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Abstract. This paper studies the differences between two levels of synchronization in a dis-
tributed broadcast system (or a multiple-access channel). In the globally synchronous model, all
processors have access to a global clock. In the locally synchronous model, processors have local
clocks ticking at the same rate, but each clock starts individually when the processor wakes up.

We consider the fundamental problem of waking up all n processors of a completely connected
broadcast system. Some processors wake up spontaneously, while others have to be woken up. Only
awake processors can send messages; a sleeping processor is woken up upon hearing a message. The
processors hear a message in a given round if and only if exactly one processor sends a message in
that round. Our goal is to wake up all processors as fast as possible in the worst case, assuming an
adversary controls which processors wake up and when. We analyze the problem in both the globally
synchronous and locally synchronous models with or without the assumption that n is known to the
processors. We propose randomized and deterministic algorithms for the problem, as well as lower
bounds in some of the cases. These bounds establish a gap between the globally synchronous and
locally synchronous models.
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1. Introduction.

1.1. The problem. This paper focuses on the effects of the level of synchroniza-
tion required in broadcast systems (or multiple-access channels) such as the Ethernet.
The communication system is assumed to be synchronous, namely, processors send
messages in rounds. As the communication channel is shared by all processors, mes-
sages might collide. It is assumed that the processors succeed in hearing a message
in a given round if and only if exactly one processor sends a message in that round;
if more than one processor, or none of them, sends a message in that round, then
nobody hears anything. Hence the communication model is equivalent to the radio
model; cf. [1, 2, 5, 6, 7, 8, 9, 10, 14, 18, 19, 20, 22] in a complete graph without
collision detection. As pointed out in [3], which studied the relationships between
radio networks with and without collision detection, the absence of collision detection
characterizes noisy networks since the noise does not allow processors to distinguish
no transmission from multitransmission.
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Evidently, the possibility of collisions makes broadcast systems harder to coordi-
nate and control than standard point-to-point message passing systems, and perform-
ing even simple tasks poses serious difficulties. A central problem in such systems
is therefore to establish a pattern of access to the shared communication media that
will allow messages to go through with as little interruption as possible, i.e., avoid (or
efficiently resolve) message collisions.

This problem is somewhat easier if the processors are required to be constantly
attentive to the communication channel. This enables the system to use, for instance,
round-robin based access protocols, as well as other schemes based on the processors
being fully synchronized at all times. However, it is often desirable to allow a processor
to stop being “alert” on the communication channel, whenever there is no traffic
currently being transmitted on the channel, and the processor itself does not wish
to send a message. From the point of view of the communication system, such a
processor switches from “alert” to “sleeping,” until such time as its participation
is required again. Clearly, allowing processors to “sleep” entails a certain loss of
synchronization, which must be regained when the processors become alert again and
wish to communicate. This loss of synchronization and its effects are at the focus of
the current study.

Specifically, in this paper we consider the fundamental problem of waking up all of
n processors, numbered 1, . . . , n, in a completely connected broadcast system. Some
processors wake up spontaneously, in different rounds, while the others have to be
woken up. Only awake processors can send messages. A sleeping processor wakes up
upon hearing a message. This will happen on the first “successful” round, namely,
the first round when exactly one processor sends a message.

We consider two settings of measuring time. In the first setting, termed the
globally synchronous model, all processors have access to a global clock showing the
current round number. The global clock is always available, and when a processor
wakes up it can immediately see the current round number. The clock thus counts
round numbers globally for all processors, starting in round 1. In the second setting,
termed the locally synchronous model, each processor has a local clock. All local clocks
tick at the same rate, one tick per round. However, no global count is available, and
the local clock of processor i starts counting rounds in the round in which processor
i wakes up. Moreover, in each of the above settings, we distinguish the situation
when the size n of the system is known to all processors and the situation when n is
unknown.

Our goal is to construct algorithms for waking up all processors as fast as possible
via a multiple-access channel. We focus on the worst case, when an adversary controls
which processors wake up spontaneously and when. The time complexity of the
wakeup process is measured by the number of rounds elapsing from the time the first
processor wakes up (spontaneously) and the time all processors are woken up (i.e.,
the first successful round).

During the execution, each of the processors is active (sends a message) in some
rounds and idle in the others. The rounds in which a processor i is active are decided
by a local protocol Πi. The protocol Πi can be thought of as generating a binary
activation sequence αi, designating the activation times of processor i. Specifically, if
the sequence contains 1 in its tth position, i.e., αi[t] = 1, then processor i is required
to be active on the tth round after it wakes up; conversely, αi[t] = 0 means i must
remain silent.

The protocols Πi used by the processors may assume any one of a number of
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forms. In the current paper we distinguish between the following types of algorithms.
The simplest and most rigid type of protocol is what is hereafter referred to as a fixed
schedule. It is specified by a predefined (and sufficiently long) activation sequence αi

for each processor i. The sequence αi is constructed for each processor i in advance by
a preprocessing algorithm Πpre and is stored at its local memory. Once the processor
i wakes up, it starts following its activation sequence αi without deviation, regardless
of any other parameters or inputs it may have. We refer to the set of sequences
A = {α1, . . . , αn} of the fixed schedule as the activation set of the system. Observe
that using a fixed schedule makes the adversary rather powerful (in a manner of
speaking), as it can use this knowledge in order to decide on its waking strategy.

Alternatively, the protocol Πi may be an online distributed protocol, which is
invoked locally by processor i upon waking up and starts generating the activation
sequence αi online. Such a protocol may be either deterministic or randomized.

Note that in the locally synchronous model there is no difference between a fixed
schedule and a deterministic online algorithm; in both, the activation sequence αi

used by processor i is unique in all executions. This is no longer the case in the
globally synchronous model, where in different executions, processor i may wake up
on different rounds and may use the global round number as input to the algorithm Πi,
thus generating different sequences. Nevertheless, it is clear that even in the globally
synchronous model, the adversary has complete knowledge of the activation sequences,
as it controls the spontaneous wakeup time of the processors. The situation is radically
different once we consider randomized protocols, as in this setting the adversary is
prevented from knowing the activation sequences in advance.

1.2. Related work. Multiple-access channels, including systems such as the
Aloha multiaccess system, the local area Ethernet network, multitapped buses, satel-
lite communication systems, and packet radio networks, have been studied extensively
in the literature (see [4, 23] and the references therein). Some of these models (in par-
ticular the Ethernet) assume an intermediate model of collision detection, which is not
discussed here, in which the transmitting processor detects the fact that its message
has collided. This feature naturally simplifies the wakeup problem.

Collision detection and resolution, as well as access management algorithms for
multiple-access channels, were studied mainly in the queueing theory model, i.e.,
assuming a probability distribution on the arrival rate of messages at the different
processors; cf. [4, 17, 16, 15]. Also, the wakeup problem was not considered as such
in these contexts, although the complications that arise are similar. (The wakeup
problem has been studied in a number of other contexts within the area of distributed
systems; see, for example, [11, 13, 21], but the issues and techniques are naturally
different, given the radically different communication model.)

The broadcast operation in multihop radio networks was studied in [1, 2, 5, 6, 9,
10]. The model used in those papers is based on one of two assumptions, namely, either
there is a single source initiating the process, or all processors wake up spontaneously
at time 0. Hence the starting point for the broadcast problem assumes that the
wakeup problem, dealt with here, has already been solved. Nevertheless, there are
strong links between the models.

Our model is closely related to certain restricted forms of concurrent write PRAM
models. See, for example, [12].

To the best of our knowledge, the current paper is the first attempt to provide
worst-case time bounds (against an adversary) for the wakeup problem in the syn-
chronous setting.
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1.3. Our results. We begin by showing that in the globally synchronous model,
where all processors have access to a global clock, optimal deterministic wakeup time
is exactly n in the worst case if the size n is known to all processors. We also show
a randomized online algorithm that operates in time O(log n · log(1/ε)) and succeeds
in waking up the system with probability at least 1− ε under the same assumptions.
In the case of unknown n we construct a deterministic wakeup algorithm working in
worst-case time 4n.

Under the locally synchronous model with known n, we construct a randomized
online algorithm that operates in time O(n log(1/ε)) and succeeds in waking up the
system with probability at least 1− ε. On the other hand, we construct a O(n2 log n)
deterministic wakeup algorithm. We also show that even when n is known, every
deterministic wakeup algorithm requires worst-case time at least (1 + ε)n for some
ε > 0. This establishes a gap in efficiency between the locally and globally synchronous
models. Finally, still in the locally synchronous model with known n, we prove (non-
constructively) the existence of a fixed schedule with wakeup time O(n log2 n).

Under the weakest assumptions, namely, in the locally synchronous model without
the knowledge of n, we present two wakeup algorithms. The first is a randomized
online algorithm which succeeds in waking up the system in time O(n2 log(1/ε)) with
probability at least 1− ε; the second is a deterministic wakeup algorithm working in
time O(n4 log5 n).

2. The globally synchronous model. In this section we consider the globally
synchronous model, where a global clock is available to all processors, and every round
has a global number which is known to all currently awake processors.

2.1. Known system size. We first consider the case when the number of pro-
cessors, n, is known to all of them. In this simplest case we have tight upper and
lower bounds on the time required for waking up the system deterministically.

Theorem 2.1. If a global clock is available, the processors are labeled {1, . . . , n}
and the number n of processors is known to all of them, then there exists a determin-
istic online algorithm for waking up the system in time n in the worst case.

Proof. Every processor sends a message only once after waking up in the earliest
round whose number (modulo n) is equal to its label minus 1. Thus in each round
at most one processor sends a message. Clearly every processor sends a message at
most n rounds after waking up.

Theorem 2.2. The worst-case minimum time to wake up an n-processor system
by either a deterministic online algorithm or a fixed schedule is at least n, even if a
global clock is available and the number n of processors is known to all of them.

Proof. In order to prove the lower bound, consider an algorithm that guarantees
wakeup time k < n in the worst case. We show that this leads to a contradiction
by presenting an adversary that wakes up a certain nonempty subset of processors in
round 1 and prevents any processor from being the only sender of a message in any
round until round k.

The adversary constructs a sequence R0, . . . , Rk of sets of integers as follows. Let
R0 = {1, . . . , n}. Suppose that Rj is already constructed. Let Sj be the set of those
integers i ∈ Rj for which there exists a round r ≤ k such that i is the only processor
in Rj with the following property: it sends a message in round r if it wakes up in
round 1. Let Rj+1 = Rj \ Sj .

It follows from the construction that the union of all sets Sj , j < k, has size at
most k. Since k < n, it follows that Rk is nonempty. The adversary wakes up all
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processors from the set Rk in round 1. By definition of Rk, in any round r ∈ {1, . . . , k}
either none or at least two processors send messages.

We next show that the problem can be solved by a polylogarithmic time random-
ized online algorithm.

Algorithm Repeated-Decay. The algorithm makes use of a variant of the pro-
cedure Decay presented in [2] for performing broadcast. The procedure assumes that
all processors wake up at time 0, and some 1 ≤ d ≤ n processors contend on finding
a free time slot and broadcasting their message. Each of the d contending processors
repeatedly performs the following, up to a maximum of k = 2�log n	 rounds. In each
round it broadcasts a wakeup message and then flips a fair coin. If the outcome of
the coinflip is 0, then it quits the procedure.

To adapt the procedure to our setting, we partition the time axis into consecutive
blocks of k rounds each and repeatedly execute procedure Decay in each block of
rounds. A processor waking up spontaneously on some round t must remain silent
until the end of the current block and may start participating in procedure Decay
only at the beginning of the next block. Hence all currently awake processors execute
procedure Decay in an aligned manner.

Theorem 2.3. If a global clock is available and the number n of processors
is known to all of them, then the randomized algorithm Repeated-Decay succeeds in
waking up the system in time O(log n · log(1/ε)) with probability at least 1− ε.

Proof. It is shown in [2] that in a single invocation of procedure Decay, with
probability at least 1/2, there will be a successful round in which exactly one of the
contending processors will broadcast. (Intuitively, the reason can be thought of as
follows. Roughly half of the contenders quit after each round. Therefore there will
likely be one or two final rounds in the phase, roughly after log d rounds, in which
the number of participating contenders is small, say, one or two. On those rounds,
there’s a good chance of success.)

Consequently, the probability that k repeated invocations of the procedure will
fail to wake up the system is at most 1/2k. It follows that within log(1/ε) time blocks
from the time the first processor woke up spontaneously, the system will be woken up
with probability at least 1− 1/2log(1/ε) = 1− ε.

2.2. Unknown system size. If the number of processors is not known to any
of them but the global clock is available, it is still possible to wake up the system by
a deterministic online algorithm in linear time.

Algorithm Interleave. For any positive integer i, partition the set of all rounds
into segments Ri

1, R
i
2, . . . of length 2i, starting from round 1, i.e., Ri

j = {(j − 1)2i +

1, . . . , j · 2i}. Consider the following schedule. Nodes 1 and 2 send messages, respec-
tively, in the first and second round of each segment R1

j of length 2. Nodes 3 and
4 send messages, respectively, in the first and second round of each odd segment of
length 2, i.e., R1

j for odd j. Nodes 5, 6, 7, and 8 send messages, respectively, in the

first, second, third, and fourth round of odd segments of length 4, i.e., R2
j for odd

j. In general, for any i > 0, processors 2i + 1, . . . , 2i+1 send messages in consecutive
rounds of odd segments of length 2j , i.e., Ri

j for odd j.
Figure 2.1 illustrates the schedule. Note that in the set Sj = {i1 < i2 < · · ·} of

nodes transmitting on any given round j, the node numbers grow at least exponen-
tially, i.e., il+1 ≥ 2il for every l ≥ 1.

Theorem 2.4. For an n-processor system, if a global clock is available, then the
deterministic online algorithm Interleave succeeds in waking up the system in time at
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9  10   11  12  13  14  15  16                                                  9   10

3    4                3    4                3    4                3    4               3    4

5   6    7     8                            5    6    7    8                           5    6

1    2    1    2    1    2    1    2    1    2    1    2    1    2    1    2   1    2

1    2     3    4    5    6     7    8    9   10   11  12   13  14  15  16   17  18

Fig. 2.1. The schedule used by algorithm Interleave. Each node i is listed on all rounds in
which it transmits.

most 4n, even when the number n of processors is not known to any of them.
Proof. Suppose that 2k < n ≤ 2k+1, and let r′ be the round when the first

processor is woken up. Let r ≤ r′ + 2k+1 be the first round in which any processor
sends a message. Let S ⊆ {1, . . . , n} be the set of all processors woken up by the
adversary. We will show that some processor in S is the only one to send a message
in a round j ≤ r + 2k+1 < r′ + 4n.

Let x1 be the largest processor sending a message in round r. If no other processor
sends a message in round r, we are done. Otherwise, let x2 < x1 be the largest
such processor different from x1. We have x2 ≤ 2k. Consequently, in some round
r2 ≤ r + 2k, x2 is the largest processor that sends a message. If no other processor
sends a message in round r2, we are done. Otherwise, let x3 < x2 be the largest
such processor different from x2. We have x3 ≤ 2k−1. Consequently, in some round
r3 ≤ r + 2k + 2k−1, x3 is the largest processor that sends a message. Using this
reasoning inductively, we conclude that there is a round j ≤ r + 2k+1 < r′ + 4n in
which exactly one processor in S sends a message. (Indeed, if processor 1 or processor
2 is the largest one to send a message in a round, it is also unique.)

3. The locally synchronous model with known n. In this section we con-
sider the locally synchronous model, where only local (equal rate) clocks are available
at processors, and the local clock of each processor starts measuring time on the round
when the processor wakes up. We assume that the size n of the system is known to
all processors. In section 3.1 we present a randomized algorithm for the problem. We
then turn to fixed schedules. Following section 3.2, which provides some necessary
terminology, in section 3.3 we present a deterministic wakeup algorithm, section 3.4
describes a randomized schedule construction algorithm, and section 3.5 establishes a
lower bound on wakeup time with a fixed schedule.

3.1. Randomized online algorithm. Consider the following straightforward
randomized algorithm.

Algorithm Rand-Try. Upon waking up spontaneously, each processor performs
the following in each round. It randomly sets a bit

b←R

{
1 with probability 1/n,
0 with probability 1− 1/n.

If the outcome is b = 1, then it broadcasts a wakeup message.
Theorem 3.1. If the number n of processors is known to all of them, then the ran-

domized algorithm Rand-Try succeeds in waking up the system in time O(n log(1/ε))
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with probability at least 1− ε.
Proof. Let W(t) denote the event of a successful wakeup in a round t in which k

processors are awake. The success probability of this event is

P(W(t)) =

(
1− 1

n

)k−1

· 1
n
· k ≥

(
1− 1

n

)n

· 1
n
≥ 1

2en
.

Hence the probability that none of the first �2en ln(1/ε)	 rounds succeed is at most

P

(⋂
r∈R

W(t)

)
≤
(

1− 1

2en

)2en ln(1/ε)

≤ (1/e)ln(1/ε) = ε.

Hence after O(n log(1/ε)) from the time the first processor woke up spontaneously,
the system will be woken up with probability at least 1− ε.

3.2. Fixed schedules. Throughout the remainder of this section, we concen-
trate on fixed schedules (including deterministic algorithms as a special case). Let
us begin by introducing some necessary terminology concerning activation sequences
and executions. To begin with, note that each processor i may wake up and start
its activation sequence αi at a different time pi (controlled by the adversary). As we
start counting time from the round in which the first processor wakes up, at least one
processor i must have pi = 0. A sequence αi is said to be aligned if it starts at time
pi = 0.

The resulting set of start-time assignments for the processors is denoted P =
{(i, pi) | 1 ≤ i ≤ n}. Given such a set P , it is possible to view each sequence αi as
shifted to the right by pi positions, and padded by zeros at the left, thus yielding some
actual activation sequence αP

i which is the actual sequence governing the actions of
processor i in the execution corresponding to P . Hence when we talk hereafter about
bit position t of the sequence αi under the shift pattern P , we actually look at αP

i [t],
the tth bit of the sequence αP

i , or equivalently at αi[t − pi], the (t − pi)th bit of the
original sequence αi (if t < pi, then this bit is zero by default).

The set P is henceforth referred to as the shift pattern of the execution. Later on
we will also consider partial shift patterns, specifying the start-times for only some
of the activation sequences, i.e., P = {(ij , pij ) | 1 ≤ j ≤ k} for some k < n. For
an activation set A and a shift pattern P , the set of shifted activation sequences
resulting from applying P to A is denoted by AP = {αP

i | αi ∈ A}. Recall that every
shifted activation set AP must contain at least one aligned sequence, as every shift
pattern P contains at least one pair (i, pi) with pi = 0. The original activation set
(or equivalently, the set AP resulting from selecting the starting time pi = 0 for all
sequences) is referred to as the aligned activation set.

Definition 3.2. The bit position t ≥ 0 is covered by the shifted activation set
AP if there is exactly one sequence αi ∈ A satisfying αP

i [t] = 1, and the rest have
αP
j [t] = 0. Position t is blocked by AP if it is not covered by it. It is filled by AP if

there is at least one sequence αi ∈ A such that αP
i [t] = 1.

Two sequences αP
i and αP

j in the shifted activation set AP collide in position t if

αP
i [t] = αP

j [t] = 1.
For integers k ≥ m ≥ 0, the shift pattern P is said to be [m, k]-blocking for A if

the shifted activation set AP blocks every bit position m ≤ t ≤ k.
For an activation set A, let W (A) denote the worst-case wakeup time of A,

namely, the minimal integer k such that there does not exist a [0, k]-blocking shift
pattern P for A.
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Note that an algorithm for the wakeup problem does not need to generate activa-
tion sequences of infinite length. Assuming it generates the sequences of an activation
set A with W (A) <∞, one bit at a time, it suffices to generate the first W (A) bits.

Since the adversary controls the times when the processors wake up (i.e., it con-
trols the shift pattern P ), our problem of minimizing the wakeup time of the system
is equivalent to constructing an activation set A of n binary sequences αi of minimal
wakeup time W (A). Without loss of generality, all sequences start with bit 1, i.e.,
αi[1] = 1 for all i = 1, . . . , n. (This is because there is a one-to-one correspondence
between sequences of leading zeros and late wakeup times, and the latter are under
the control of the adversary. Hence W (A) cannot be improved by, say, padding each
sequence αi ∈ A with zi leading zeros, since the adversary can always nullify the
effect of the leading zeros, and mimic the worst shift pattern P for A on the modified
activation set, simply by making every processor i wake up zi rounds earlier than in
P .)

3.3. A deterministic online algorithm.

Algorithm Prime-Steps. Let qi, for i = 1, . . . , n, be the ith prime number
larger than n. We define a set of sequences A = {αi : i = 1, . . . , n} of lengths
mi = nqi + 1 as follows. The sequence αi, describing the behavior of processor i, has
bit 1 on positions kqi, for natural k = 0, 1, . . . , n, and bit 0 on all other positions.

For example, suppose that n = 4. Then we take q1 = 5, q2 = 7, q3 = 11, and
q4 = 13, and hence the (periodic) sequences of rounds t̄i in which node i transmits
(after waking up) are

t̄1 = (0, 5, 10, 15, 20),

t̄2 = (0, 7, 14, 21, 28),

t̄3 = (0, 11, 22, 33, 44),

t̄4 = (0, 13, 26, 39, 52).

The choice of algorithm Prime-Steps ensures that the sequences assigned to dif-
ferent processors collide rather infrequently, as detailed in the proof of the following
theorem.

Theorem 3.3. Algorithm Prime-Steps wakes up a system of n processors in time
O(n2 log n).

Proof. Since qi is of size O(n log n), for all i = 1, 2, . . . , n, we have mi ∈
O(n2 log n). Fix a shift pattern P . It suffices to show that there exists a bit po-
sition covered by AP . Let i be the processor that wakes up first, i.e., pi = 0. If bit
position 0 is not covered, then some other sequence αP

j1
necessarily has 1 in position

0. It follows that sequences αP
i and αP

j1
do not collide in positions t > 0. (Since qi and

qj1 are primes, αP
i and αP

j1
collide as rarely as qiqj1 which is larger than mi and mj1 .)

If bit position qi is not covered, it means that some sequence αP
j2

, different from αP
i

and αP
j1

, has 1 in position qi. Again, sequences αP
i and αP

j2
do not collide in positions

t > qi. Consequently, in order to guarantee that bit positions kqi, for i = 0, 1, 2, . . .
are not covered, the adversary must generate a collision with a different sequence αjk

for each bit position kqi. Since there are only n − 1 sequences different from αi, it
follows that one of the bit positions kqi, for i = 0, 1, . . . , n−1, must be covered. Since
nqi < mi, the theorem follows.
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3.4. The existence of a short fixed schedule. We now show that there exists
a fixed schedule guaranteeing much faster wakeup times than those given by the de-
terministic online algorithm Prime-Steps. The proof is nonconstructive; we describe
a randomized (Monte-Carlo) preprocessing algorithm Πrandom, which randomly se-
lects an activation set A for n processors, with the property that W (A) = O(n log2 n)
with probability at least 1 − 1

n . This implies that there must exist a fixed schedule

with wakeup time O(n log2 n), as the nonexistence of such a schedule would force
the success probability of algorithm Πrandom to be zero. However, we know of no
efficient (deterministic or randomized) algorithmic way for ascertaining the wakeup
time W (A) of any given activation set A, whether constructed by the preprocessing
algorithm Πrandom or produced by any other means. Subsequently, we do not have
a way of transforming algorithm Πrandom into a polynomial expected time Las Vegas
algorithm for constructing fixed schedules.

Set1 m = cn log n lnn, for c = 33.

Preprocessing algorithm Πrandom. Construct the sequences αi of the acti-
vation set A by randomly setting each bit αi[t], for 1 ≤ i ≤ n and 0 ≤ t ≤ m,
fixing

αi[t]←R

{
1 with probability 1/n,
0 with probability 1− 1/n.

Analysis. For every 0 ≤ ! ≤ log n, let T� = cn lnn · !.
For every 0 ≤ t ≤ m, let w(t) denote the number of processors already awake by

time t, w(t) = |{i | pi ≤ t}|. Note that w(t) is nondecreasing in the range 0 ≤ t ≤ m.
Definition 3.4. P is said to be !-regular if w(T�) ≥ 2� and w(T�+1) < 2�+1. Let

I(P ) denote the smallest index such that P is !-regular,

I(P ) = min{! | P is !-regular} .

Note. For every P , there exists some 0 ≤ ! ≤ log n such that P is !-regular;
hence 0 ≤ I(P ) ≤ log n.

Partition the shift patterns into classes P0, . . . ,Plogn, such that P� contains all
shift patterns P for which I(P ) = !,

P� = {P | I(P ) = !} .

Consider a shift pattern P ∈ P�. Let Cov(P, t) be the event that bit position t for
T� ≤ t ≤ m is covered by P (i.e., it has exactly one 1 and w(t)− 1 zeros). Then

P(Cov(P, t)) ≥ w(t) · 1
n
·
(

1− 1

n

)w(t)−1

≥ 2� · 1
n
·
(

1− 1

n

)n

≈ 2�

en
.

Let B(P, !) be the event that P is [T�, T�+1]-blocking. Then

P(B(P, !)) ≤
(

1− 2�

en

)cn lnn

≈ exp(−c lnn · 2�/e)

≤ exp(−c′ lnn · 2�) ,(1)

1For notational simplicity we ignore rounding throughout the paper; whenever an integer value is
called for, log n and lnn should be thought of as rounded upwards to �logn� and �lnn�, respectively.
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for c′ = 12.
For any two sets of processors S1, S2 let P�[S1, S2] denote the subclass of P� in

which 


0 ≤ pj ≤ T�, j ∈ S1 ,
T� < pj ≤ T�+1, j ∈ S2 ,
T�+1 < pj , j /∈ S1 ∪ S2 .

Note that the class P� is the union of subclasses P�[S1, S2] over all possible choices of
processor sets S1, S2 such that 2� ≤ |S1| < 2�+1 and 0 ≤ |S2| < 2�+1− |S1|. Formally,
letting

S = {(S1, S2) | 2� ≤ |S1| < 2�+1 and 0 ≤ |S2| < 2�+1 − |S1|} ,

we have

P� =
⋃

(S1,S2)∈S
P�[S1, S2] .

Let β(S1) denote the set of all shift patterns for the processors of S1 in the range
[0, T�]. Thus, for S1 = {j1, . . . , js},

β(S1) = {(pj1 , . . . , pjs) | 0 ≤ pjl ≤ T� for 1 ≤ l ≤ s} .

Similarly, let γ(S2) denote the set of all shift patterns for the processors of S2 in the
range (T�, T�+1], i.e., for S2 = {j1, . . . , jr},

γ(S2) = {(pj1 , . . . , pjr ) | T� < pjl ≤ T�+1 for 1 ≤ l ≤ r} .

For shift patterns β ∈ β(S1) and γ ∈ γ(S2), let P�[β, S1, γ, S2] denote the subclass
of P�[S1, S2] consisting of all shift patterns P ∈ P� that match β over S1 and γ over
S2. Hence

P� =
⋃

(S1,S2)∈S

⋃
β∈β(S1)

γ∈γ(S2)

P�[β, S1, γ, S2] .

For any set E of shift patterns, let B(E , !) denote the event that some P ∈ E is
[T�, T�+1]-blocking and let B(E) denote the event that some P ∈ E is blocking. Clearly,

P(B(E)) ≤ P(B(E , !))(2)

for every E and !. Note that the event B(P�[β, S1, γ, S2], !) happens if and only if
every P ∈ P�[β, S1, γ, S2] is [T�, T�+1]-blocking, since for all P, P ′ ∈ P�[β, S1, γ, S2], P
and P ′ have the same shift configuration in the range (T�, T�+1]; hence P is [T�, T�+1]-
blocking if and only if P ′ is [T�, T�+1]-blocking. Hence for every P ∈ P�[β, S1, γ, S2],

P(B(P�[β, S1, γ, S2], !)) = P(B(P, !)) ,

and using inequalities (2) and (1),

P(B(P�[β, S1, γ, S2])) ≤ P(B(P�[β, S1, γ, S2], !))

≤ exp(−c′ lnn · 2�) .(3)
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As

B(P�) =
⋃

(S1,S2)∈S

⋃
β∈β(S1)

γ∈γ(S2)

B(P�[β, S1, γ, S2]) ,

we have that

P(B(P�)) =
∑

(S1,S2)∈S

∑
β∈β(S1)

γ∈γ(S2)

P(B(P�[β, S1, γ, S2]))

≤
∑

(S1,S2)∈S
|β(S1)| · |γ(S2)| · P(B(P, !)) .

As

|β(S1)| = (T� + 1)s = (1 + cn lnn · !)s ,

|γ(S2)| = (T�+1 − T�)
r = (cn lnn)r ≤ (cn lnn)2

	+1−s ,

we have

|β(S1)| · |γ(S2)| ≤ (1 + cn lnn log n)2
	+1

;

hence by inequality (3)

P(B(P�)) ≤
∑

(S1,S2)∈S
(1 + cn lnn log n)2

	+1 · exp(−c′ lnn · 2�)

≤
∑

s≤2	+1

(
n

s

) ∑
r≤2	+1−s

(
n− s

r

)
· exp(2 lnn · 2�+1 − c′ lnn · 2�)

≤ n2	+2+2 · exp((4− c′) lnn · 2�)
≤ exp((10− c′) lnn · 2�)
≤ exp(−2 lnn) .

B(P) =
⋃

� B(P�), so

P(B(P)) ≤ log n · P(B(P�)) ≤ log n

n2
� 1

n
.

The above analysis yields the following theorem.
Theorem 3.5. For an n-processor system with n known to the processors,

algorithm Πrandom constructs an activation set A whose wakeup time is W (A) =
O(n log2 n) with probability at least 1− 1

n .
Corollary 3.6. For an n-processor system with n known to the processors,

there exists a fixed schedule with wakeup time O(n log2 n).
It is important to underline the difference between algorithm Rand-Try and al-

gorithm Πrandom. Although randomness is involved in both of them, the former is an
online algorithm, while the latter is a randomized method to produce a fixed schedule.
Consequently, in algorithm Rand-Try the adversary does not know the behavior of
processors in advance and must decide if and when to wake up each of them based
only on the history to date. In the second scenario, on the other hand, the adversary
is given a fixed schedule in advance, and hence it also has knowledge of the behavior of
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processors in the future. This additional information gives the adversary more power
which is reflected by the worse performance of the fixed schedule, as compared to the
randomized online algorithm Rand-Try. In principle, our existence proof can be used
for generating a (provably correct) short schedule; simply construct schedules one by
one as indicated by the proof and test each of them until finding one satisfying the
requirements. Unfortunately, testing the correctness of a given schedule (i.e., verifying
that it succeeds in waking up the processors against any adversarial behavior) seems
to be a difficult task, and we do not see any way of achieving it short of the naive
brute-force testing of all possible schedules.

3.5. Lower bound for fixed schedules. We do not know what is the optimal
time of a deterministic online wakeup algorithm (or fixed schedule). Below we give
a lower bound that serves primarily to establish a gap between the global clock and
local clocks scenarios; while in the former scenario we showed an algorithm working
in time n, it turns out that without a global clock, the wakeup time of any fixed
schedule (including in particular those generated by a deterministic algorithm) must
be greater than (1 + ε)n for some positive constant ε.

Consider an activation set consisting of n infinite binary activation sequences, A =
{α1, . . . , αn}. We show that the adversary can select the waking times of processors,
i.e., the shift pattern P for these sequences on the time axis, in such a way that no
message is heard within the first (1 + ε)n rounds, counted from waking up the first
processor, for some constant ε > 0. (No attempt has been made to optimize the
constant. We give the proof for ε = 0.001, when n is sufficiently large.)

To establish the lower bound, it suffices to show that for some 1 ≤ x ≤ n, there
exist an activation set B ⊂ A of cardinality x and an [0, x+εn]-blocking shift pattern
P for B. The remaining n−x sequences can be used to block at least n−x additional
positions, x + εn + 1, . . . , n + εn, using one shifted sequence to block each of these
positions.

Lemma 3.7 (blocking technique). Let Q be any set of m (not necessarily con-
secutive) positions and let B be any aligned activation set of m + 1 sequences. Then
there exists a nonempty subset of B which blocks all positions in Q.

Proof. Repeat the following process at most m times. For any position j in Q
covered by B, remove the sequence covering j from the set B. After removing at
most m sequences, all positions of Q are blocked and at least one sequence remains in
B.

Let δ and σ be positive integer constants to be determined later and let N = n/σ.
For any sequence αi, the m-head of αi, denoted head(αi,m), is its prefix of length

m. Let ones(αi,m) denote the number of ones in head(αi,m).
Lemma 3.8. For every two integers a ≥ 1 and m ≥ 2a, and for every aligned

activation set B of m or more sequences satisfying ones(αi,m) ≤ a, there exist an
integer 0 ≤ ! ≤ a − 1 and a set C ⊆ B of size |C| > m/2�+1 such that every αi ∈ C
contains zeros at all positions m/2�+1 + 1 to m/2�.

Proof. The proof is by induction on a. For a = 1, each sequence in B contains
a single 1 at the first position and zeros at all other positions; hence the set C = B
satisfies the claim with ! = 0. Considering a > 1, assume the claim holds for every
a′ < a. Let B′ be the set of all sequences αi ∈ B which contain a 1 at some position
from m/2 + 1 to m. If |B′| < m/2, then the claim holds for ! = 0 and C = B \ B′,
and we are done. Otherwise, letting m′ = m/2 and a′ = a − 1, the set B′ satisfies
|B′| ≥ m′ and every sequence αi ∈ B′ satisfies ones(αi,m

′) ≤ a′. Hence by the
inductive hypothesis, there exist an integer 0 ≤ !′ ≤ a′ − 1 and a set C ⊆ B′ of size
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|C| > m′/2�
′+1 such that every αi ∈ C contains zeros at all positions m′/2�

′+1 + 1 to
m′/2�

′
. The claim now holds for C and ! = !′ + 1.

Returning to the analysis, there are two cases.
Case 1: At least N sequences have N -heads with at most δ − 1 ones.
Let B be an activation set consisting of N sequences with the above property. By

Lemma 3.8, there exist an integer 0 ≤ ! ≤ δ−2 and a set C ⊆ B of size |C| > N/2�+1

such that every αi ∈ C contains zeros at all positions N/2�+1 + 1 to N/2�. Using
the blocking technique of Lemma 3.7, we can now use a subset C ′ ⊆ C of at most
N/2�+1 + 1 sequences to block the first N/2�+1 positions and gain N/2�+1 blocked
positions “for free.” Then we use the remaining n− |C ′| sequences to block n− |C ′|
additional positions for a total of n+ N

2	+1 − 1 positions. In the worst case, occurring
when ! = δ − 2, this amounts to n + n

σ·2δ−1 − 1 blocked positions.
Case 2: More than n−N sequences have N -heads with at least δ ones.
Let M = n − N and let B be an activation set of M sequences with the above

property. Let In denote the time interval of the first n + 1 positions, 0, 1, . . . , n. We
show that we can block all positions of In by selecting a subset C ⊆ B of ρn sequences,
for ρ ≤ 1 − 1/σ, and a shift pattern P for C, in such a way that each position of In
is filled by at least two sequences of CP . Assume, without loss of generality, that the
number of ones in each N -head is exactly δ (ignore other ones).

For each sequence αi ∈ B we consider only M possibilities of right shifts from
the aligned position, namely, by pi ∈ {1, . . . ,M}. We call these the possible shifts.
For each of them, the entire N -head of αi corresponds to positions within the interval
In. We construct a shift pattern P for a subset of sequences C ⊆ B. The set C is
initialized to ∅. Our goal is to fill all positions in In by CP . Suppose that at some
stage of the construction, some positions in In are already filled by CP . Selecting
a new sequence αi to be added to C, we look for a shift pi that fills as many new
positions as possible (i.e., we try to align many ones from the N -head of αi with yet
unfilled positions in In).

Lemma 3.9. If the number of filled positions in In is strictly less than kM/δ, for
1 ≤ k ≤ δ, then for any sequence αi ∈ B there exists a possible shift pi which fills at
least δ − k + 1 new positions in In.

Proof. Assume the contrary and consider a sequence αi such that for each possible
shift pi of αi, at least k ones of its N -head correspond to filled positions in In. Thus
in total we have at least kM such matches.

On the other hand, each filled position in In can be matched with at most δ ones
from the N -head of αi. There are strictly fewer than kM/δ filled positions in In, so
the total number of matches is strictly less than kM , a contradiction.

The process of constructing C and filling the positions of the interval In is divided
into δ consecutive stages. In stage k, when the number of filled positions in In is at
least (k− 1)M/δ but strictly smaller than kM/δ, it is possible to add in each step an
appropriately shifted sequence to C filling at least new δ−k+1 positions in In. Thus

stage k consists of at most (kMδ − (k−1)M
δ ) · 1

δ−k+1 such steps, and the total number
of sequences needed to fill all positions of In is at most

δ∑
k=1

⌈
1

δ − k + 1
· M

δ

⌉
+ N ≤ M

δ

δ∑
k=1

1

k
+ N + δ.

Notice that each of the last N sequences is used to fill only a single position thus
we can use sequences outside of B for this purpose.
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It follows that all positions of In can be blocked by repeating this process twice,
and the number of sequences used is at most

2n

(
1

δ

(
1− 1

σ

) δ∑
k=1

1

k
+

1

σ

)
+ 2δ .

Finally take constants δ = 8 and σ = 5. Then 1
δ

∑δ
k=1

1
k < 0.34, and the total number

of sequences used to block all positions of In is at most �0.95n	+ 16. The remaining
�0.05n� − 16 sequences are used to block �0.05n� − 16 additional positions for a total
of �1.05n�−16 positions. In Case 1 we could block at least n+ n

σ·2δ−1 −1 = n+ n
640−1

positions. This gives a lower bound 1.001n in both cases for sufficiently large n.
Theorem 3.10. If a global clock is not available, then every deterministic algo-

rithm waking up a system of n processors must use worst-case time at least (1 + ε)n
for some positive constant ε and sufficiently large n.

4. The locally synchronous model with unknown n. We conclude the pa-
per by presenting two wakeup algorithms working under the weakest scenario, namely,
when a global clock is not available and the size n of the system is not known to pro-
cessors. The first is a randomized online algorithm waking up the system in time
O(n2 log(1/ε)) with probability at least 1−ε, and the second is a deterministic online
algorithm working in worst case time O(n4 log5 n).

4.1. Randomized algorithm Size-Probing. For any integer j ≥ 1 let Tj =

�e ln(1/ε)	 · 2j+1. Also let Si =
∑i

j=1 Tj = �e ln(1/ε)	 · (2j+2 − 2). Any processor,
after waking up spontaneously, operates in consecutive phases numbered by positive
integers. Phase j lasts Tj rounds. In each of these rounds the processor randomly
sets a bit

b←R

{
1 with probability 1/2j ,
0 with probability 1− 1/2j .

If the outcome is b = 1, then it broadcasts a wakeup message.
Theorem 4.1. Algorithm Size-Probing succeeds in waking up an n-processor

system in time O(n2 log(1/ε)) with probability at least 1− ε.
Proof. Let i be the unique integer satisfying that 2i−1 < n ≤ 2i. Our analysis

focuses on what happens in the system beginning on the special round τ which is the
first round such that some processor wakes up (spontaneously) on round τ and no
processor wakes up on rounds τ + 1, . . . , τ + Si. Clearly τ ≤ nSi = O(n2 log(1/ε)).

Consider the set of rounds R = {τ +Si−1 +1, . . . , τ +Si}. Let p be the processor
that woke up on round τ and let X be the set of awake processors at the beginning of
round τ (excluding p). In each round t ∈ R, processor p broadcasts with probability
1/2i and all other awake processors from X broadcast with probabilities at most 1/2i.
For a round t ∈ R, let W(t) denote the event that round t ∈ R succeeds, namely,
exactly one processor broadcasts. The probability that this happens is

P(W(t)) ≥ 1

2i

(
1− 1

2i

)n

≥ 1

2i

(
1− 1

n

)n

≥ 1

2i
· 1

2e
=

1

2i+1 · e .

Hence the probability that none of the rounds in R succeed is at most

P

(⋂
t∈R

W(t)

)
≤
(

1− 1

2i+1 · e
)Ti
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≤
(

1− 1

2i+1 · e
)2i+1e ln(1/ε)

≤ (1/e)ln(1/ε) = ε.

Hence the system is woken up with probability at least 1−ε after τ+Si = O(n2 log(1/ε))
rounds.

4.2. Deterministic algorithm Squared Prime-Steps. In order to present
our last algorithm, define the integer sequence S = 〈s1, s2, . . .〉 by setting

sj =




1, j = 1,
2, j = 2,

s2
j−1 log2 sj−1, j ≥ 3.

For every processor i, find a value j, such that sj−1 < i ≤ sj , and construct
the sequence αi describing the behavior of processor i as in algorithm Prime-Steps
assuming the size of the system is sj . Take the resulting set of sequences αi, padded
by zeros on the right, to be the activation set of the algorithm.

Theorem 4.2. Algorithm Squared Prime-Steps wakes up a system of n processors
in time O(n4 log5 n).

Proof. Fix any shift pattern P . Consider the set S of processors that are active
during the execution of algorithm Squared Prime-Steps. Let t be the largest processor
number in S and let j be such that sj−1 < t ≤ sj . Let Ŝ ⊆ S be the set of all processors

with indices larger than sj−1 and Â = {αi : i ∈ Ŝ}. Recall that |αl| ∈ O(s2
j−1 log sj−1)

for all l ∈ S \ Ŝ. Therefore∑
l∈S\Ŝ

|αl| ∈ sj−1 ·O(s2
j−1 log sj−1) = O(s3

j−1 log sj−1) ⊆ O(s2
j ).

This means that the time used by algorithm Squared Prime-Steps, before processors
in Ŝ become active, is in O(s2

j ). In what follows we show that the system is woken up

in time at most |αi| after the first processor i ∈ Ŝ become active. Recall that sequence
αi has sj + 1 positions set to 1. Since any two sequences in ÂP collide at most once

(see proof of Theorem 3.3) and |Ŝ| ≤ sj − sj−1, the number of positions where αP
i is

set to 1 but all other sequences in ÂP are set to 0 is larger than sj−1 +1. Notice that

each sequence αP
l , for l ∈ S \ Ŝ, can collide in at most one position with the sequence

αP
i . This holds since |αl| ∈ O(s2

j−1 log sj−1) and distances between consecutive ones

in αi are at least sj ≥ s2
j−1 log2 sj−1. Since |S \ Ŝ| ≤ sj−1, the number of covered

positions is larger than sj−1 + 1− sj−1 = 1.
Hence the wakeup time is bounded by |αi| + O(s2

j ) ⊆ O(s2
j log sj). Since n ≥ t

and sj ≤ t2 log2 t we get the bound O(n4 log5 n) of wakeup time for a system of n
processors.
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