
Virtual Coordinates for Ad hoc and Sensor Networks∗

Thomas Moscibroda
Computer Engineering and Networks Laboratory

ETH Zurich, Switzerland

moscitho@tik.ee.ethz.ch

Regina O’Dell
Computer Engineering and Networks Laboratory

ETH Zurich, Switzerland

bregina@tik.ee.ethz.ch

Mirjam Wattenhofer
Department of Computer Science

ETH Zurich, Switzerland

mirjam.wattenhofer@inf.ethz.ch

Roger Wattenhofer
Computer Engineering and Networks Laboratory

ETH Zurich, Switzerland

wattenhofer@tik.ee.ethz.ch

ABSTRACT
In many applications of wireless ad hoc and sensor networks,
position-awareness is of great importance. Often, as in the
case of geometric routing, it is sufficient to have virtual co-
ordinates, rather than real coordinates. In this paper, we
address the problem of obtaining virtual coordinates based
on connectivity information. In particular, we propose the
first approximation algorithm for this problem and discuss
implementational aspects.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems

General Terms
Algorithms, Theory

Keywords
virtual coordinates, unit disk graphs, metric embedding

1. INTRODUCTION
Wireless multi-hop radio networks are playing an increas-

ingly vital role in a wide range of applications, such as
monitoring, surveillance, and data-gathering. What most of
these application scenarios have in common is that position-
awareness is a key issue. Especially in sensor networks, po-
sitioning is indispensable: Sensing the environment is useful

∗The work presented in this paper was supported (in part)
by the National Competence Center in Research on Mobile
Information and Communication Systems (NCCR-MICS), a
center supported by the Swiss National Science Foundation
under grant number 5005-67322.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DIALM-POMC’04, October 1, 2004, Philadelphia, Pennsylvania, USA.
Copyright 2004 ACM 1-58113-921-7/04/0010 ...$5.00.

only in the context of where the data has been measured. It
is not surprising that the need for accurate and easily obtain-
able positioning information has sparked a buzz of activity
in the wireless research community, and has resulted in a
vast literature on the topic.

The importance of position information has been plainly
shown by the advent of GPS [13], spawning a multi-billion
dollar market. While serving the needs of a variety of trans-
portation, industry, and recreational applications, attaching
a GPS receiver to nodes in an ad hoc or sensor network is of-
ten undesirable or even impossible. In comparison to a sen-
sor node, a GPS receiver is clumsy, expensive, and energy-
inefficient. Moreover, GPS reception might be obstructed by
climatic conditions, or if nodes are deployed indoors, there
is no reception at all.

One way out of this dilemma is to equip only a few des-
ignated nodes (so-called anchor or landmark nodes) with
GPS, and let all others derive their position through con-
nectivity information. A typical approach, for example, is
to let non-anchor nodes guess their position by counting the
hop-distance to different anchors. A multiplicity of such
“hybrid” positioning algorithms have been proposed in lit-
erature, [22, 20, 12, 26, 25, 2] to name a few. One charac-
teristic inherent to all these approaches is that the solution
quality is determined by the anchor density.

Clearly, in absence of any anchors, nodes are clueless about
their real coordinates. Nonetheless, intrepid researches [24]
have recently proposed to have no anchors at all. The un-
derlying motivation for this paradigmatic shift is the obser-
vation that for many applications, it is not necessary to have
real coordinates; often it is sufficient to have virtual coordi-
nates only – two nodes having similar coordinates implies
that they are physically close together.

The most prominent application of virtual coordinates is
geometric routing. Algorithms such as GOAFR [16] and
GFG/GPSR [5, 14] enable routing without routing tables
and appear to be extremely resource-frugal and scalable,
only at the expense that nodes need to know their coordi-
nates. Introducing virtual coordinates can solve this prob-
lem. It is argued [2] that geo-routing in combination with
virtual coordinates behaves better than other routing ap-
proaches, particularly in case of high mobility since they
tend to be more stable. Other applications of virtual coor-
dinates include locality-sensitive queries or obtaining meta-

information on the network. Finally, virtual coordinates can
be used as an efficient means for anycast services (“Which
of the service nodes is closest to me?”).

As it has become customary, we model the multi-hop radio
network as a unit disk graph (UDG). In a UDG G = (V, E),
there is an edge {u, v} ∈ E iff the Euclidean distance be-
tween u and v is at most 1. In this paper, we consider
the connectivity-based approach, in which nodes can solely
derive connectivity information (as opposed to measuring
angles or distances to their neighbors). The usefulness and
importance of this approach has been documented in a num-
ber of papers, e.g. [23, 2].

Our algorithm can naturally be extended along two or-
thogonal directions. The first direction is that we can also
include anchors to arrive at the positioning problem, where
the goal is to obtain real coordinates. The other direction
is to integrate inter-node distance measurements where we
simply skip the first step of our algorithm, thus circumvent-
ing the computationally most expensive part. An exciting
example of such a distance-based virtual coordinates problem
is Internet mapping (such as [7, 21]), the goal of which is to
obtain topological information about the Internet graph in
order to enhance anycast or peer-to-peer systems.

Despite being a clear-cut and well-formulated optimiza-
tion problem, all previous work on virtual coordinates is of
heuristic nature only. To the best of our knowledge this
paper presents the first “hard” provable results. In particu-
lar, we give an approximation algorithm which achieves an
approximation ratio of O(log2.5 n

√
log log n), where n is the

number of nodes in the network.
The remainder of this paper is organized as follows. Sec-

tion 2 gives an overview over relevant previous work. After
introducing the notation in Section 3, we define and ana-
lyze the algorithm in Sections 4 and 5, respectively. Details
on the algorithm’s implementation are given in subsequent
Section 6, before Section 7 concludes the work.

2. RELATED WORK
Despite there being a plethora of positioning papers (where

a node approximates its actual coordinate), comparatively
little has been published on the companion problem of find-
ing virtual coordinates. For the one-dimensional Euclidean
line, Bischoff et al. have given an optimal algorithm in [2].
As for the two-dimensional case, some of the most notable
works are by Rao et al. [24], Shang et al. [27], as well as
Doherty et al. [8] and recently Biswas and Ye [3]. The key
contribution of our approach lies in the fact that (with the
exception of [2]), all these algorithms evaluate their success
via simulation on some random graphs whilst we provide
theoretic upper bounds on the quality of our algorithm.

Extending connectivity-based approaches to positioning
problems has been discussed in [27]. In particular, [27] de-
scribes the application of an affine transformation of the
coordinate system so as to (approximately) match the rela-
tive with the known absolute coordinates. The integration
of inter-node distance measurements into the computation
of virtual coordinates has been studied in [8, 27].

From a theoretical point of view, a homogenous sensor
network can be modelled by a unit disk graph. Computing
virtual coordinates for a network is then turned into finding
a representation of a given UDG. In that context, researchers
have already established fundamental lower bounds. In par-
ticular, Breu and Kirkpatrick [6] have proven that it is NP-

hard to recognize whether a given graph is a UDG. Con-
sequently, it is also NP-hard to determine a set of virtual
coordinates that satisfy all of the UDG constraints for any
given unit disk graph. More recently, Kuhn et al. [15] have
shown that even approximating the constraints to within a
factor of

�
3/2 is NP-hard.

Research on computing coordinates for graphs is not re-
stricted to the wireless networks community. Whereas we
have derived our motivation from the positioning point of
view, our methods to solve the problem stem from seem-
ingly unrelated areas. The task of embedding graphs can
be approached from many different angles and numerous al-
ternatives have been explored for quite some time. We will
briefly survey some of these ideas, all stemming from the
large research area of the geometry of graphs.

The first of these alternative approaches is the so-called
topological approach, which was the most intensively stud-
ied one for any length of time. It is mainly concerned
with graph planarity and embeddability of graphs on 2-
dimensional manifolds, where some criteria the embedding
should satisfy are: a small number of edge crossings, evenly
distributed vertices and edges, short edges, few edge bends,
a small layout area or volume, and a good angular resolu-
tion. We refer to [28] for readers interested in a more de-
tailed discussion on this topic. Though this approach is not
applicable directly for the virtual coordinates problem we
are convinced that a better understanding of methods used
in this area of research would also lead to better algorithms
for problems arising in the area of wireless networks, as seen
in the work of [24].

Lately, a new approach, the so-called metric approach,
which is the angle we take in this work, has enjoyed great
popularity among researchers in the area of the geometry
of graphs. Its main concern is to find a representation of a
graph in a geometric space, such that the metric of the rep-
resentation has small edge-distortion compared to the given
metric. The edge-distortion of an embedding is a factor c
such that for all two vertices in the graph it holds that if
their distance in the graph is d, then their distance in the
embedding is between d and d/c. Linial, London and Ra-
binovich [17] showed how small-distortion embeddings can
be obtained and how those embeddings can be used in the
design of algorithms. Whereas the graphs in [17] are em-
bedded in rather high-dimensional (log n) spaces, Badoiu
[1] gave an algorithm which finds good embeddings in the
2-dimensional plane under the l1 norm. Feige [10] extended
the notion of distortion to sets, rather than just pairs, of ver-
tices. Note, that for all these approaches to work one needs
to have a metric on a graph, not merely a graph. This is
one of the key problems of applying methods from this re-
search area to the virtual coordinates problem. Vempala
[29] uses these approaches to find an embedding of a graph
on a d-dimensional grid, so as to minimize the maximum
edge length. The given algorithm, which our work is based
on, obtains an O(log2.5+2/d n) approximation in polynomial
time. In this paper, we adapt Vempala’s techniques for our
purpose. Other methods used in ours as well as Vempala’s
paper are random projection ([30, 4]) and spreading con-
straints ([9, 4]).

3. NOTATION
In this section, we will formalize a virtual coordinates al-

gorithm as a computation of an embedding. We also intro-

duce various notations used in the sequel of the paper. An
embedding of a graph G = (V, E) in the Euclidean plane is
a mapping f : V → � 2 , i.e., each vertex v is identified with
a point (x, y) in the plane. In analogy to the term edge, we
call a pair of vertices {vi, vj} a non-edge if {vi, vj} /∈ E.

An independent set of a graph G = (V, E) is a subset S ⊆
V such that for all vi, vj ∈ S, {vi, vj} /∈ E. An independent
set is maximal if no additional vertex can be added to S
such that the resulting set is still an independent set. In
this paper, we write IS to denote an independent set in the
given graph G.

A semi-metric space (or simply a semi-metric) is a pair
(S, ρ), where S is a set of points and ρ : S ×S → [0,∞) is a
distance function satisfying the properties ρ(p, q) = ρ(q, p)
and ρ(p, r) + ρ(r, q) ≤ ρ(p, q) for all p, q, r ∈ S. Note that
we do not impose the additional constraint ρ(p, q) = 0 ⇔
p = q to be a full metric. However, for readability and
since this constraint is inconsequential to the discussion, we
refer to a semi-metric as a metric. A finite metric space
can be represented as a complete graph on |S| vertices, with
edge lengths between pairs of vertices equal to the distance
between the respective points in the metric space.

An embedding of a finite metric space (S, ρ) in an L-
dimensional Euclidean space (� L , σ) is a mapping f : S →� L . In this paper we only consider contracting mappings,
that is for all x, y ∈ S, ρ(x, y) ≥ σ(f(x), f(y)). Let us say
that the volume Evol(S) of a set S of k vertices in � L is
the (k−1)-dimensional volume of the simplex spanned by
S. Then the volume V ol(S) of a finite metric space with
k points is defined to be the maximum Evol(f(S)) over all
contracting mappings f from S to � L . The distortion of an
embedding f is the ratio�

V ol(S)

Evol(f(S)) � ,

and the embedding is (k, D)-volume respecting if for every
subset S ⊆ V of at most k vertices we have�

V ol(S)

Evol(f(S)) � 1/(k−1)

≤ D. (1)

In the rest of the paper, we are merely concerned with
graphs G which are unit disk graphs and consequently call
an embedding of G that satisfies all UDG constraints a re-
alization of G. Formally, a realization is defined as follows.

Definition 3.1 (Realization). A realization of a unit
disk graph G = (V, E) in the Euclidean plane is an embed-
ding r(G) of G such that {vi, vj} ∈ E ⇔ ρ(f(vi), f(vj)) ≤ 1
where ρ is the Euclidean distance between two points.

It is clear that there is a realization for every UDG graph
G. This paper addresses the problem of finding such an
embedding. Since finding an exact solution is NP -complete
[6, 15], we want to find an embedding which reasonably
approximates such a realization. In particular, we want to
map adjacent vertices in the graph to points in the plane
which are close together. On the other hand, non-adjacent
vertices should be embedded far from one another in the
plane. This intuition naturally leads to a quality measure
based on the ratio between the longest edge to the shortest
non-edge in the embedding. Therefore, we formally define
the quality of an embedding as follows.

Definition 3.2 (Quality). Let r(G) be an embedding
of UDG G = (V, E) in the plane. Let ρ(u, v) denote the Eu-
clidean distance between nodes u and v in r(G). We define
the quality of the embedding r(G) as

q(r(G)) :=
max{u,v}∈E ρ(u, v)

min{u′,v′}/∈E ρ(u′, v′)
.

Let G be the family of all unit disk graphs. An algorithm
ALG for the virtual coordinate problem is an algorithm
which, given an input graph G ∈ G, computes an embed-
ding rALG(G). The algorithm achieves approximation ratio
α if q(rALG(G)) ≤ α for all G ∈ G.

4. THE ALGORITHM
The algorithm is presented in detail in Section 4.2. While

trying to give the reader a more intuitive understanding of
the algorithm we now explain the ideas behind each of its
four main stages separately. At the end of each stage we ex-
plain how it connects to the next one. To give a first rough
idea we shortly summarize the main ideas: In the first stage
we solve a set of linear constraints which gives indications on
the distances between any two vertices. Those distances are
used thereafter to embed the vertices in an n-dimensional
space, where the embedding is done in such a way that
independent sets of vertices have a large volume. Given
this high-dimensional embedding we project the points to a
randomly chosen 2-dimensional plane. Finally, some of the
points are placed on grid points, while the others are placed
around them.

4.1 Overview

4.1.1 Linear Constraints
The main goal of the first stage of the algorithm is to com-

pute a metric on the input graph, which satisfies certain ad-
ditional constraints. The key difficulty is that the problem
of describing the UDG conditions is inherently non-convex.
As such, we need to replace these problematic constraints
with something more managable. Therefore, we make use
of spreading constraints (as in Even et al. [9]),�

v∈S

ρ(u, v) ≥ c · |S|3/2 ∀S ⊂ V, ∀u ∈ V (2)

for some constant c. In our case, we will not be interested
in all subsets S ⊂ V , but only in all the independent sets
IS ⊂ V of G.

First we give some intuition on what spreading constraints
achieve in general and then specifically why we impose them
merely on independent sets. The motivation for using spread-
ing constraints is to model the property that in any region
of diameter R there are at most O(R2) points. That is, the
points are enforced to spread out, instead of clustering at a
point. Now, in relation with unit disk graphs, we obviously
do not want all points to be spread out, but rather want to
model the fact that non-edges are “far apart” while edges are
allowed to be “close”. This becomes intuitively clear when
we think of a clique of size n. Surely, a clique is a unit disk
graph, but one that cannot fulfill the spreading constraints.
So instead of formulating the spreading constraints on all
sets of vertices, we replace them by saying that sets of non-
edges, i.e. independent sets, must be sufficiently far apart.
Serendipitously, all independent sets IS of a unit disk graph

G satisfy Eq. (2). To see this, observe that for any given
realization of G, the number of independent nodes in a re-
gion of radius R is at most κR2 (κ being a constant) since
all pair-wise distances are greater than 1.

We are ready to formulate a set of convex constraints1 to
describe the essential properties of a UDG G = (V, E). For
the sake of readability, we set xuv = ρ(u, v).

(LP) subject to:

xuv ≤ 1 ∀{u, v} ∈ E (3)

xuv ≤
√

n ∀u, v ∈ V (4)

xuv ≥ 0 ∀u, v ∈ V (5)

xuv + xuk ≥ xvk ∀u, v, k ∈ V (6)�
v∈IS

xuv ≥ κ|IS|3/2 ∀IS ⊂ V, ∀u ∈ V. (7)

Constraints (5) and (6) ensure that we have a metric which
we need in order to embed the nodes into Euclidean space.
From the definition of unit disk graphs and the discussion of
the spreading constraints above, it immediately follows that
if G is a UDG, then there exists a feasible solution to (LP).
We show in Section 6.1 that it can be found in polynomial
time.

Observe that we are not actually computing any coordi-
nates of the points yet, only their pairwise Euclidean dis-
tances. This is perhaps the key conceptual difference be-
tween our approach and that of previous virtual coordi-
nates algorithms, such as [8, 27, 24], where the point co-
ordinates, which these algorithms attempt to approximate,
are included in the initial equations.

Now that we have computed a metric with the desired
properties, we would like to embed it into a geometric space.
Preferably, we would like to embed it in the 2-dimensional
plane, but in general this cannot be done directly without
large edge-distortion. Instead, we embed the vertices in an
high- (n-)dimensional space where we cannot only guarantee
that the distortion is small but also that the embedding is
volume respecting.

4.1.2 Volume-Respecting Embedding
Feige [10] introduced a powerful strengthening of the no-

tion of the edge-distortion of an embedding, concerning em-
beddings into Euclidean spaces. Whereas the usual distor-
tion of an embedding is determined by looking at pairs of
points, that is, distances, Feige’s volume respecting embed-
ding takes into account all k-tuples for some k ≥ 2, that is
volumes.

A volume respecting embedding has many useful proper-
ties when projecting the points from the high-dimensional
space to a random lower dimensional one. Intuitively, large
volumes have large projections and hence the points spread
fairly well when projecting to a random lower dimension
subspace. This leads us to the third stage of the algorithm.
Once a volume respecting embedding in � n is computed, the
points of the embedding are projected to a randomly chosen
2-dimensional plane.

4.1.3 Random Projection
Random projection is the technique of projecting a set of

points from a high-dimensional space to a low-dimensional

1basically, a linear program without an optimization func-
tion

subspace. Lately, this technique has enjoyed great popu-
larity in various research areas. For our application, two
observations about random projections are crucial. Firstly,
the length of a vector when projected from � L to a ran-
dom line in � L scales by roughly 1/

√
L and is concentrated

around this expectation. Secondly, the probability that a
set of k points is projected to a small interval is inversely
proportional to the volume of the points. Hence, together
with the fact that our embedding was volume respecting,
we get that the projected points spread quite well in the
2-dimensional plane. In fact, we prove in Section 5.4 that
if we partition the plane into a grid with cell-width 1/

√
n

then at most O(log4 n log log n) independent points lie in a
cell with high probability. This leaves us to show what is to
be done with the points in one cell in the final stage of the
algorithm.

4.1.4 Final Embedding
In order to guarantee that the smallest non-edge is not too

short we need the points within a cell to be evenly spread
out and not to cluster at a single point. For that reason,
we compute a maximal independent set MIS of vertices
within a grid cell and assign those vertices to grid points
of a refined grid. The width of a cell in the refined grid
is 1/

√
nM along each dimension, M being the maximum

number of independent points in any cell.
We now have to embed all the vertices in G which are

not in MIS. The idea is that we can assign each node u
not in MIS to exactly one vertex in MIS. Then, for each
v ∈MIS, we place its assigned vertices uniformly around v,
respecting the neighborly relations of the assigned vertices.

4.2 The Algorithm in Pseudocode
Algorithms 1-4 succinctly describe each stage of our al-

gorithm to compute the virtual coordinates of a given (unit
disk) graph. The output of each phase serves as the input
of the next one.

In the following, let us denote the position of vertex u in
the volume respecting embedding vb

u, the position after the
random projection ru and the final position pu.

Algorithm 1 Solve (LP)

Input: G = (V, E)
Output: distance matrix X = (xuv)
1: solve (LP) and return set of distances xuv between each

pair of vertices u, v

Algorithm 2 Volume-Respecting Embedding

Input: distance matrix X = (xuv)
Output: positions vn

u ∈ � n for all u ∈ V
1: find a (log n, log2 n)-volume respecting Euclidean em-

bedding in � n using the “random subsets embedding”
in [10]

5. ANALYSIS
This entire section is devoted to proving the following

main theorem.

Theorem 5.1. The quality of the embedding computed by
the algorithm is in O(log2.5 n

√
log log n) with high probabil-

ity.

Algorithm 3 Random Projection

Input: positions vn
u ∈ � n for all u ∈ V

Output: positions ru ∈ � 2 for all u ∈ V
1: independently choose two random vectors l1, l2 ∈ � n of

unit length (lines passing through the origin)
2: for all u ∈ V , project vn

u to each of the lines, that is
ru ← (vn

u · l1, vn
u · l2)

Algorithm 4 Final Embedding

Input: positions ru ∈ � 2 for all u ∈ V
Output: positions pu ∈ � 2 for all u ∈ V
1: enclose the projected points in a grid C√

n of cell-width
1/
√

n
2: let C be a cell in C√

n and compute a maximal indepen-
dent set MISC in C, then M ← maxC |MISC |

3: refine C√
n by subdividing each cell into M subcells, de-

note the refined grid by C√
nM

4: for each cell C in C√
n do

5: assign all points in MISC arbitrarily to grid-points in
C√

nM which lie in C
6: assign all points in C not in MISC to points in MISC ,

such that there is an edge in G between assigned
points

7: for all points u in MISC do

8: place points assigned to u on a circle of diameter
2/3 and center u, where vertices which are neigh-
bored in G may be placed on the same position,
and non-neighbored vertices are equally distantly
distributed on the circle

9: end for

10: end for

11: scale up C√
nM by a factor

√
nM along each dimension,

such that the distance between any two grid points is
one

5.1 Volume Respecting Embeddings
Once we have a set of inter-point distances, we want to en-

sure that the high-dimensional embedding does not distort
the encoded UDG properties. The volume-respecting prop-
erty of Feige’s embedding ensures that independent vertices
remain spread out.

Theorem 5.2 ([10]). For any k and any connected graph
G, a (k, β

√
log n

√
k log k + log n)-volume respecting embed-

ding can be found in polynomial time for some large enough
constant β.

Unfortunately, computing the volume V ol(S) of a set S
exactly is far too tedious in general. Yet, Feige showed that
it can be approximated quite well by making use of the no-
tion of the tree volume Tvol(S) of S, which is the product
of the edge lengths in a minimum spanning tree of S.

Theorem 5.3 ([10]). For S ⊂ V , |S| = k,

V ol(S) ≤ Tvol(S)

(k − 1)!
≤ V ol(S)2(k−2)/2.

5.2 Tree Volume
Since we want to ensure that the independent sets are

neatly spread out, we need to derive bounds on the tree vol-
ume of those sets in order to use Feige’s volume-respecting
embedding. In particular, we want to show the following.

Lemma 5.4. Let IS denote an independent set of vertices
in G then �

IS⊂V, |IS|=k

1

Tvol(IS)2
≤ (1/κ2)k−1n logk−1 n.

Before proving the lemma above we start with a general
lemma on metric spaces and tree volumes. Observe that in
our case, the set S is an independent set which, by virtue of
being a solution to (LP), is also a (finite) metric space.

Lemma 5.5. For any finite metric space (S, x) with S =
{u1, . . . , uk},

1

Tvol(S)2
≤

�
π

(xuπ(1)uπ(2)
, . . . , xuπ(k−1)uπ(k)

)−2

where the summation is taken over all permutations π ∈ Sk.

Proof. We prove the lemma by induction on k, as sim-
ilarly done in [10]. For k = 2 there is only one span-
ning tree and two possible permutations π, hence we get
1/Tvol(S)2 ≤ 2/x2

u1u2
, which is clearly true.

Assume that the statement is correct for sets of size k,
that is if |S| = k then

Tvol(S)2 ≥
1/

�
π

(xuπ(1)uπ(2)
, . . . , xuπ(k−1)uπ(k)

)−2 (8)

for all π ∈ Sk. Now consider the set S′ where we added
a vertex uk+1 to S and let us denote the permutations on
{1, . . . , k + 1} by σ. The tree volume of S′ is at least the
tree volume of S times the minimum distance between uk+1

and S, formally: Tvol(S′) ≥ Tvol(S) · mini xuk+1ui
. Let

mini xuiuk+1 be xuiuk+1 . Then, assuming (8), this leaves us
to show that

x2
uiuk+1

·
�

σ

(xuσ(1)uσ(2)
, . . . , xuσ(k)uσ(k+1)

)−2

≥
�
π

(xuπ(1)uπ(2)
, . . . , xuπ(k−1)uπ(k)

)−2.

Each permutation π corresponds to k + 1 different permu-
tations σ, depending on where k + 1 is inserted. We now fix
a permutation π and show that the above inequality holds
for the fixed permutation and the corresponding k + 1 per-
mutations σ. Clearly, the inequality then also holds in the
stated form. W.l.o.g., we let the fixed permutation be the
identity permutation and denote (xu1u2 , . . . , xuk−1uk

)−2 by

A2. We want to show that

xuiuk+1A2 · � 1

x2
u1uk+1

+
1

x2
ukuk+1

+

k−1�
j=2

x2
ujui+j

x2
ujuk+1

x2
uj+1uk+1 � ≥ A2.

By the triangle inequality and simple arithmetic we get
x2

ujuj+1
/2 ≥ x2

ujuk+1
−x2

uk+1uj+1
, which we use for j < i. In

case j ≥ i we use x2
ujuj+1

/2 ≥ x2
uk+1uj+1

− x2
ujuk+1

. Then
the terms inside the parentheses cancel each other out ex-
cept for two terms of the form 1/(2 · xuk+1ui

), yielding the
desired inequality.

We will also need the following spreading constraint prop-
erty.

Lemma 5.6. Let (xuv) be a feasible solution vector of (LP).
For any vertex u in G and any set of independent vertices
IS, such that {IS ∪ u} is an independent set in G, it holds
that �

ui∈IS

1

x2
uui

≤ log n/κ2.

Proof. Fix u and consider an arbitrary set of vertices
IS = {u1, . . . , um}, which together with u forms an indepen-
dent set in G. Then any subset, in particular {u, u1, u2}, is
also independent. Therefore, using the spreading constraints
of (LP), xuu1 + xuu2 ≥ κ23/2. Hence, w.l.o.g., xuu1 ≤ κ21/2

and xuu2 ≥ κ21/2.
Now consider all independent sets of the form {u, u1, ui},

1 < i ≤ m. Since we could upper bound the length of
xuu1 , we can lower bound all the xuui

, 1 < i ≤ m, by

21/2. By applying the same reasoning as above to subsets
of IS ∪ u of increasing size, we get that at least m − j of
the distances xuui

are at most κ(j + 1)1/2, for each 1 ≤ j ≤
m − 1. Considering furthermore that the minimal distance
between two independent vertices is at least κ, it follows
κ2 �

ui∈IS 1/xuui

2 ≤ 1/m+1/(m−1)+. . . 1/2 = H(n)−1 ≤
log n, where H(n) is the harmonic number and m ≤ n.

Proof Proof of Lemma 5.4. We use Lemma 5.5 and
rewrite the sum in the following way (setting, for readability,
ISi = {u1, . . . , ui} an independent set in G):�

IS⊂V,|IS|=k

1

Tvol(IS)2
≤

�
u1∈V

�
u2∈V \IS1

· · ·
�

uk∈V \ISk−1

�
1

xu1u2 , . . . , xuk−1uk
� 2

=
�

u1,u2∈V

IS2

�
1

x2
u1u2

�
u3∈V

IS3

�
1

x2
u2u3

· · ·
�

uk∈V

ISk

1

x2
uk−1uk

� · · · � .

Using Lemma 5.6 we can upper bound the single sums, ex-
cept for the outer one, by log n/κ2. The outer sum can be
upper bounded by n log n and the lemma follows.

5.3 Random Projection
While the volume-respecting embedding helps in keeping

non-edges far apart, we also want the edges to be close to-
gether. In this section, we prove that the edge length will
be bounded after the random projection step.

For starters, we will need the well-known lemma given
below [30].

Lemma 5.7. Let v ∈ � n . For a random unit vector l,

�
�
|v · l| ≤ c√

n
|v| � ≥ 1− e−c2/4.

�
�
|v · l| ≤ 1

c
√

n
|v| � ∈ O(1/c).

The next lemma gives a connection between random pro-
jection and the volume of a set. It will become important
when we count the number of nodes that fall into any given
cell of the final grid.

Lemma 5.8 ([10]). Let S be a set of vectors v1, . . . , vk ∈� n . For c > 0, consider the event that the projection of S on

a random unit vector l is of length at most c. The probability
of this event is bounded by

�
�
max

i
(vi · l)−min

j
(vj · l) ≤ c �

= O

�
ck−1nk−1/2

(k − 1)!Evol(S) � .

Lemma 5.9. The length |ru−rv| of an edge after the pro-
jection step is at most O(|ru − rv|

√
log n/

√
n), with high

probability.

Proof. By Lemma 5.7 with probability 1−e−c2/4 a pro-
jected vector v has length at most c√

n
|v|. Choosing c =√

log n, the length of a projected vector is at most

|ru − rv|
�

log n/
√

n

with probability 1− (1/n)1/4.

5.4 Putting Things Together

Lemma 5.10. The number of independent vertices that
fall in any cell of the outer grid C√

n is in O(log4 n log log n)
with high probability.

Proof. Let NC be the number of independent sets IS of
size k that fall into an arbitrary grid cell C of width 1/

√
n.

Let Xi
IS be the indicator random variable which is 1 if all

the vectors in IS fall in C along li. Following the reasoning
in [29], we can express the expected value of NC in terms of
X1

IS as follows:

�
[NC] =

�
|IS|=k

�
[X1

IS]2

=
�

|IS|=k

�
(X1

IS = 1)2

(Lem. 5.8) ≤
�

|IS|=k

�
cknk/2

(k − 1)!Evol(IS) � 2

(c = 1/
√

n) =
�

|IS|=k

�
1

(k − 1)!Evol(IS) � 2

Eq. (1) ≤
�

|IS|=k

�
(β log n

√
log log n)k

(k − 1)!V ol(IS) � 2

(Thm. 5.3) ≤
�

|IS|=k

�
(β log n

√
log log n)k2k(k − 1)!

(k − 1)!Tvol(IS) � 2

= (2β log n
�

log log n)2k
�

|IS|=k

1

Tvol(IS)2

(Lem. 5.4) ≤ n(2/κ2β log3 n log log n)k.

(9)

Using Markov’s inequality, we have
�
(NC ≥ n3n(2/κ2β log3 n log log n)k) ≤ 1/n3. (10)

We can bound the number of cells by n2 using Lemma 5.9.
Hence, with probability 1− 1/n the number of sets of inde-
pendent point that fall in any of the n2 cells is at most the
value computed in (9). By this we can bound the maximum
number of independent points that fall in any of the cells of
the outer grid in the following way: if there are N subsets of
size k the number of elements is at most kN1/k. In our case,

we get that the maximum number of independent points in
an outer grid cell is with high probability at most

k(n4(2/κ2β log3 n log log n)k)1/k ∈ O(log4 n log log n)

by choosing k = log n.

Proposition 5.11. The maximum edge length is in
O(log2.5 n

√
log log n).

Proof. We have seen in Lemma 5.9 that an edge can
have length at most O(|ru − rv|

√
log n/

√
n). Hence, using

the fact that the embedding is non-expansive, an edge {u, v}
spans at most O(xuv

√
log n) cells along each dimension.

By Lemma 5.10, each cell of the grid C√
n is divided into

O(log4 n log log n) cells, or O(log2 n
√

log log n) cells along
each dimension. Keeping in mind that, by condition (3)
in (LP), xuv ≤ 1, the total number of cells in the final grid
C√

nM that are spanned by an edge along each dimension is

at most O(log2.5 n
√

log log n). The final embedding has no
impact on the big-oh notation.

Proposition 5.12. The minimum distance between two
non-neighbored vertices is at least 1/3.

Proof. A vertex v in a UDG can have at most 5 neigh-
bors which are mutually independent. For v in the indepen-
dent set of a grid cell, 5 vertices are placed on a circle of
diameter 2/3, meaning that the distance between any pair
is at least π · 2/3 · 1/5 > 2/5 > 1/3. The distance between
v and its neighbors is at least 1/3, the distance between
neighbors of v and any other vertex is also at least 1/3 by
construction.

Proof of Theorem 5.1. The theorem follows immedi-
ately from Definition 3.2 and Propositions 5.11 and 5.12.

6. IMPLEMENTING THE ALGORITHM

6.1 Polynomial Running Time
In this section we show that the algorithm can be imple-

mented in such a way that its running time is polynomial
in n. In particular, we show how the set of constraints (LP)
can be solved in polynomial time, despite being exponential
in number.

To that end, we will construct a separation oracle which
will guarantee that we only need to solve polynomially many
constraints polynomially often [11]. A separation oracle
for (LP) takes as input a set of lengths {xuv} and checks
whether this set satisfies all constraints. If that is the case,
a feasible solution is found, otherwise, the oracle returns
one constraint which was violated by the input and a new
solution satisfying all up to now reported constraints is com-
puted. Constraints (3), (4), (5), and (6) can be checked ex-
plicitly in polynomial time. We cannot check the spreading
constraints (7) explicitly since there are exponentially many,
but we can make use of the following two observations.

The fist observations is, that if a set violates the spreading
constraints, then the set of smallest edge weights also vio-
lates them. Hence, instead of checking the spreading con-
straints on all (independent) sets, we merely check them on
those of smallest weight. For this reason, we have to com-
pute the closest independent set of size k around vertex u for
all u ∈ V and check whether this set satisfies the spreading
constraints. The second observation we make is, that we do

not actually have to compute the closest independent set,
but it suffices to approximate it. If an r-approximation to
the closest set satisfies the constraint r · κ|IS|3/2 (which we
check with the oracle) then clearly the closest set satisfies

the constraint κ|IS|3/2 and hence by the reasoning above all
sets satisfy this constraint.

The point of Algorithm 5 is then to approximate the clos-
est (in terms of distance) independent set around a node u
for a given set size.

Algorithm 5 Minimal Weighted Independent Set

Input: distance matrix, G, vertex u, k
Output: independent set IS
1: maxdist← maxv∈V xuv

2: for i = 1 to (maxdist− 1) do

3: Vi = {v | i < xuv ≤ i + 1}
4: ISi ← maximal independent set of Vi

5: end for

6: seven ← arg mins s.t. � ds/2−1e
i=1 |IS2i| ≥ k

7: sodd ← arg mins s.t. � ds/2e
i=1 |IS2i−1| ≥ k

8: s← min{seven, sodd}
9: if s = seven then

10: IS ←
dseven/2−1e
∪

i=1
IS2i

11: else

12: IS ←
dsodd/2e
∪

i=1
IS2i−1

13: end if

14: repeatedly remove farthest v ∈ IS until |IS| = k.

Lemma 6.1. Algorithm 5 finds an independent set of weight
at most a constant times the optimal.

Proof. Let IS∗ denote the optimal minimum weighted
independent set of size k as seen from node u, that is,

w(IS) :=
�

v∈IS

xuv , with |IS \ {u}| = k

is minimal for IS∗. Let IS be the set returned by Algo-
rithm 5. Let further m be the maximal index of Vi such
that a vertex in IS∗ is in layer Vi. Then

dm/2−1e�
i=1

|IS2i|+
dm/2e�

i=1

|IS2i−1| ≥ k/5,

since for each maximal independent set ISi in a UDG it
holds that |ISi| ≥ |Vi ∩ IS∗|/5 (using the natural greedy
algorithm [19]) and by definition of m. Hence,

max

�� � dm/2−1e�
i=1

|IS2i|,
dm/2e�

i=1

|IS2i−1| � �� ≥ k/10.

W.l.o.g. let the sum over the even indices be the maximum.
Then

dseven/2−1e�
i=1

w(IS2i) ≤ k

10
·m +

9

10
k · 4m = 4km,

since at least k/10 vertices have distance at most m to u,
whereas the remaining 9k/10 vertices have distance at most
4m to u. (The input graph G is a connected unit disk graph
and hence in each ISi there is at least one vertex.) Now,
since the value of m is unknown, we may have chosen the

final IS to be the sum over the odd indices (line 8), instead
of the sum over the even indices. Then, sodd ≤ seven ≤ 4m
and

dsodd/2e�
i=1

w(IS2i−1) ≤ 4km

as above. The optimal solution must have at least one vertex
per two layers. Hence, we can lower bound the weight of the
optimal independent set by

w(IS∗) ≥ γ′
m−1�
i=1

i2 ≥ γ′γm3,

for constants γ′ and γ, since there are at least m layers, and
the distance of nodes in layer i is at least i.

It remains to establish a relationship between m and k.
As the number of independent vertices in each layer i is
bounded by the layer’s circumference, which is linear in i,
it holds that |Vi ∩ IS∗| ≤ 15i. Because IS∗ contains ex-
actly k nodes, at most 15i from each level i, it follows that

� m−1
i=1 15i ≥ k and therefore, m is at least

√
k times a con-

stant. The lemma now follows from w(IS) ≤ βk3/2, and

w(IS∗) ≥ αk3/2, with α and β being small constants.

Note that we cannot compute a maximum independent
set on G in polynomial time but a constant approximation
thereof. This has implications only for Lemma 5.4 and this
only in an additional multiplicative constant of 5.

Corollary 6.2. The linear programming relaxation can
be solved in polynomial time.

Proof. By the discussion above and Lemma 6.1.

Together with Theorem 5.2, we obtain the following re-
sult.

Theorem 6.3. The virtual coordinates algorithm can be
solved in polynomial time.

6.2 Practical Considerations
To see the algorithm’s actual performance (as opposed to

its theoretical validity), we have also implemented it in a
simulation environment. To that end, we have made a few
practical changes which we describe below. A sample output
is shown in Figure 1.

6.2.1 Faster Implementation
While the algorithm presented in this paper has indeed

polynomial running time, in practical settings, it counts for
a lot what the degree of that polynomial is. As we have
presented it, the algorithm needs to take into account all
independent sets of a graph G. In our alternative algorithm,
we first compute a maximal independent set IS on G, use a
modified version of the algorithm as presented in Section 4.2,
and finally place the remaining nodes around the grid as in
Algorithm 4.

The advantage of this version is that the input size for the
linear program and the other steps are considerably smaller.
The price we pay is in accuracy, since we only consider a
single (maximal) independent set in the first step as opposed
to every.

6.2.2 Mobility
Centralized algorithms do not fare well in the context of

dynamic networks. We would not want a single movement
to induce another run of the entire algorithm. Instead, we
suggest using a “spring-like” algorithm (such as phase 1 of
[24]) to adapt to local changes (the idea is that edges rep-
resent springs and we try to find the position with minimal
potential spring energy). After a certain period of mobility,
the centralized algorithm would be run to re-calibrate the
network with more accurate coordinates.

6.2.3 Routing
Since some nodes can (and very likely will) have the same

coordinate, we cannot use the standard geometric greedy
routing algorithm (such as in [24]) on our computed virtual
coordinates. There are two ways around this. One is to
slightly perturb the coordinates of the nodes placed on the
same position, so that they are some small ε apart instead.
This will have a negligible impact on the quality of the ap-
proximation, yet might also cause more dead ends in the
routing process. Another solution is to implement 2-hop or
neighbor-of-neighbor (NoN) greedy routing where the next
hop is chosen in the 2-hop instead of the 1-hop neighbor-
hood. While this may seem a minor detail, it has recently
been shown to be fruitful in general (see [18] and references
therein).

Figure 1: The output of our algorithm contrasted

with the original graph. There are 100 nodes in an

area of 4 by 4 radio units. The large red dots repre-

sent the initial maximal independent set MIS, the

smaller black dots are the remaining nodes placed

around their associated MIS node.

7. CONCLUSION
In this paper, we have given the first approximation al-

gorithm for the connectivity-based virtual coordinates prob-
lem. While in its current state, the algorithm is hardly prac-
tical in wireless ad hoc or sensor networks, it is a first step
beyond mere heuristics and simulation results. We believe

that it is only by gaining a thorough theoretical understand-
ing of the various underlying problems that the full potential
of virtual coordinates in ad hoc and sensor networks will ul-
timately be tapped.

8. ACKNOWLEDGMENTS
The authors would like to acknowledge Jiri Matoušek for

pointing us to the relevant literature. We also thank Fabian
Kuhn for helpful discussions.

9. REFERENCES
[1] M. Badoiu. Approximation Algorithm for Embedding

Metrics into a Two-dimensional Space. In Proc. of the
ACM-SIAM Symp. on Discrete Algorithms (SODA),
2003.

[2] R. Bischoff and R. Wattenhofer. Analyzing
Connectivity-based, Multi-hop Ad hoc Positioning. In
Proc. of the IEEE Intl. Conf. on Pervasive Computing
and Communications (PerCom), 2004.

[3] P. Biswas and Y. Ye. Semidefinite Programming for
Ad Hoc Wireless Sensor Network Localization. In
Proc. of Intl. Symp. on Information Processing in
Sensor Networks (IPSN), 2004.

[4] A. Blum, G. Konjevod, R. Ravi, and S. Vempala.
Semi-definite Relaxations for Minimum Bandwidth
and other Vertex-ordering Problems. Theor. Comput.
Sci., 235(1):25–42, 2000.

[5] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia.
Routing with Guaranteed Delivery in Ad hoc Wireless
Networks. In Workshop on Discrete Algorithms and
Methods for Mobile Computing and Communications
(DIAL-M), 1999.

[6] H. Breu and D. G. Kirkpatrick. Unit Disk Graph
Recognition is NP-hard. Comput. Geom. Theory
Appl., 9(1-2):3–24, 1998.

[7] R. Cox, F. Dabek, F. Kaashoek, J. Li, and R. Morris.
Practical, Distributed Network Coordinates.
SIGCOMM Comput. Commun. Rev., 34(1):113–118,
2004.

[8] L. Doherty, L. E. Ghaoui, and K. Pister. Convex
Position Estimation in Wireless Sensor Networks. In
Proc. of Joint Conf. of the IEEE Computer and
Communications Societies (INFOCOM), 2001.

[9] G. Even, J. Naor, S. Rao, and B. Schieber.
Divide-and-conquer Approximation Algorithms via
Spreading Metrics. In Proc. of the IEEE Symp. on
Foundations of Computer Science (FOCS), 1995.

[10] U. Feige. Approximating the Bandwidth via Volume
Respecting Embeddings. J. of Computer and System
Sciences, 60(3):510–539, 2000.

[11] M. Grötschel, L. Lovász, and A. Schrijver. Geometric
Algorithms and Combinatorial Optimization. Springer,
1988.

[12] T. He, C. Huang, B. Blum, J. Stankovic, and
T. Abdelzaher. Range-Free Localization Schemes in
Large Scale Sensor Networks. In Proc. of Mobile
Computing and Networking (MobiCom), 2003.

[13] B. Hofmann-Wellenhof, H. Lichtenegger, and
J. Collins. Global Positioning Systems: Theory and
Practice. Springer, 5th edition, 2001.

[14] B. Karp and H. Kung. GPSR: Greedy Perimeter
Stateless Routing for Wireless Networks. In Proc. of
Mobile Computing and Networking (MobiCom), 2000.

[15] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Unit
Disk Graph Approximation. In Workshop on Discrete
Algorithms and Methods for Mobile Computing and
Communications (DIAL-M), 2004.

[16] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger.
Geometric Ad-Hoc Routing: Of Theory and Practice.
In Proc. of Symp. on Principles of Distributed
Computing (PODC), 2003.

[17] N. Linial, E. London, and Y. Rabinovich. The
Geometry of Graphs and some of Its Algorithmic
Applications. Combinatorica, 15(2):215–245, 1995.

[18] G. Manku, M. Naor, and U. Wieder. Know Thy
Neighbor’s Neighbor: The Power of Lookahead in
Randomized P2P Networks. In Proc. of ACM Symp.
on Theory of Computing (STOC), 2004.

[19] M. V. Marathe, H. Breu, H. B. H. III, S. S. Ravi, and
D. J. Rosenkrantz. Simple Heuristics for Unit Disk
Graphs. Networks, 25:59–68, 1995.

[20] R. Nagpal, H. Shrobe, and J. Bachrach. Organizing a
Global Coordinate System from Local Information on
an Ad Hoc Sensor Network. In Proc. of Information
Processing in Sensor Networks (IPSN), 2003.

[21] E. Ng and H. Zhang. Predicting Internet Network
Distance with Coordinates-based Approaches. In Proc.
of Joint Conf. of the IEEE Computer and
Communications Societies (INFOCOM), 2002.

[22] D. Niculescu and B. Nath. Ad Hoc Positioning System
(APS). In Proc. of IEEE Global Communications
(GLOBECOM), 2001.

[23] D. Niculescu and B. Nath. Error characteristics of ad
hoc positioning systems. In Proc. of Intl. Symp. on
Mobile Ad Hoc Networking and Computing
(MobiHoc), 2004.

[24] A. Rao, C. Papadimitriou, S. Ratnasamy, S. Shenker,
and I. Stoica. Geographic Routing without Location
Information. In Proc. of Mobile Computing and
Networking (MobiCom), 2003.

[25] C. Savarese, J. Rabaey, and K. Langendoen. Robust
Positioning Algorithms for Distributed Ad-Hoc
Wireless Sensor Networks. In Proc. of USENIX
Technical Conference, 2002.

[26] A. Savvides, C.-C. Han, and M. Srivastava. Dynamic
Fine-Grained Localization in Ad-Hoc networks of
Sensors. In Proc. of Mobile Computing and
Networking (MobiCom), 2001.

[27] Y. Shang, W. Ruml, Y. Zhang, and M. Fromherz.
Localization from Mere Connectivity. In Proc. of Intl.
Symp. on Mobile Ad Hoc Networking and Computing
(MobiHoc), 2003.

[28] I. G. Tollis, R. Tamassia, G. D. Battista, and
P. Eades. Graph Drawing: Algorithms for the
Visualization of Graphs. Prentice Hall PTR, 1998.

[29] S. Vempala. Random Projection: A New Approach to
VLSI Layout. In Proc. of the IEEE Symp. on
Foundations of Computer Science (FOCS), 1998.

[30] S. Vempala. The Random Projection Method. Dimacs
Series in Discrete Mathematics and Theoretical
Computer Science, 2004.

