Localization and Routing in Sensor Networks by Local Angle
Information

Jehoshua Bruck

ABSTRACT

Location information is very useful in the design of sensor
network infrastructures. In this paper, we study the anchor-
free 2D localization problem by using local angle measure-
ments in a sensor network. We prove that given a unit disk
graph and the angles between adjacent edges, it is NP-hard
to find a valid embedding in the plane such that neighbor-
ing nodes are within distance 1 from each other and non-
neighboring nodes are at least distance 1 away. Despite the
negative results, however, one can find a planar spanner of
a unit disk graph by using only local angles. The planar
spanner can be used to generate a set of virtual coordinates
that enable efficient and local routing schemes such as geo-
graphical routing or approximate shortest path routing. We
also proposed a practical anchor-free embedding scheme by
solving a linear program. We show by simulation that not
only does it give very good local embedding, i.e., neighbor-
ing nodes are close and non-neighboring nodes are far away,
but it also gives a quite accurate global view such that ge-
ographical routing and approximate shortest path routing
on the embedded graph are almost identical to those on the
original (true) embedding. The embedding algorithm can
be adapted to other models of wireless sensor networks and
is very robust to measurement noise.

1 Introduction

The fast development of sensor networks in recent years
has attracted a lot of interest in the networking commu-
nity. Sensor networks, with their flexible and scalable na-
ture, have great potential for a variety of applications such
as environment monitoring, digital battlefield, etc. Unlike
other networks with more logical structures, sensor networks
are closely related to the geometric environment where they
are deployed. In particular, location information has been
proven to be very useful in the design of sensor network
infrastructures. First of all, a sensor network is “data cen-
tric”, where individual sensors are not as interesting as their
sensed data. But the data sensed by sensor networks, such as

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Jie Gao

Anxiao (Andrew) Jiang

temperature or humidity, are meaningless if we don’t know
where the data are from. Location information can also help
routing. For example, geographical routing makes use of the
location of sensor nodes as a routing criterion, where a node
sends the message to the neighbor who is closest to the desti-
nation. Under dense sensor deployment, this greedy routing
will successfully deliver the message to the destination in a
local and efficient manner.

Location information can be obtained by using global po-
sitioning systems (GPS) [14]. But GPS is expensive and
does not work indoor. So there has been a lot of study on
localization algorithms that induce the locations of sensor
nodes from their local interactions, such as the detection of
local neighbors and/or the distances (angles) between neigh-
bors [27, 28, 21, 22, 23, 26, 29, 30, 2, 19, 13, 8]. Many of
them assume the existence of a (sometimes large) number of
anchor nodes whose positions are already known [27, 28, 21,
22, 29, 23, 8]. In this paper we focus on anchor-free meth-
ods that deduct the geometry of the network by only the
interactions of the nodes. Existing anchor-free algorithms
can be classified into two categories based how much infor-
mation they use. Some of them use only the connectivity
of the communication graph [26, 29]. Others also use the
distances between sensor nodes, which can be estimated by
Received Signal Strength Indicator (RSSI) or Time of Ar-
rival (ToA) techniques. Distance estimation can be severely
affected by the environment and is usually unreliable and
noisy [10]. Another problem with distance information is
that when the localization solution is not unique, the em-
bedded graph may have incorrect folding, where some pieces
of the graph fold on top of other pieces without violating the
distance constraints. Finding an embedding without incor-
rect folding is a challenging research problem.

Interestingly enough, little work has been done on using
local angle information for localization. Angles between ad-
jacent edges can be measured by using multiple ultrasound
receivers [24], in particular, the Angle of Arrival (AOA),
or by using directional antennas. Considering angle infor-
mation adds one more dimension to the localization prob-
lem. Intuitively the angle information tells us how the graph
stretches out in different directions and prevents incorrect
folding, thus the localization problem could be made easier.

In this paper, we study what can and what cannot be
done using the connectivity together with the local angle
information. Given a combinatorial unit disk graph G with
the angles between adjacent edges specified, we want to find
a valid embedding of G in the plane. That is, we want to
assign Euclidean coordinates to the vertices of G such that

G is the induced unit disk graph that meets the angle con-
straints. We prove that this problem is hard. Specifically,
it’s NP-hard to find a valid embedding where neighboring
nodes are embedded no further than distance 1 from each
other and non-neighboring nodes are embedded at least dis-
tance 1 away. And actually it’s still hard to find a solution
to some relaxed problems. In particular, it’s NP-hard to
find a v/2-approximate embedding where non-neighboring
nodes are embedded at least v/2/2 away, or a topologically-
equivalent embedding where two edges cross in the embed-
ded graph if and only if they cross in a valid embedding.

In spite of the difficulty of embedding, with local angle
information we can find a subgraph G’ of G such that for
any valid embedding £ of G, the graph £(G’) induced by the
same embedding is a planar spanner of £(G). Specifically,
no two edges cross in £(G’) and the shortest path distance
between two nodes in £(G’) is at most a constant factor of
that in £(G). Spanner subgraphs are very useful in topology
control and geographical routing. In particular, geographi-
cal routing uses face routing on a planar subgraph to guide
a packet out of the local minima. There has been lots of
work on constructing planar spanner subgraphs of unit disk
graphs (please refer to [25] for an overview), but all of them
assume that locations are already known. Here we are the
first to show that actually one does not need as much as the
location information to construct a planar spanner, only the
local angle information suffices! Further, a straight line em-
bedding of the combinatorial graph G’ in the plane gives a
set of virtual coordinates for sensor nodes with which the
geographical routing is guaranteed to deliver a packet to its
destination if such a path exists. This shows that just for
the purpose of geographical routing, using accurate location
information is unnecessary.

For practical applications, we propose an embedding al-
gorithm with local angle information that gives surprisingly
good results. We first formulate the embedding problem by
a linear program with relaxed constraints such that any valid
embedding must be a feasible solution to the LP. Through
simulations, we show that the LP finds an almost identical
set of locations as the original ones, even when the graph
is sparse. We also show that the method is robust to both
noisy measurements of angles and different models of sen-
sor networks — specifically, the more general quasi-unit disk
graph models. A planar spanner derived based on local an-
gle information equipped with the virtual coordinates ob-
tained through embedding enables geographical routing and
approximate shortest path routing with demonstrated per-
formance almost the same as using the real locations.

2 Related work

2.1 Localization

The localization problem, i.e., determining the global geom-
etry by using only local information, was studied in many
communities such as computational biology, machine learn-
ing, and sensor networks. The localization problem can be
formulated as a graph embedding problem, i.e., to embed
the vertices of a graph in a geometric space such that the
embedded drawing satisfies desired properties. A sensor net-
work is modelled by a unit disk graph (UDG), where two
nodes are connected by a communication link if and only if
their Euclidean distance is no more than 1. Unit-disk graph

embedding is to find an embedding of the vertices in the
Euclidean plane such that the distance between two nodes
is at most 1 if there is an edge, and the distance between
two nodes is more than 1 if they don’t have an edge.

By using purely the connectivity information, it’s known
that determining whether a combinatorial graph is a unit-
disk graph is NP-hard, and thus finding such an embed-
ding is also hard [5]. In fact, even a relaxed version of
the problem is still hard. It’s shown by Kuhn et al. that
finding an embedding such that non-neighboring pajrs are
at least 1 away and neighboring pairs are within = 3/2 is
NP-hard [16]. There have been a number of heuristics pro-
posed for localization by mere connectivity [26, 29]. But
not much is known on the worst case bound. So far the
only known theoretical result is an algorithm with an up-
per bound O(log®® n+/Ioglogn) on the ratio of the longest
distance between neighboring pairs to the shortest distance
between non-neighboring pairs [20]. In the localization prob-
lem with range information, we are also given the distances
between certain node pairs in the graph besides the connec-
tivity. If only edge lengths are provided, finding a feasible
embedding is NP-hard [1, 7] (also proved by a slight varia-
tion of the proof in [5]). When all pairs of inter sensor dis-
tances are known, the solution is unique and can be solved by
the classical Multidimensional Scaling (MDS) method [3]. If
the distances between about Q(n?) pairs of nodes are given
and there is a unique solution, the embedding problem can
be formulated as a semi-definite program and solved in poly-
nomial time [30, 2].

In practice, many localization algorithms assume the ex-
istence of anchor nodes whose locations are known by GPS
or other methods. Then trilateration is used to find the lo-
cations of the sensors progressively [27, 28, 21, 19, 8]. If the
distances from a sensor p to three anchors are known, the
location of p is uniquely determined. Similar methods can
also be done by using angles [22, 23]. These incremental so-
lutions usually suffer from cascading errors and the localiza-
tion result can be beyond tolerable on large-scale networks.

2.2 Geographical routing

Geographical routing is a local and efficient routing algo-
rithm proposed for ad hoc networks. In the traditional ge-
ographical routing, each node knows its own location. A
source node knows the location of the destination and uses it
as the goal of routing. Geographical routing is composed of
two schemes, greedy forwarding and perimeter routing [15,
4]. In greedy forwarding, a message is forwarded to the
neighbor whose Euclidean distance to the destination is the
minimum among all neighbors. When a message gets stuck
at a node whose neighbors are all further away from the des-
tination, it uses perimeter routing to route along the faces
of a planar subgraph until either the destination is reached
or greedy forwarding can be performed again.

Due to the hardness of the localization problem, people
have proposed various schemes of computing virtual coor-
dinates in replace of the real coordinates. The most promi-
nent work is done by Rao et al. [26], where they construct
a set of virtual coordinates by using only the connectivity
for geographical routing. But when a message gets stuck at
a local minima, the only way for it to reach the destination
is to be flooded to the whole network. Comparably, we use
more information, the local angle information, and produce

an embedded planar spanner subgraph together with a set of
virtual coordinates such that stuck messages can be routed
to the destination by perimeter routing.

3 Preliminaries

We start with some definitions on unit disk graphs and em-
beddings. Throughout the paper we assume that the UDG
is connected since otherwise we’ll work on each connected
component separately.

Definition 3.1. A unit-disk graph is a combinatorial (un-
weighted) graph induced by a set of points in the Euclidean
plane such that two points have an edge in between if and
only if their distance is no more than 1.

We emphasize here that by the notion of unit-disk graph
we mean the combinatorial graph without the embedding.
Such a unit-disk graph is induced by a set of points in the
Euclidean plane but the configuration of the nodes in R?
is unknown. An embedding of such a combinatorial graph
in the Euclidean plane may or may not be the same as the
original (unknown) configuration. For an embedding &, we
denote by £(p) the embedded point of a node p. The Eu-
clidean distance between two nodes p, ¢ in an embedding £
is denoted by d(£(p),E(q)). We will sometimes abuse the
notations and use p to represent £(p) when the context is
clear.

In this paper we study embedding problems by using lo-
cal angle information. Specifically, besides the combinato-
rial unit disk graph we are also given the angles between
angularly adjacent edges (All angles are measured counter-
clockwise). See Figure 1. With the local angles constrained
there is still freedom to choose the lengths of the edges.

Figure 1. For each node p in the unit disk graph, assume that
u1, -+ ,up are p’s neighbors ordered counterclockwise. In this
paper we assume that the angles between edges pu; and puiti
are given.

Definition 3.2. An a-approximate embedding £ of a graph
G with angle information is an embedding of the vertices
such that the distance between two nodes d(€(u),E(v)) <1
if w,v have an edge between them in G, and d(E(u), E(v)) >
1/a if u,v don’t have an edge between them in G, where
a > 1. The angle between any two adjacent edges uv,uw
is as specified. A valid embedding is an a-approximate em-
bedding with a = 1.

We observe that by local angle information, we can decide
whether two edges cross in a valid embedding of the unit
disk graph. Thus when we say two edges cross in a unit
disk graph G, we actually mean that they cross in any valid
embedding of G.

Lemma 3.3. If we know the angles between adjacent edges
of a unit disk graph, we can determine all pairs of crossing
edges in a valid embedding.

PROOF. In particular, if two edges AB, C'D intersect with
each other, there must be a node that is connected with all
the other three nodes [5, 11]. Suppose B is connected with
the other three nodes. Then AB,CD cross each other if and
only if AB is located inside the cone defined by \CBD < 7
and A, B are on different sides of the line defined by CD.

First we can decide if AB is located inside the cone defined
by \CBD < 7 easily by the angle information. Further, if
AB is located inside the cone defined by \CBD and A, B
are on the same side of the line defined by C'D, then A
is inside the triangle BC'D. See Figure 2 (ii). Then A is
connected to B, C, D due to plane geometry. This situation
can be identified since BA must be outside the cone defined
by \CAD.

(i) (iii)

Figure 2. (i) The edge AB is not located inside the angle \CBD
and thus AB, CD cannot cross each other; (ii) AB is located
inside the cone defined by \CBD and A, B are on the same side
of the line defined by CD, then BA must be outside the cone
defined by \CAD; (ii) A correct crossing between AB and CD.

The above lemma implies that we can identify all crossing
edges in a valid embedding with local angle information.
Thus one relaxation of a valid embedding is to require that
the topology of the embedded graph is equivalent with a
valid embedding, i.e., only the edges that cross in a valid
embedding are allowed to cross.

Definition 3.4. A topologically equivalent embedding & of
a graph G with angle information is an embedding of the
vertices such that two edges cross in £ if and only if they
cross in a valid embedding. The angle between any two
adjacent edges uv,uw is as specified.

Remark. We notice that without loss of generality we can
assume that in a topologically equivalent embedding the
neighboring nodes are embedded no further than distance
1. This is because we can always do proper global scaling
that doesn’t change the topology of the embedded graph.

Theorem 3.5. A v/2-approximate embedding is a topolog-
ically equivalent embedding.

PROOF. Assume that there are two edges AB, C'D that
cross each other in a v/2-approximate embedding £. Also
assume that £* is a valid embedding. If the following two
claims are true, then & is topologically equivalent with £*.

Claim 1: If AB, CD cross in a valid embedding £, then
they must also cross in a v/2-approximate embedding &.

Proof of claim 1. If AB, CD cross in a valid embed-
ding £, then one node must be connected to all the three
other nodes. There are three possible cases, as illustrated
by Figure 3. For case (ii) and (iii), if the angles between
adjacent edges are fixed as specified, the configuration of
the four nodes is unique up to a global rigid motion and

D

(ii) (iif)

Figure 3. In a valid embedding of the unit disk graph G, if
two edges AB, CD cross each other, there are only three possible
cases.

scaling. Thus AB, CD cross in any embedding preserv-
ing the local angles. For case (i), we argue that in a /2-
approximate embedding AB, C'D must also cross each other.
In a valid embedding £* as in Figure 4 (i), AC must be
longer than both AD and CD. Thus the angle \CDA >
m/3. Similarly \BDC > 7/3. Thus \BDA > 2x/3. If
in a v/2-approximate embedding £, AB doesn’t cross C'D,
then C' is embedded inside the triangle ADB, as shown in
Figure 4 (ii). First \BCA > \BDA > 27n/3. On the
other hand, d(£(A),&(C)) > V2/2, d(E(B),E(C)) > v/2/2,
d(E(A),E(B)) < 1. Thus d(E(A),E(C))*+d(£(B),E(C))* >
1> d(£(A),E(B))?. So \BCA < /2. This leads to a con-
tradiction.

(i)

Figure 4. (i) A valid embedding £*; (ii) A v/2-approximate
embedding £.

Claim 2: If AB, CD cross in a v/2-approximate embedding
&, then they must also cross in a valid embedding £*.
Proof of claim 2. There are six possible cases based on
how the nodes are connected with each other in G. See Fig-
ure 5. We argue that none of the cases have both properties
that AB,CD intersect each other in £ and AB,CD don’t
intersect each other in £*.

For case (i) in Figure 5, let’s take a look at the trian-
gle AACD under embedding £. d(E(A),E(C)) > v2/2,
d(E(A),E(D)) > v/2/2, d(E(C),E(D)) < 1. So the angle
\CAD < 7/2. Similarly, \ACB < 7/2, \CBD < w/2,
\BDA < w/2. This leads to a contradiction since the sum
of the inner angles of a 4-gon must be 27. So this case can
never happen in &.

Case (ii) cannot happen for a v/2-approximate embedding
£. The intuition is that if the two edges don’t cross in a valid
embedding, then the angle \COB < 7 /6. This contradicts
with the fact that d(E(B),&(C)) > +v/2/2. The details are
in Appendix 8.

Case (iii) cannot happen. By the angle constraint, the two
edges AB, C'D must cross in any planar embedding. But in
a valid embedding there must be a node that is connected
to three other nodes. This leads to a contradiction.

(iv)) (vi)

Figure 5. A v/2-approximate embedding €. Solid lines are edges
in G.

For cases (iv), (v) and (vi), AB and CD cross in any valid
embedding.

Therefore if two edges don’t cross in a valid embedding,
they cannot cross each other in any v/2-approximate embed-
ding. This shows that an v/2-approximate embedding is a
topologically equivalent embedding.

4 The hardness of UDG embedding with
angles

As shown in the last section, by using local angle information
we can decide on all crossing edges in a valid embedding.
However, local angle information is not sufficient for us to
decide a valid embedding. It turns out that the problem of
finding a valid embedding by using the connectivity and the
local angle information is still hard. In fact it’s even NP-
hard to find a topologically equivalent embedding or a /2-
approximate embedding. In this section we show a reduction
from the 3SAT problem.

A 3SAT problem consists of a set of Boolean variables
and clauses such that each clause is composed of at most 3
literals, which are either negated or unnegated. The 3SAT
problem is to find an assignment to the variables such that
all the clauses are satisfied. A 3SAT instance C' can be for-
mulated as a graph G¢ where vertices are the set of clauses
and variables, and there is a path connecting a clause with
a variable (or its negated version) if the variable appears
in the clause. Please see Figure 6 for an example. Such a
graph can be drawn on a grid in polynomial time [5]. Breu

ol Holm [l

Figure 6. The graph G¢ of a 3SAT instance (T1 V z2 V T3) A
(Iz Vﬁ) AN (:El VzoV 1123).

and Kirkpatrick proved the NP-hardness of unit disk graph

embedding by a reduction from a 3SAT problem [5]. Now
we focus on realizing the graph G¢ by a unit-disk graph
with the angle constraint such that there is a topologically
equivalent embedding if and only if the corresponding 3SAT
problem is satisfied.

4.1 Basic building blocks

We first present a set of building blocks by using unit disk
graphs.

e Spring. A spring is a line segment with length be-
tween ¢ and 2¢. It can be realized by a set of 2¢ + 1
nodes placed on a straight line such that there are only
edges between adjacent pairs, as shown in Figure 7 (ii).
In particular, each edge in a unit disk graph has length
at most 1, so a chain of 2¢ 4+ 1 nodes have length at
most 2¢. For 3 adjacent nodes a, b, ¢, since a cannot
communicate with ¢, their distance must be at least 1
away. Thus the chain is no shorter than /.

A > { B A B
o——5 o0—0—0—0—0
<2 20+1

(i) (ii)

Figure 7. (i) A spring; (ii) The realization of a spring by unit-
disk graphs.

e Amplifier. An amplifier is a triangle with fixed inner
angles. Thus the ratio between the edge lengths of
the triangle is fixed. For a number ¢ we can use an
amplifier to get the number ¢/ = ¢ - £ for any ¢ > 0.
An amplifier can be realized by a unit disk graph with
pre-specified angles between adjacent edges.

A 4 C A C

B

(i) (if)

Figure 8. (i) An amplifier; (ii) The realization of an amplifier
by unit-disk graphs.

e Propagator and Crossing Propagator. A prop-
agator is a rectangle. The lengths of the opposing
sides of the rectangle are the same. It can be imple-
mented by a cycle of nodes with corresponding angle
constraints. A crossing propagator is a pair of crossing
rectangles. See Fig. 9.

(i) (ii)

Figure 9. (i) Propagator; (ii) Crossing propagator.

e 0/1 block By using the above building blocks, we
can construct a 0/1 block that has only two types of

valid embedding. In short, we construct a concave cy-
cle with one top “tooth” and one bottom “tooth”. If
we don’t allow the teeth to overlap, there are basically
two ways to embed the concave cycle, either by putting
the top tooth to the left of the bottom tooth, or the
other way around. Please see Figure 10 for the two
types of embedding. The concave cycle is bounded by
AEFGHDCKLIJB, the top tooth is the part of the
cycle EFGH, the bottom tooth is the part of the cy-
cle JILK. Suppose the length of AB = CD is £, we
use amplifiers and propagators such that the length of
BC = DA = 11£/6. There are two squares EFGH,
IJKL inside the rectangle ABCD. Both of them have
side length 2¢/3. The two squares don’t have edges in
between. Thus any embedding without incorrect cross-
ings will have to embed the graph in two ways, either
by putting the square EFGH to the left of IJKL or
the other way around. In the first case, the length of
the path AE is no more than ¢/2, the length of HD
is at least 2¢/3. In the second case, the length of the
path AFE is at least 2¢/3, and the length of HD is
no more than ¢/2. The segments AE, HD, BJ, KC
are springs, thus their lengths can be stretched and
shrinked by a factor no more than 2.

<2 >20/3 >20/3 <12

I 4] Te o
I L
,|a—%
203
PN c

114/6 11¢/6

(i) (if)

Figure 10. The only two embedding of a concave cycle without
incorrect crossings.

4.2 Realization of G¢ by unit disk graphs

Now we are ready to introduce how to realize the graph G¢
for a 3SAT instance C by using unit disk graphs with angle
constraints. The graph G¢ consists of three components:
clauses, variables and wires to connect them.

e Wires The wires are simply propagators. If the width
of a propagator is no more than £/2, this means the
variable connected by the wire is assigned ‘1’. If the
width of a propagator is at least 2¢/3, the variable
connected by the wire is assigned ‘0’ in Gc¢.

e Variable components A variable is implemented by
a 0/1 block. In fact, we use the length of AF to rep-
resent the value of a variable and the length of HD to

represent its negated version. A variable v is assigned
1 if the length of AE is less than £/2, and 0 if the
length of AF is at least 2¢/3. Correspondingly we use
the length of HD to represent the negated variable v.

e Clause components A clause component puts con-
straints on the input variables. In particular, it put a
total maximum length on the concatenation of springs
whose lengths represent the assignments of input vari-
ables. See Figure 11 (i) for an example. If a clause is
composed of three variables, then the outer rectangle
has width 11¢/6. Thus at least one of the variable has
length less than ¢/2. That is, the clause is satisfied if
at least one variable is assigned value 1. The clauses
with two or one variables are designed similarly. See
Figure 11 (ii) and (iii).

! v
115/5 ;"i 0 /%@2
(@) (ii)

Figure 11. Clause components (i) (v1 V v2 V v3); (i) (v1 V v2);
(iii) v1.

/2 E%gm

(iif)

Now we put all the components together and show a re-
alization of the graph G¢ (Figure 6) for a 3SAT instance C
by a unit disk graph in Figure 12. Intuitively, the hardness
of the problem is due to that the ways to embed the 0/1
blocks are affected by each other through the constraints
put by the clauses.

(& |

Cy ‘

Csy

Ty Ty Ty T T3 T3

Figure 12. The realization of a 3SAT instance (T1 V z2 V T3) A
(z2 VT3) A (21 VT2 V z3) by a unit disk graph. Shaded areas are
0/1 blocks for variables. In this example z1 =1, z2 = 0, 3 = 0.
The instance is satisfied.

4.3 Hardness results

Now we are ready to prove the NP-hardness of unit disk
graph embedding with local angle information.

Theorem 4.1. It’s NP-hard to find a topologically equiv-
alent embedding of a unit-disk graph with local angle con-
straints.

PROOF. By the construction of G¢ for a 3SAT instance
G, we can see that the the instance C can be satisfied if and
only if we can find an embedding of G¢ in the plane that has
the same topology and preserves all the local angles. Since
3SAT is NP-hard, it’s also NP-hard to find a topologically
equivalent embedding.

Input Hardness | ref.

UDG graph only NP-hard 5, 16]
O(1)-hop distances NP-hard 1]
O(1)-hop angles NP-hard | this paper

O(1)-hop angles & distances | in P this paper
Q(n?) pairs distances in P [2, 30]
all pairs angles in P this paper

Figure 13. A summary of the hardness of finding a valid em-
bedding of a UDG.

Corollary 4.2. It’s NP-hard to find a valid embedding of
a unit-disk graph with local angle constraint.

PROOF. The proof is similar with the above theorem. For
a graph G¢ of a satisfiable 3SAT instance C, we can find an
embedding £ of G¢ with no incorrect crossings. Further we
can do proper scaling and local arrangement of £ such that
£ is a valid embedding.

Corollary 4.3. It’s NP-hard to find an a-approximate em-
bedding of a unit-disk graph with local angle constraints,
for a < /2.

PrOOF. We construct a graph G¢ for a 3SAT instance
C. By Theorem 3.5, a /2-approximate embedding is a
topologically equivalent embedding. Thus if we have a v/2-
approximate embedding £ of G¢, then C is satisfiable. The
other direction can be proved similarly as the above proof.

4.4 A summary of hardness of localiza-
tion

Localization by using only angles between adjacent edges
in a unit disk graph is shown to be NP-hard. However, if
we have more information, localization can be solved easily
from a theoretical point of view. For example, if we have
the angles between all pairs of nodes in the graph, then the
graph is basically determined up to a scaling factor. For
another example, if we have both the lengths of the edges
and the angles between adjacent edges in a unit disk graph,
the graph is uniquely determined. A short summary of the
hardness results on localization is shown in Figure 13.

5 Planar spanner construction

In the previous section we’ve shown that by using the com-
munication graph and local angle information, it’s NP-hard
to find a valid embedding of a unit disk graph. On the
positive side we’ll show that by local angle information we
can find a planar spanner subgraph whose embedding in the
plane can be used for geographical routing with guaranteed
delivery.

A planar graph is a graph that can be embedded in the
plane with no edge crossings. A c-spanner G’ of a graph
G is a subgraph of G such that the shortest path distance
of u,v in G’ is at most ¢ times the shortest path distance
of u,v in G, where the shortest path distance is the sum of
the Euclidean length of all the edges on the shortest path.
c is the spanning ratio of G’. A spanner with a constant
spanning ratio is usually called a spanner. In this section
we’ll show that one can construct a planar spanner for a unit
disk graph by using only the angles between adjacent edges.
Recall that the location information is not available. Thus

when we say a planar spanner we mean a subgraph G’ of the
input unit disk graph G such that for any valid embedding
E(G), the subgraph G’ on the same embedding £(G’) is a
planar spanner. Finding a spanner subgraph can be eas-
ily done without the location information, however, finding
a spanner subgraph that has a planar embedding for any
valid embedding of the UDG doesn’t seem to be intuitive.
The idea is to find a planar subgraph that is guaranteed
to contain a restricted Delaunay graph, i.e., a subgraph of
the Delaunay triangulation with all the edges longer than 1
deleted [11].

A Delaunay triangulation on a point set in R? is a triangu-
lation with “empty-circle” property: the circumcircle of any
triangle has no other points inside. A restricted Delaunay
graph, defined as the subgraph of the Delaunay triangula-
tion with all the edges longer than 1 deleted, is known to be
a 2.42-spanner of the unit disk graph [11, 18]. Now we claim
that with local angle information we can find a subgraph G’
of G that is planar and contains all the edges of a restricted
Delaunay graph. Thus G’ is a planar spanner subgraph of
G with spanning ratio 2.42.

Suppose two edges AB,CD cross each other in a unit
disk graph, then only one of them can possibly be a Delau-
nay edge due to the planar property. We show that we can
decide which one is not a Delaunay edge by using the local
angle information. To be specific, there are only three pos-
sible cases of a pair of crossing edges, as shown in Figure 3.
Notice that in cases (ii) and (iii), because of the given angle
information, the positions of the four nodes are unique up
to a rigid motion and a scaling factor. Since the Delaunay
triangulation is invariant under global scaling, there is only
one possible Delaunay triangulation, which can be decided
by only the angles.

For case (i), node C is at least of distance 1 away from
nodes A, B. See Figure 14. We take the bisectors of the edge
AD,BD, {1,{2, that intersect at a point O. O is also the
center of the circumcircle of AABD. The lines 41,5 divide
the plane into four quadrants. Node C' must be inside the
same quadrant with node D since d(£(C),E(D)) < 1 <
d(E(C),E(A)), d(E(C),£(D)) < 1 < d(E(C),£(B)). Thus
C is inside the circumcircle of AABD. This implies that
the edge AB is not a Delaunay edge, since it violates the
“empty-circle” property of the Delaunay triangulation.

Figure 14. Thick lines are edges in the unit disk graph. Node
C must lie in the circumcircle of triangle AABD.

By the above argument, one can decide a non-Delaunay
edge between a pair of crossing edges in a unit disk graph.
Thus we can eliminate crossings by always deleting non-
Delaunay edges. In the end we’ll have a planar subgraph G’
such that all the Delaunay edges with length no more than

1 are kept. That is, G’ contains the restricted Delaunay
graph, which is a constant spanner.

Theorem 5.1. Given a unit disk graph and the angles be-
tween adjacent edges, one can construct a planar spanner
subgraph with spanning ratio 2.42.

We should also notice that there are possibly infinitely
many valid embeddings of a particular unit disk graph that
satisfies the angle constraints. However, the planar spanner
we found is the same for all such embedded graphs. This
is a little counter-intuitive since Delaunay triangulation has
been considered to be very delicate — a tiny movement of
a single point can possibly change the whole graph struc-
ture. Yet we show that the restricted Delaunay graph has
some kind of robustness. Further, such a planar spanner
subgraph can help us with efficient routing in a sensor net-
work. In particular, it can be used to produce a set of virtual
coordinates for efficient geographical routing, or a set of dis-
tributed labels for approximate shortest path routing.

5.1 Geographical routing with guaran-
teed delivery

It’s known that any planar graph has a straight line realiza-
tion in the plane [9, 6]. By using a straight line embedding of
the planar subgraph G’, each node is assigned an Euclidean
coordinate that can be used in geographical routing [15, 4].
Although in our case the location information can not be
obtained unless P = NP, the embedded planar subgraph
provides a set of virtual coordinates that are equally good
for geographical routing. The virtual coordinates guarantee
the delivery of a packet if possible at all.

5.2 Approximate shortest path routing

In general, graph labelling is to assign a set of distributed
labels to the vertices such that the shortest path can be
inferred by using only the labels of the source and destina-
tion. In particular, one can compute a set of labels, each
with size at most O(y/nlogn), on the vertices of a planar
graph with n vertices, due to the fact that a planar graph
enjoys a O(y/n) balanced separator [12]. The basic idea is
to partition the graph recursively into pieces by small-size
separators. The number of recursions is log n. For a separa-
tor of a subgraph P, we compute and store distributedly the
shortest path trees of P centered at all nodes of the separa-
tor. Each node has a label with size O(y/nlogn). Therefore
with the planar spanner G’ of the unit disk graph, we can
use the above graph labelling algorithm to construct a set of
labels with size O(y/nlogn) such that one can find a 2.42-
approximate shortest path of G by using only the labels of
the source and the destination.

6 A practical solution to UDG embed-
ding and routing with angles

Embedding a unit-disk graph is NP-hard, and it is so even
when the restriction is relaxed to be finding a topologically
equivalent embedding. In practice, however, we still hope to
use the local angle information to find localization that well
approximates the true sensor network. The planar spanner
of a sensor network is certainly very useful for geographical

routing and approximate shortest path routing; yet before
the routing works, the spanner firstly needs to be realized
in the plane where edges are embedded as straight-line seg-
ments not crossing each other. There are currently known
straight-line embedding algorithms for planar graphs [9, 6];
however, when such algorithms are applied to planar span-
ners of UDG, they distort the edge lengths and the rela-
tive positions among nodes extremely severely, and thus are
not effective in practice. In this section, we show that we
can construct an embedding method based on linear pro-
gramming, which produces very good localization solutions;
the solutions lead to nearly optimal routing performance as
well; we also demonstrate the robustness of the embedding
method to noisy measurements of angles and to more gen-
eral topological models of sensor networks. This shows that
using local angle information to do localization and routing
is practically good for sensor networks.

6.1 UDG embedding based on LP

We formulate the embedding problem by solving a linear
program. We include as many constraints as possible such
that the optimization remains a LP. We take the length of
each edge e, £(e), as a variable. We arbitrarily pick an edge
and make the z-axis be parallel to it. By the fact that we
know the angle between any two adjacent edges, the absolute
angle of every edge e — the counterclockwise angle between
the positive z-axis and e — can be uniquely determined. We
see every edge as the superposition of two directed edges of
opposite directions, whose absolute angles differ by w. Then
a valid UDG embedding satisfies the following constraints.

e Edge-length constraint. V edge e, 0 < £(e) < 1.

e Cycle constraint. For any cycle that consists of
edges {e1,e2, - ,ep}, where for 1 < ¢ < p, the ab-
ute angle of e; is 0., 1i-l_=},ere exist two constraints
P f(ei)cosbe, =0and P_ l(e;)sinf., = 0.
e Non-adjacent node pair constraint. For any two
adjacent edges ei, ez whose three endpoints do not
induce a triangle subgraph, £(e1) + £(e2) > 1.

e Crossing-edge constraint. For any two edges AB
and CD crossing each other, one of the four nodes
must be connected to all the other three. Let’s say
D is connected to A, B and C, and AB crosses CD
at the point x (see Fig. 15(i)). Then there exists the

constraint £(CD) > |zD| = Z(AD)MTD\CY%.

Figure 15. (i) Crossing-edge constraint. (ii) A subgraph where
any two edges are related through a sequence of triangles. (iii)
Two rigid subgraphs sharing node A and connected by edge BC.

The above constraints serve as the linear constraints in
our linear programming. A feasible solution to the LP gives
us an embedding of the UDG, since we can use the edge
lengths of a spanning tree and the angle information to de-
termine the node positions. There are many ways to select

the objective function; as a heuristic, we choose it to be
maximizing the minimum length of all edges.

When the UDG has lots of edges, the large number of
variables and constraints in the LP will lead to high com-
plexity. In such cases, we can almost always use the fol-
lowing method to significantly reduce the complexity. First
we reduce the number of variables. For any three edges AB,
BC and C A that form a triangle, since the values of \ABC,
\BCA and \CAB are given, the three edge lengths have
fixed ratios. So we can regard only ¢(AB) as a variable,
and represent the lengths of BC and CA respectively by
c1 - £(AB) and cz - £{(AB), for some constants c¢; and cs.
Thus three variables are reduced to one variable. Similarly,
if a subgraph of the UDG satisfies the condition that for
any two of its edges ep and ep, there exist edges e1, ez, -+,
ep—1 such that e;—; and e; are contained in a triangle for
1 <i < p (see Fig. 15(ii) for an example), then all the edge
lengths in this subgraph have fixed ratios — therefore they
can be represented with only one variable. We call such a
subgraph a rigid subgraph. To push this approach further,
we observe that if several rigid subgraphs share common
nodes or are connected by edges, then every cycle that trav-
els through multiple rigid subgraphs enables us to derive
two equations like the cycle constraint described before. If
there are enough such equations, the ratios among the sizes
of those subgraphs and the lengths of the connecting edges
can be uniquely determined — then those subgraphs and
the edges between them unite and form a larger rigid sub-
graph, all of whose edge lengths can be represented with
only one variable. (For example, see Fig. 15(iii), where two
rigid subgraphs share the node A and are also connected by
an edge BC. All the edge lengths there have determined
ratios between themselves and therefore can be represented
with only one variable.) The improvement by this approach
is large. For example, when 1000 nodes are placed in a
18 x 18 square with a uniform distribution, the largest con-
nected component typically contains more than 4500 edges;
by the above approach, the number of variables in the LP
can nearly always be reduced to be less than 30. Then the
number of linear constraints can also be reduced.

The above method not only reduces complexity, but also
gives us additional constraints for further guarantee on the
quality of the embedding. For any two non-adjacent nodes
A and B in a rigid subgraph, let £(e) denote the edge length
in the subgraph specially chosen to be the variable, then
|AB| = c-£(e) for some constant c. We include the constraint
c-f(e) > 1 in the LP.

‘We have implemented the embedding algorithm and mea-
sured its performance on a variety of inputs. In the first
experiment, we placed n nodes in a 15x 15 square with a uni-
form distribution, and embed the largest connected compo-
nent. The results are shown in the top part of Fig. 16, where
each result is averaged over 50 experiments. In Fig. 16, dis-
tance violation is the number of non-adjacent node pairs
that mistakenly have distance less than or equal to 1 in the
embedding. derror is the minimum distance between two
non-adjacent embedded nodes that mistakenly have distance
less than or equal to 1 in the embedding. (So derror < 1 if
such a pair of nodes exist; if no such node pair exists, we
let derror = 1). Extra crossing is the number of edge pairs
that do not cross in the true UDG but mistakenly cross
each other in the embedding. Note that the other crite-
ria for embedding are guaranteed to be satisfied by the LP

method: the edge-length constraint guarantees that every
edge has length at most 1; the cycle constraint guarantees
that all the angles between adjacent edges are as specified;
the crossing-edge constraint guarantees that any two edges
that cross in the true UDG also cross in the embedding.
In Fig. 16 some additional properties are displayed as well,
where order of graph is the number of nodes in the embed-
ded UDG, and node degree is the average degree of nodes.
A typical embedding result is shown in Fig. 17.

network in square
order of node | distance | derror extra
graph degree | violation crossing
n = 200 33.22 3.6422 0.80 | 0.9728 0.00
n = 400 337.96 5.4512 9.68 | 0.7642 0.50
n = 600 596.82 7.9110 6.50 | 0.8714 0.68
n = 800 799.64 | 10.5237 1.60 | 0.9568 0.10
n = 1000 999.94 | 13.1944 0.68 | 0.9601 0.00
network in annulus
order of node | distance | derror extra,
graph degree | violation crossing
n = 200 59.76 4.1810 1.70 | 0.9368 0.00
n = 400 397.30 7.4084 6.62 | 0.8426 0.42
n = 600 599.88 | 11.0106 0.90 | 0.9570 0.08
n = 800 799.88 | 14.6423 0.10 | 0.9909 0.00
n = 1000 | 1000.00 | 18.2822 0.00 | 1.0000 0.00

Figure 16. Performance of embedding unit disk graphs deployed
in a square and an annulus. Each result is averaged over 50
experiments.

In a second experiment, we place nodes in an annulus with
external radius 7.5 and internal radius 2.5. The results are
shown in the bottom part of Fig. 16. A typical embedding
result is shown in Fig. 18.

We can clearly see that the results are very good. Com-
pared to previous results on embedding in the literature, our
results can be seen to have superb performance without us-
ing landmarks [2] or edge-length information [13], even when
the edges in the unit disk graphs are sparse. The number of
non-adjacent node pairs having distance less than or equal
to 1 in the embedding is very small, and even for such node
pairs, their distances are close to 1. The number of incor-
rect edge crossings in the embedded graphs is very close to 0.
We have also conducted experiments with many other inputs
and in areas of other shapes, and the results have been con-
sistently very good. Therefore the LP-based method does
produce an almost truthful localization for sensor networks.

6.2 Geographical routing and approxi-
mate shortest path routing

In this section we examine the performance of routing schemes
on the embedding of a unit disk graph by the linear program.
In particular, given a unit disk graph with angle constraints,
we find an embedding by the LP. Further, we embed the pla-
nar spanner constructed in the previous section using only
local angle information. In particular we exclude the edges
not in the spanner from the embedded UDG; if two edges
still cross, we arbitrarily exclude one (this second step is
heuristic). We run a geographical routing protocol (GPSR)
and the approximate shortest path routing on this embedded
UDG and its planar subgraph and compare the performance
with that on the original (true) embedding.

16

16

16

Figure 17. The unit disk graph of 597 nodes randomly deployed
inside a 15 x 15 square. Top: the original UDG. Bottom: embed-
ding by LP.

Geographical routing and the approximate shortest path
routing have their special requirements that differ from the
criteria commonly used for localization. Geographical rout-
ing constantly makes local decisions on choosing the next
hop, so it is important that the ranking of the distances from
nearby nodes to any faraway destination is well maintained
by the embedding. The graph-labelling-based approximate
shortest path routing routes along shortest paths in planar
spanners, so the distances between all pairs of nodes, adja-
cent or not, need to be well maintained in the embedding.
Those requirements are global structures of a localization
and differ from the comparatively more local criteria com-
monly used for localization — whether the node distance
passes the threshold of 1, or whether two edges incorrectly
cross or not cross. The success of the two routing algorithms
in the embedded graphs shows the power of local angle in-
formation for routing, which reaches beyond the common
objectives of network localization.

We experiment on sensor networks embedded with the
LP approach, and compare its routing performance to that
of the sensor networks with true coordinates. In the first

16

16

16

Figure 18. The unit disk graph of 600 nodes randomly deployed
inside an annulus. Top: the original UDG. Bottom: embedding
by LP.

experiment, we place n nodes in a 15 x 15 square with a
uniform distribution, and embed the largest connected com-
ponent. Then 20 source-destination node pairs are randomly
selected, and routing is performed for each pair. We mea-
sure the Euclidean length (resp., number of hops) of a rout-
ing path, as well as that of the routing path with the same
source-destination pair in the graph with true coordinates;
we call the ratio between them the length distortion (resp.,
hop distortion), and denote it by D; (resp., Dp). (Note
that the Euclidean length of a routing path performed on
the embedded graph should still be measured based on the
true Euclidean lengths of its edges.) In the second exper-
iment nodes are placed in an annulus with external radius
7.5 and internal radius 2.5, while other conditions are un-
changed. The results for GPSR and approximate shortest
path routing (ASPR) are shown in Fig. 19, where each result
is averaged over 50 experiments and 20 source-destination
pairs in each experiment.

Fig. 19 shows that for GPSR and ASPR, they both have
the same routing performance in the embedded networks

network in square
n= n = n = n = n =
200 400 600 800 1000
GPSR D; | 1.1549 | 1.0011 | 1.0000 | 1.0000 | 1.0000
GPSR Dy, | 1.1403 | 1.0007 | 1.0000 | 1.0000 | 1.0000
ASPR D, 1.0000 | 1.0000 | 1.0001 | 1.0000 | 1.0000
ASPR Dy | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
network in annulus
n = n = n = n = n =
200 400 600 800 1000
GPSR D; | 1.0580 | 1.0078 | 1.0014 | 1.0000 | 1.0000
GPSR Dy, | 1.0575 | 1.0099 | 1.0012 | 1.0000 | 1.0000

ASPR D; | 1.0000 | 1.0001 | 1.0000 | 1.0000 | 1.0000
ASPR Dy, | 1.0000 | 0.9989 | 1.0000 | 1.0000 | 1.0000

Figure 19. Length distortion and hop distortion for GPSR and
ASPR, averaged over 50 experiments and 20 source-destination
pairs per experiment.

as in the true networks, both in terms of length and hops.
In fact, a detailed study showed us that most of the time,
the routing routes in the embedded networks are identical
to their counterparts in the true networks. We have also
conducted experiment for many other inputs and in areas of
other shapes, and the results have been consistently as good.
Thus not only does the LP give very good local embed-
ding, i.e., neighboring nodes are close and non-neighboring
nodes are far away, but it also gives a quite accurate global
view such that geographical routing and approximate short-
est path routing on the embedded graph are almost identical
to those on the original (true) embedding.

6.3 Variations

In this subsection, we address the localization problem with
noisy angle measurements and with sensor networks mod-
elled as quasi-unit disk graphs. The simulation we have
shown so far assumes that the angles are measured accu-
rately. In practice measurement errors are inevitable. The
modelling of sensor networks as UDG can be inaccurate,
too, because network links can be lost due to noise, signal
interference or obstacles, and the transmission ranges of di-
rectional antennas are not circles. A more realistic model
for sensor networks is called quasi-unit disk graphs, where
a pair of nodes have an edge for sure if their distance is no
more than a < 1, don’t have an edge if their distance is
more than 1 apart, and may or may not have an edge if
their distance is between a and 1 [17].

We will show by simulation that the embedding algorithm
by LP is quite robust to measurement errors and network
models. Noisy measurements will introduce inconsistency
in the input data. For example, the measured inner an-
gles of a cycle may not sum up to the correct value. Thus
we modify the constraints of LP accorgingly. Specifically,
thgzeycle constraint isgmodified to be | T_, foei) cosbe,| <
e~ P |sinf,|and | P_ f(ei)sinbe,| <e- I_ |cosbel,
where ¢ is an additional variable. The non-adjacent node
pair constraint is modified to be £(e1)+£(e2) > a due to the
Quasi-UDG property. The edge-length constraint is main-
tained, and the crossing-edge constraint is discarded. The
objective function is modified to be minimizing e —min. £(e).
A solution of the LP gives the edge lengths; then we arbitrar-
ily choose a spanning tree of the network, and use its edge
lengths and measured angles to determine node positions.

In the following experiment, we assume that each node
measures the direction of an incident edge with an error
uniformly distributed in [-A,+A]. As a result, the error of
a local angle between adjacent edges can be as large as 2A
or —2A. For the quasi-UDG model, we assume that for two
nodes whose distance d is between « and 1, there is an edge
with probability %. Such a model has the property that
nearby nodes are more likely to have edges. We place 225
nodes in a 10 x 10 square. For the node positions we use the
grid with perturbation model. Specifically, The position of a
node indexed by (4,7) is (i- 0 +ycos¢,j-J+ysiny), where
0 is the grid’s step size, v is an i.i.d. Gaussian variable with
mean 0 and variance 012,, and ¢ is an i.i.d. variable uniformly
distributed in the range [0, 27]. For this experiment, § = 2
and o, = 1.5. The performance measurements include the
total distance violation, which is the number of node pairs
that are adjacent but have embedding distance more than 1
or that are non-adjacent but have embedding distance less
than a, and the total crossing violation, which is the number
of edge pairs that do not actually cross but mistakenly cross
in the embedding or the other way around. The results
are shown in Figure 20. Each result is averaged over 50
experiments. A typical result is shown in Figure 21.

total distance violation
A=1° T A=2°] A=3°TA=4°] A=5°
a=0.8 29.66 34.52 42.32 51.90 54.50
a=0.6 17.36 17.56 20.08 24.46 27.76

a=0.4 7.86 9.08 9.18 9.44 10.18
a=0.2 4.00 3.08 4.08 4.30 5.22
total crossing violation
A=1°TA=2° A=3°] A=4°] A=5°

a=0.8 69.46 77.58 90.98 128.26 134.24
a=0.6 35.72 38.68 38.96 52.60 57.80
a=04 11.94 13.68 16.10 16.38 16.96
a=0.2 6.98 5.60 7.98 9.26 9.56

Figure 20. Performance of embedding quasi-UDG with noisy
angle measurements. Each result is averaged over 50 experiments.

Figure 20 shows that the embedding algorithm by LP
is quite robust to noisy measurements of angles and the
quasi-UDG model. The values of total distance violation
and crossing violation are substantially greater than those
in Figure 16, but they are not large considering the size of
the graph. And a detailed study shows that the global struc-
ture of the graphs is maintained quite well, even though in
our experiments no landmarks are used to help fix the large-
scale structure. That can also be seen from Figure 21. We
have conducted experiments with many other inputs and
different quasi-UDG models and measurement error mod-
els, and the results have been very consistent.

7 Summary and future work

In this paper we studied embedding a unit disk graph in the
plane with angle constraints. We show theoretically that
this problem is actually NP-hard. We also propose a solu-
tion based on linear programming that gives very good re-
sults in practice. This work raises a few open questions. For
example, it’s unknown whether one can find an algorithm
that gives a good approximate embedding with theoretical
bounds in the worst case. Also, the linear program men-
tioned in this paper is a centralized algorithm, but in prac-
tice distributed localization methods are more desirable.

Figure 21. Embedding a quasi-UDG, with @ = 0.8 and A = 3°.
Top: the original quasi-UDG. Bottom: embedding by LP. The
total distance violation is 40; the total crossing violation is 89.

References

[1] J. Aspnes, D. Goldenberg, and Y. R. Yang. On the com-
putational complexity of sensor network localization. In
The 1st Int. Workshop on Algorithmic Aspects of Wire-
less Sensor Networks (ALGOSENSORS), pages 32—44,
2004.

[2] P. Biswas and Y. Ye. Semidefinite programming for ad
hoc wireless sensor network localization. In Proc. 3rd
Int. Symp. Information Processing in Sensor Networks,
pages 46-54, 2004.

[3] I. Borg and P. Groenen. Modern Multidimensional Scal-
ing: Theory and Applications. Springer-Verlag, 1997.

[4] P.Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Rout-
ing with guaranteed delivery in ad hoc wireless net-
works. In Proc. DialM’99, pages 48-55, 1999.

[5] H. Breu and D. G. Kirkpatrick. Unit disk graph recogni-
tion is NP-hard. Computational Geometry. Theory and
Applications, 9(1-2):3-24, 1998.

[6] V. W. Bryant. Straight line representation of planar
graphs. Elem. Math., 44:64-66, 1989.

[7] M. Béadoiu, E. D. Demaine, M. T. Hajiaghayi, and P. In-
dyk. Low-dimensional embedding with extra informa-
tion. In Proc. 20th Annual Symp. Computational Ge-
ometry, pages 320-329, 2004.

[8] L. Doherty, L. E. Ghaoui, and S. J. Pister. Convex po-
sition estimation in wireless sensor networks. In IEEE
Infocom, volume 3, pages 1655-1663, April 2001.

[9] I. Fary. On straight line representations of planar
graphs. Acta Sci. Math. (Szeged), 11:229-233, 1948.

[10] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler,
D. Estrin, and S. Wicker. Complex behavior at scale:
An experimental study of low-power wireless sensor
networks. Technical Report UCLA/CSD-TR 02-0013,
UCLA, 2002.

[11] J. Gao, L. J. Guibas, J. Hershberger, L. Zhang, and
A. Zhu. Geometric spanner for routing in mobile net-
works. In Proc. MobiHoc’01, pages 45-55, 2001.

[12] C. Gavoille, D. Peleg, S. Pérennes, and R. Raz. Distance
labeling in graphs. In Proc. 12th Annual ACM-SIAM
Symp. Discrete Algorithms, pages 210-219, 2001.

[13] C. Gotsman and Y. Koren. Distributed graph layout for
sensor networks. In Proc. Int. Symp. Grpah Drawing.

[14] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins.
Global Positioning Systems: Theory and Practice.
Springer, 5 edition, 2001.

[15] B. Karp and H. Kung. GPSR: Greedy perimeter state-
less routing for wireless networks. In Proc. Mobi-
Com’00, pages 243-254, 2000.

[16] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Unit disk
graph approximation. In Proc. 2004 joint workshop on
Foundations of mobile computing, pages 17-23, 2004.

[17] F. Kuhn and A. Zollinger. Ad-hoc networks beyond unit
disk graphs. In Proc. 2003 joint workshop on Founda-
tions of mobile computing, pages 69-78, 2003.

[18] X.-Y. Li, G. Calinescu, and P.-J. Wan. Distributed con-
struction of planar spanner and routing for ad hoc net-
works. In IEEE INFOCOM, pages 1268 — 1277, 2002.

[19] D. Moore, J. Leonard, D. Rus, and S. Teller. Robust
distributed network localization with noisy range mea-
surements. In Proc. 2nd ACM Conf. Embedded Net-
worked Sensor Systems (SenSys’04).

[20] T. Moscibroda, R. O’Dell, M. Wattenhofer, and
R. Wattenhofer. Virtual coordinates for ad hoc and sen-
sor networks. In Proc. 2004 joint workshop on Founda-
tions of Mobile Computing, pages 8—16, 2004.

[21] D. Niculescu and B. Nath. Ad hoc positioning system
(APS). In IEEE GLOBECOM, pages 2926-2931, 2001.

[22] D. Niculescu and B. Nath. Ad hoc positioning system
(APS) using AOA. In IEEE INFOCOM, volume 22,
2003.

[23] D. Niculescu and B. Nath. Error characteristics of ad
hoc positioning systems (APS). In MobiHoc ’04: Proc.
5th ACM Int. Symp. Mobile Ad Hoc Networking and
Computing, pages 20-30, 2004.

[24] N. B. Priyantha, A. Chakraborty, and H. Balakrish-
nan. The cricket location-support system. In Proc. Mo-
bicom’00, pages 32—43, 2000.

[25] R. Rajaraman. Topology control and routing in ad hoc
networks: a survey. SIGACT News, 33(2):60-73, 2002.

[26] A. Rao, C. Papadimitriou, S. Shenker, and I. Stoica.
Geographic routing without location information. In
Proc. Mobicom’03, pages 96—-108, 2003.

[27] A. Savvides, C.-C. Han, and M. B. Strivastava. Dy-
namic fine-grained localization in ad-hoc networks of
sensors. In Proc. MobiCom 2001, pages 166179, 2001.

[28] A. Savvides and M. B. Strivastava. Distributed fine-
grained localization in ad-hoc networks. submitted to
IEEE Trans. on Mobile Computing.

[29] Y. Shang, W. Ruml, Y. Zhang, and M. P. J. Fromherz.
Localization from mere connectivity. In Proc. Mobi-
Hoc’03, pages 201-212, 2003.

[30] A.M.-C. So and Y. Ye. Theory of semidefinite program-
ming for sensor network localization. In Proc. ACM-
SIAM Symp. Discrete Algorithms, 2005.

8 Appendix

Now we prove that a v/2-approximate embedding is topo-
logically equivalent with a valid embedding.

If there are four nodes A, B,C, D such that in the unit-
disk graph G there are edges AB,CD, AD, we show that
it’s impossible to have AB,C'D cross in a y/2-approximate
embedding &, but not cross in a valid embedding £*.

AD . L

® (if)

Figure 22. (i) A \/2-approximate embedding &; (ii) A valid
embedding £*.

Without loss of generality we assume that edge AB is no
shorter than C'D and the embedding £ looks like Figure 22
(i). First, if AB,CD cross in &, then \BAD + \CDA <
w. Otherwise AB,CD will never cross in any embedding
preserving the angles. Notice that the angle 6 between line
AB,CD doesn’t change for any embedding preserving the
angles. We argue that 6 is at most /6 if we can find a valid
embedding £* such that AB,CD don’t cross. See Figure 22
(ii). Specifically, in a valid embedding £* there are no edges
AC in the unit disk graph. Thus £*(C) is outside the unit
disk centered at £*(A). £%(B), £*(D) are inside the unit
disk centered at £(A). It’s not hard to see that the angle
0 achieves the maximum 7/6 when £*(A). £*(B), £*(D)
are exactly of distance 1 pairwise apart and D is arbitrarily
close to C such that C'D is arbitrarily close to the tangent
at C. So § < /6.

In a v/2-approximate embedding &, suppose O is the in-
tersection of edges AB,CD. \BOC = 0 < w/6. Since the
length of BC,BD,CA are all greater than v/2/2, the an-
gles NACB, \CBD are both less than 7/2. Thus the angle
\BCD, \CBA are less than 7/2 as well. Assume without
loss of generality that BO is longer than CO. We take the
perpendicular line through B to the line CO and denote the
intersection as P. P must be on the interior of line segment
CO since \OCB < /2. Thus the length of BC achieves
the maximum when CO has the same length of BO. Thus
d(E(B),E(C)) < 2d(E(B),£(0))sin(w/12) < 2sin(n/12) ~
0.52. This contradicts with the assumption that BC' has
length at least v/2/2.

