 
100 

0.89 f 0.0178 0.95 rt 0.0110 0.99 f 0.0049 1.00 f 0.0020 1.00 f 0.0000 
0.79 f 0.0210 0.88 f 0.0168 0.95 f 0.0139 0.99 f 0.0047 l.OOf 0.0009 
0.70 f 0.0203 0.84 f 0.0199 0.95 f 0.0123 0.99 f 0.0053 1.00 f 0.0038 
0.68 f 0.0222 0.79 f 0.0211 0.92 f 0.0161 0.98 f 0.0072 0.99 f 0.0042 
0.62 f 0.0212 0.74 f 0.0215 0.91 f 0.0159 0.96 f 0.0105 0.99 f 0.0037 
0.57 f 0.0172 0.70 f 0.0233 0.88 f 0.0199 0.96 f 0.0089 0.99 f 0.0049 
0.54 f 0.0168 0.65 f 0.0239 0.86 f 0.0184 0.96 f 0.0096 0.99 f 0.0052 
0.51 f 0.0179 0.63 f 0.0216 0.85 f 0.0204 0.94 f 0.0122 0.99 f 0.0047 
0.47 f 0.0157 0.61 f 0.0185 0.81 f 0.0208 0.93 f 0.0144 0.98 f 0.0057 

Table 1: 95% confidence intervals for delivery rates of GEDIR. 

d 4 5 7 9 11 
n 
20 
30 
40 
50 
60 
70 
80 
90 
100 

1.01 f 0.0013 1.01 f 0.0010 1.00 f 0.0006 1.00 f 0.0003 1.00 f 0.0000 
1.01 f 0.0011 1.01 f 0.0013 1.01 f 0.0010 1.00 f 0.0006 1.00 f 0.0002 
1.01 f 0.0013 1.01 f 0.0013 1.01 f 0.0011 1.00 f 0.0007 1.00 f 0.0006 
1.01 f 0.0013 1.02 f 0.0013 1.01 f 0.0009 1.01 f 0.0008 1.00 f 0.0006 
1.02 III 0.0012 1.02 f 0.0013 1.02 f 0.0013 1.01 f 0.0010 1.01 f 0.0006 
1.02 f 0.0015 1.02 f 0.0012 1.01 zt 0.0009 1.01 f 0.0009 1.01 f 0.0007 
1.02 f 0.0011 1.02 f 0.0015 1.02 f 0.0011 1.01 f 0.0010 1.01 f 0.0008 
1.02 f 0.0012 1.02 f 0.0012 1.02 f 0.0012 1.01 f 0.0009 1.01 f 0.0009 
1.02 f 0.0013 1.02 f 0.0011 1.02 f 0.0011 1.02 f 0.0010 1.01 f 0.0007 

Table 2: 95% confidence intervals for average dilation of GEDIR. 

d 4 5 7 9 11 
n 
20 
30 
40 
50 
60 
70 
80 
90 
100 

4.27 f 0.0911 4.74 f 0.0838 5.63 f 0.1025 6.42 f 0.1040 7.15 f 0.1171 
5.26 f 0.1094 5.88 f 0.1116 6.60 f 0.1229 7.49 f 0.1312 8.10 f 0.1291 
6.02 f 0.1254 6.70 f 0.1388 7.47 f 0.1448 8.02 f 0.1524 8.62 f 0.1514 
6.83 f 0.1150 7.40 f 0.1493 8.11 f 0.1661 8.44 f 0.1613 9.25 f 0.1581 
7.56 f 0.1238 7.99 f 0.1351 8.75 f 0.1893 9.07 f 0.2025 9.69 f 0.2179 
8.09 f 0.1511 8.69 f 0.1647 9.08 f 0.2184 9.44 f 0.2121 9.97 f 0.1947 
8.62 f 0.1426 9.15 f 0.1843 9.68 f 0.2420 9.71 f 0.1828 10.18 f 0.1762 
9.24 f 0.1484 9.79 f 0.1419 10.12 f 0.2562 10.17 f 0.2364 10.42 f 0.2047 
9.78 f 0.1605 10.28 f 0.1852 10.57 f 0.2596 10.54 f 0.2766 10.62 f 0.2012 

Table 3: 95% confidence intervals for average dilation of FACE-~. 
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d 4 5 7 9 11 
n 
20 3.69 f 0.1691 
30 4.70 f 0.2117 
40 5.48 f 0.1947 
50 6.11f 0.2216 
60 6.79 f 0.2564 
70 7.45 f 0.2891 
80 7.74 f 0.2585 
90 8.58f0.3291 
100 9.02 f 0.3510 

3.62 f 0.1863 
4.64 f 0.2065 
5.17% 0.2473 
5.63f 0.2554 
6.09f0.2560 
6.69 f 0.2891 
7.13 f 0.3522 
7.47f 0.3143 
7.64 f 0.3272 

3.71f 0.1881 
4.24 f 0.2273 
4.59 f 0.2213 
4.93 f 0.2341 
5.22 f 0.2642 
5.29 f 0.2868 
5.66 f 0.3077 
5.92 f 0.3304 
6.18 f 0.3495 

3.90 f0.1762 
4.28f0.1954 
4.26 f 0.1845 
4.28 f0.1836 
4.59 f 0.2334 
4.67 f 0.2286 
4.70 f 0.1818 
4.91f 0.2264 
5.12 f 0.2713 

4.11f0.1989 
4.29f 0.1855 
4.19 f 0.1856 
4.43f 0.1686 
4.50f 0.2275 
4.52 f 0.1981 
4.49 f 0.1707 
4.50 f 0.1775 
4.53f0.1766 

Table 4: 95% confidence intervals for average dilation of FACE-Z. 

d 
n 
20 
30 
40 
50 
60 
70 
80 
90 

4 5 7 9 11 

1.21f 0.0373 1.10 f 0.0280 1.03 f 0.0131 1.01 f 0.0042 1.00 f 0.0000 
1.51f 0.0579 1.32 zt 0.0496 1.13 f0.0381 1.02 f0.0179 l.OOf0.0036 
1.84 f 0.0682 1.48 f 0.0665 1.17 f 0.0391 1.05 f 0.0169 1.02 f 0.0119 
2.08f 0.0970 1.69f0.0779 1.29 f 0.0581 1.07% 0.0228 1.04f 0.0158 
2.45 f 0.1172 1.92 f 0.0911 1.36 f 0.0687 1.14 f 0.0423 1.04 f 0.0139 
2.86 f 0.1262 2.23 f 0.1111 1.46 f 0.0817 1.16 f 0.0360 1.06f0.0209 
3.08 f 0.1136 2.53 f 0.1443 1.56 f 0.0878 1.17f 0.0350 1.06 f 0.0218 
3.50 f 0.1661 2.69 f 0.1378 1.66 f 0.1051 1.25 ho.0547 1.07f 0.0233 

100 3.92 ho.1736 2.87-10.1392 1.85f0.1282 1.33 ho.0763 1.09f0.0250 

Table 5: 95% confidence intervals for average dilation of GEDIR+FACE-2. 

d 4 5 7 9 11 

YO 1.22f0.0368 1.12f0.0259 1.03f 0.0130 1.01f0.0053 l.OOfO.OOO1 
30 1.53 f 0.0574 1.32 f 0.0463 1.14 f 0.0323 1.03 f 0.0136 1.01 f 0.0036 
40 1.77zk 0.0655 1.46 f0.0576 1.18 f 0.0369 1.06 & 0.0160 1.02 f 0.0132 
50 1.99 f 0.0932 1.66 f 0.0777 1.27% 0.0483 1.08 f 0.0198 1.05 f 0.0189 
60 2.30 f 0.1139 1.85 f 0.0867 1.36 z!z 0.0602 1.14 f0.0384 1.04f 0.0121 
70 2.61f 0.1218 2.05 f 0.0915 1.41f 0.0684 1.16 f 0.0311 1.06 f 0.0182 
80 2.75 f 0.1061 2.26 Ifr0.1189 1.50 f 0.0750 1.16 f0.0280 1.06f0.0199 
90 3.12f0.1504 2.43 f 0.1298 1.57f0.0905 1.23f0.0455 1.08f0.0228 
100 3.48 f 0.1748 2.51f0.1219 1.74f0.1134 1.30 ho.0673 1.09f0.0198 

Table 6: 95% confidence intervals for average dilation of GFG. 
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