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Abstract. We present a simple, efficient, and unified solution to the problems of synchronizing, 
initializing, and integrating clocks for systems with different types of failures: crash, omission, and 
arbitrary failures with and without message authentication. This is the first known solution that achieves 
optimal accuracy-the accuracy of synchronized clocks (with respect to real time) is as good as that 
specified for the underlying hardware clocks. The solution is also optimal with respect to the number 
of faulty processes that can be tolerated to achieve this accuracy. 
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1. Introduction 
An important problem in distributed computing is that of synchronizing clocks in 
spite of faults. Given “hardware” clocks whose rate of drift from real time is within 
known bounds, synchronization consists of maintaining logical clocks that are 
never too far apart. Processes maintain these logical clocks by computing periodic 
adjustments to their hardware clocks. 

Although the underlying hardware clocks have a bounded rate of drift from real 
time, the drift of logical clocks can exceed this bound. In other words, while 
synchronization ensures that logical clocks are close together, the accuracy of these 
logical clocks (with respect to real time) can be lower than that specified for 
hardware clocks. This reduction in accuracy might appear to be an inherent 
consequence of synchronization in the presence of failures. The rate of drift of 
faulty hardware clocks can be beyond the specified bounds, and correct logical 
clocks can be forced to drift with them. Furthermore, variation in message delivery 
times introduces uncertainty in evaluating values of clocks of other processes. 
All previous synchronization algorithms exhibit this reduction in clock accuracy 
[3,4, 7, g-121. 

In this paper we show that accuracy need not be sacrificed in order to achieve 
synchronization. We present the first synchronization algorithm where logical 
clocks have the same accuracy as the underlying physical clocks. We show that no 
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synchronization algorithm can achieve a better accuracy, and therefore our algo- 
rithm is optimal in this respect. 

In previous results a different algorithm has been derived for each model of 
failure. In contrast, ours is a unified solution to clock synchronization for several 
models of failure: crash, omission, or arbitrary (i.e., “Byzantine”) failures with and 
without message authentication. With simple modifications the solution also 
provides for initial clock synchronization and the integration of new clocks. 

To overcome the overwhelming difficulty of developing an optimal synchroni- 
zation algorithm in a system with arbitrary failures, we first assume that the system 
provides message authentication [2, 71. With this assumption we are able to derive 
an algorithm that is both simple and efficient. We then replace signed communi- 
cation with a broadcast primitive that achieves those properties of message authen- 
tication required by the algorithm [ 141. This automatically results in an equivalent 
algorithm for systems with arbitrary failures without digital signatures. This solution 
is then simplified for crash and omission failures. 

We show that to achieve optimal accuracy, fewer than half the clocks in the 
system can be faulty. With arbitrary failures and in the absence of authentication, 
synchronization can be achieved only if fewer than a third of the clocks in the 
system are faulty [3]. For all the models of failure that we consider, our algorithms 
are optimal with respect to the number of faulty clocks they can tolerate.’ 

The solution presented in this paper is simple and efficient, and can be easily 
implemented [I]. Its message complexity is similar to those previously published. 
Further comparisons with previous results are presented in Section 8. 

The paper is organized as follows: We describe the system model in Section 2. 
In Section 3 we describe an authenticated synchronization algorithm that achieves 
optimal accuracy, and we derive bounds on the number of faults that can be 
tolerated to achieve this accuracy. In Section 4 we present a broadcast primi- 
tive that achieves properties of authenticated broadcasts and use it to get a 
nonauthenticated synchronization algorithm. Initialization and integration 
are described in Section 5. Crash and omission models of failure are con- 
sidered in Section 6. In Section 7 we describe how processes can maintain 
a single continuous clock. Discussion and concluding remarks are presented 
in Sections 8 and 9. 

2. The Model 

We consider a system of distributed processes that communicate through a reliable, 
error-free, and fully connected point-to-point message system (relaxing the connec- 
tivity requirement is discussed in Section 8). Each process has a physical “hardware” 
clock and computes its logical time by adding a locally determined adjustment to 
this physical clock. 

The notation used here closely follows that in [7]. Variables and constants 
associated with real time are in lowercase, and those corresponding to the logical 
time of a process are in uppercase. The following assumptions are made about the 
system: 

Al. The rate of drift of physical clocks from real time is bounded by a known 
constant p > 0. That is, if Ri(t) is the reading of the physical clock of process 
i at time t, then for all t2 L tl, 

(1 + p)-‘(t2 - tl) I Ri(tl) - Ri(tl) 5 (1 + p)(tz - tl). 

I The authenticated algorithm in [7] can overcome an arbitrary number of failures. However, the 
accuracy of the synchronized clocks is not optimal. 
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Thus, correct physical clocks are within a linear envelope of real time. 
We also see that the rate of drift between clocks is bounded by dr = 
Lo+PY(l +p). 

A2. There is a known upper bound t&l on the time required for a message to be 
prepared by a process, sent to all processes and processed by the recipients of 
the message. 

A process is faulty if it deviates from its algorithm or if its physical clock violates 
assumption A 1; otherwise it is said to be correct. Faulty processes may also collude 
to prevent correct processes from achieving synchronization. We use the term 
correct clock to refer to the logical clock of a correct process. 

Resynchronization proceeds in rounds, a period of time in which processes 
exchange messages and reset their clocks. To simplify the presentation and analysis, 
we adopt the standard convention that a process i starts a new logical clock, denoted 
C!, after the kth resynchronization. In practice, this introduces some ambiguity as 
to which clock a process should use when an external application requests the time. 
In Section 7 we remove this ambiguity by showing how each process can maintain 
a single continuous logical clock. Define beg k and end k to be the real time at which 
the first and last correct process, respectively, start their kth clocks. The period 
[begk, endk] is the kth resynchronization period. 

Given the above assumptions, a synchronization algorithm is one that satisfies 
the following conditions for all correct clocks i and j, all k L 1, and t E 
[endk, endk+l]: 

(1) Agreement. There exists a constant &ax such that 

1 Cf@) - C;(t) 1 5 D,,. 

(2) Accuracy. There exists a constant y such that, for any execution of the 
algorithm, 

(1 + y)-9 + a 5 Cf(t) I (1 + y)t + b 

for some constants a and b that depend on the initial conditions of this 
execution. 

The agreement condition asserts that the maximum deviation between correct 
logical clocks is bounded. The accuracy condition states that correct logical clocks 
are within a linear envelope of real time. 

Note that y is a bound on the rate of drift of logical clocks from real time and 
hence is a measure of their accuracy with respect to real time. We are interested in 
synchronization algorithms that minimize y. In Theorem 2 we show that y cannot 
be smaller than p, the bound on the accuracy of physical clocks. Therefore we are 
interested in algorithms satisfying the following conditions: 

(3) Optimal accuracy. For any execution of the algorithm, for all correct clocks i, 
all k 2 1, and t E [endk, endk+‘], 

(1 + &‘t + a 5 C;(t) s (1 + ,o)t + b 

for some constants a and b that depend on the initial conditions of this 
execution. 
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3. The Authenticated Algorithm 

The following is an informal description of a synchronization algorithm for systems 
with n processes of which at most f are faulty. The algorithm requires that n L 
2f+ 1 and that messages are authenticated. Informally, authentication prevents a 
faulty process from changing a message it relays, or introducing a new message 
into the system and claiming to have received it from some other process. 

Let P be the logical time between resynchronizations. A process expects the kth 
resynchronization, for k L 1, at time kp on its logical clock. When Ckl(t) = kP it 
broadcasts a signed message of the form (round k), indicating that it is ready to 
resynchronize. When a process receives such a message fromf+ 1 distinct processes, 
it knows that at least one correct process is ready to resynchronize. It is then said 
to accept the message, and decides to resynchronize, even if its logical clock has 
not yet reached kP. A process resynchronizes by starting its kth clock, setting it to 
kP + (Y, where (Y is a constant. To ensure that clocks are never set back, cr is chosen 
to be greater than the increase in Ck-’ since the process sent a (round k) message. 
After resynchronizing, the process also relays the f + 1 signed (round k) messages 
to all other processes to ensure that they also resynchronize. The algorithm is 
described in Figure 1. We show that it achieves agreement and accuracy. We later 
modify it to achieve optimal accuracy. 

3.1 PROOF OF CORRECTNESS: AGREEMENT. We first show that the algorithm 
achieves the agreement property. Define readyk to be the earliest (real) time at 
which any correct process sends a (round k) message. We assume that the clocks 
C” of correct processes are synchronized; that is, at ready’ all correct processes are 
using clock Co and, for all correct processes i and j, 1 G(ready *) - Cy(ready ‘) 1 5 
D . In Section 5 we describe an algorithm for achieving this initial synchroniza- 
tiz: For ease of presentation, we assume that the maximum permitted deviation 
between correct logical clocks, D,,, is a given constraint. 

LEMMA 1. The kth resynchronization period is bounded in size. That is, there 
exists a constant dmin such that, for k L 1, endk - begk 5 dmin. 

PROOF. Let p be the first correct process to start its kth clock. By definition, 
this occurs at begk. Process p must have receivedf+ 1 signed (round k) messages. 
Since it relays all these messages, every correct process receives them and accepts 
the message (round k) by time begk + tdel. Hence every correct process starts its 
kth clock by time begk + &I. By setting dmin = t&l, we get endk 5 begk + dmi,. Cl 

LEMMA 2. At the end of the kth resynchronization period, correct clocks difler 
by at most dmin( 1 + p). That is, for k 2 1 and for all correct processes i and j, 
1 C?(endk) - Cf(endk) I I d,&l + p). 

PROOF. By Lemma 1, endk - begk 5 dmi,. Therefore the last correct process to 
start its kth clock does so within dmin of the first correct clock doing so, and in this 
period, the first clock could have drifted by at most pdmin. Thus, at endk, the 
difference between correct clocks is at most dmi,( 1 + p). El 

LEMMA 3. No correct process starts its kth clock until at least one correct process 
is ready to do so, that is, begk I ready k for k 2 1. 

PROOF. The first correct process to start its kth clock does so only when it 
accepts a (round k) message, that is, only when it receives (round k) messages 
from at least f + 1 processes. Since at least one correct process must have sent 
a (round k) message, begk L readyk. 0 
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cobegin 
if Ck-‘(t) = kP 

+ sign and broadcast (round k) fi 
/I 

/* ready to start d */ 

if accepted the message (round k) /* receivedf+ 1 signed (round k) messages */ 
+ C”(t) := kP + a; /* start Ck */ 

relay all f + 1 signed messages to all fi 
coend 

FIG. 1. An authenticated algorithm for clock synchronization for process p for round k. 

Assume that the following conditions hold for some k 1 1. 

S 1. By readyk, all correct processes have already started clock Ck-‘. 
S2. For correct processes i andj, 1 Cf-‘(readyk) - C,“-‘(readyk)l I D,,. 

With these assumptions we prove the following lemmas: 

LEMMA 4. All correct processes start their kth clocks soon after one correct 
process is ready to do so. Specifically, endk - readyk I (1 + p)D,, + tdel. 

PROOF. The first correct process to send a (round k) message does so at readyk. 
By S2, the slowest correct clock is no more than D,, behind. Hence every correct 
process sends a (round k) message no later than (1 + p)D,, after readyk, and 
therefore every correct process starts its kth clock within a further t&l. Thus endk 
- readyk I (1 + p)Dmax + t&l. [7 

By Lemma 4, the real time that elapses from the time a correct process sends 
a (round k) message (when Ck-’ reads kP) to the time it starts Ck (setting it to 
kP + (Y) is at most (1 + p)Dmax + t&l. Therefore, if LY L [( 1 + p)D,, + t&]( 1 -I- p), 
then no correct process sets its logical clock backward. Henceforth we assume that 
(Y satisfies this relation. 

LEMMA 5. The period between resynchronizations is bounded. Specifically, 
endk” - endk I (P - (Y)( I + p) + t&l. 

PROOF. Every correct process that sends a (round k + 1) message does so no 
later than the time (k + 1)P on its clock, that is, no later than (P - a)( 1 + p) after 
endk. Every process starts its k + 1st clock within a further t&l, thus proving the 
lemma. Cl 

We now assume that P satisfies the following two relations: D,, L [P( 1 + p) + 
&l]dr + dmi,( 1 + p) and P > dmin( 1 + p) + (Y. With these assumptions we prove the 
following lemmas: 

LEMMA 6. The maximum deviation between the kth logical clocks of correct 
processes i and j is bounded. That is, for t E [endk, endk+‘], 1 C:(t) - C!(t) I I 
D ?PlQX* 

PfWOF. By Lemma 2, correct logical clocks are at most d&l + p) apart 
at endk. By Lemma 5, endk” - endk I (P - cy)( 1 + p) + t&l, and clocks of 
correct processes can drift apart at a rate dr in this interval. Thus, in the interval 
[endk, endk+‘], 

1 C:(t) - CT(t) I I [(P - a)(1 + p) + &]dr + dmi,(l + p) 
I [P( I + P) + tdel]dr + dmi,( 1 + p) I D,, 

since P satisfies the relation D max I [P( 1 + p) + tkl]dr + dmi,( 1 + p). 0 
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LEMMA 7. 
begk+‘. 

Synchronization periods do not overlap. That is, endk c readyk+’ = 

PROOF. The first correct process to send a (round k + 1) message does so no 
earlier than at real time begk + (P - a)/( 1 + p). Therefore readyk+’ 2 begk + 
(P - cu)/( 1 + p). Hence, by Lemma 1, readyk+’ L endk - dmin + (P - a)/( 1 + p). 
By Lemma 3, ready k+’ I begk+‘. Thus endk c readyk+’ 5 begk+‘, since P satisfies 
P>dmi,(l +p)+a. 0 

From the proofs of Lemmas 6 and 7, we see that D,, cannot be made arbitrarily 
small. The proof of Lemma 6 shows that II,,,, 2 [(P - cr)(l + p) + &Jdr + 
dmin( 1 + p). From Lemma 7 we see that P - (Y L dm,(l + p). Therefore the 
smallest possible D,, that this algorithm can achieve is given by D,, z 
dmin( 1 + p)3 + tdeldr. Dolev et al. have shown that the real time between when 
clocks read the same value cannot be guaranteed to be better than t&2 [3]. Hence, 
when optimal accuracy is required, D,, must be at least (1 + p)-‘&l/2. 

LEMMA 8. The algorithm in Figure 1 achieves agreement. 

PROOF. If assumptions Sl and S2 hold for some k 2 1, then Lemma 6 states 
that the agreement condition is satisfied for k. We now show, by induction on k, 
that Sl and S2 hold for all k 2 1, and therefore agreement is satisfied for all k 1 1, 
As stated earlier, our initialization algorithm will guarantee that S 1 and S2 are true 
for the base case, k = 1. 

Assume that Sl and S2 are true for some k. By Lemma 7, endk c readyk+l I 
begk+‘. Thus, at readyk+‘, all correct processes use their kth clocks. From 
Lemma 6 it follows that, at t = readyk+’ 
I c:<t> - C,k(t) I = &ax. 

and for correct processes i and j, 
ThusSlandS2aretruefork+ 1. Cl 

3.2 PROOF OF CORRECTNESS: ACCURACY. We now show that the algorithm 
achieves accuracy. 

LEMMA 9. For any execution of the algorithm of Figure 1, there exists a constant 
b, such that, for all correct processes i, all k 2 1, andfor t E [endk, endk+‘], 

(1 + ,o)t + b. 

PROOF. Let E(to) be the set of executions of the algorithm in which ready1 = 
to. Consider an execution e E E(t0) in which for all k z 1, readyk = begk, and the 
clock of correct process j, Cj”, is started by begk. In execution e the physical clock 
of process j runs at the maximum possible rate, that is, (1 + p) with respect to real 
time. It is clear that execution e is possible, 

Since Cf is started at begk for each k, it is started at least as early as any other 
correct Cf in execution e. Furthermore, between begk and begk+‘, Cf increases at 
the maximum possible rate. Hence Cf is an upper bound on the kth logical clocks 
of all correct processes in execution e. That is, for t E [endk, endk+‘], C;(t) 5 C?(t), 
for any other correct process i. 

We now show that Cjk is an upper bound on the kth logical clock of any correct 
process in any execution in E(to). To prove this, WC first show that, for any k 2 1, 
readyk in execution e is at least as early as readyk in any other execution 
e’ E E(to). The proof is by induction on k. 

For k = 1, ready’ = to for all executions in E(to). Assume, for some k > 1, 
that readyk in execution e is no later than readyk in execution e’. In execution e, 
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begk = readyk, the kth logical clock of process j is started at begk, and process j 
runs at the maximum possible rate. Therefore readyk+’ = readyk + (P - a)/( 1 + 
p). It is easy to show that, in any execution, readyk+’ I readyk + (P - a)/( 1 + p). 
Therefore readyk+’ in execution e is at least as early as that in execution e’. 

In execution e, begk = readyk for all k 2 1. By Lemma 3, in any execution, begk 
2 readyk for all k 2 1. Therefore the kth logical clock of process j is started no 
later than that of any other correct process in any execution in E(Q. Since process 
j also runs at the maximum possible rate, C; is an upper bound on the kth logical 
clocks of all correct processes in all executions in E(t,-J. 

We now estimate an upper bound for CF. For process j, the interval of real time 
between consecutive resynchronizations is (P - a)/( 1 + p). In this period its logical 
time increases by P. Therefore, for all k r 1 and for t E [endk, endk+‘], 

C?(t) - Cj((to) 
t - to =&(l +P)* 

Since Cj(to) = P + (Y, a constant 

c;(t) 5 + (1 + P)t + b, -a 

where b is a constant that depends on to. Cl 

LEMMA 10. For any execution of the algorithm of Figure 1, there exists a 
constant a, such that, for all correct processes i, all k L 1, and for t E [end k, end k+‘], 

p _ (y + iel,(l + p)l (1 + d-‘t + a 5 CXO. 

PROOF. Let F(t0) be the set of executions of the algorithm in which end’ = to. 
Consider an execution e E F(to) where, for all k 1 1, correct process j accepts the 
(round k) message t del in real time after Cf-’ reads kP. Also, CT is started at endk 
for all k 1 1. In e the physical clock of process j runs at the minimum possible 
rate, that is, at (1 + p)-’ with respect to real time. Such an execution is clearly 
possible. It is easy to show that Cf is a lower bound on the kth logical clocks of all 
correct processes in execution e. That is, for t E [endk, endk+‘], C?(t) 5 C!(t), for 
any other correct process i. 

Cf is also a lower bound on the kth logical clocks of all correct processes in any 
execution in F(to). In execution e we have endk+’ = endk + (P - (Y)( 1 + p) + t&l. 
The proof follows by Lemma 5 and an easy induction on k. 

We now estimate a lower bound for Cj. For process j, (P - CX)( 1 + p) + t&l is the 
interval of real time between consecutive resynchronizations. In this period, its 
logical time increases by P. Therefore, as in Lemma 9, for all k 2 I and t E [endk, 
endk+‘], 

cm = (p 
P 

- a)(1 + L’) + tdel 
t+a 

for some constant a that depends on to. Cl 

THEOREM 1. The algorithm in Figure 1 is a synchronization algorithm. With 
this algorithm correct processes send a total of O(n2) signed messages per resyn- 
chronization. 
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PROOF. By Lemma 8, the algorithm achieves agreement. To show accurcy let 

(1 + Y) = $J (1 + PI. 

From Lemma 9, C;(t) 5 (1 + -y)t + b. Note that 

P-a 
p (1 + p)-’ I p 

P 
- a + [fdel/(l + P)l 

(1 + p)-‘. 

Hence, from Lemma 10, (1 + T)-‘t + a s C;(t), and accuracy is achieved. 
In each resynchronization round, each correct process broadcasts at most one 

message with its own signature and one message containing the f + 1 signed 
messages it needs to relay. Thus correct processes send a total of O(n2) messages 
per resynchronization. Cl 

Hence the number of messages and bits exchanged for each resynchronization is 
comparable to that in [7]. 

3.3 ACHIEVING OPTIMAL ACCURACY 

3.3.1 A Bound on Accuracy. We first show that, for any synchronization 
algorithm, the accuracy of synchronized logical clocks cannot exceed that of the 
underlying hardware clocks. 

THEOREM 2. For any synchronization algorithm, even in the absence of faults, 
the bound on the rate of drift of logical clocks from real time is at least as large as 
the bound on the rate of drift of physical clocks. 

PROOF. Consider an algorithm that satisfies agreement and accuracy. For 
simplicity, assume that all physical clocks are set to 0 at time t = 0, that is, 
Ri(0) = 0 for all i. Then, all correct physical clocks satisfy the relation 

(1 + p)-‘t I Ri(t) 5 (1 + p)t. 

Consider an execution of the algorithm in which all processes in the system are 
correct and the physical clock of each process runs at the maximum possible rate. 
That is, for all processes i, R:‘)(t) = (1 + p)t, where superscripts denote execution 
numbers. Further, assume the transmission delay for each message is exactly d, 
with d 5 t&l/( 1 + p)‘. By accuracy, in this execution, for all correct processes i and 
for some constant b(l), 

C!“(t) 5 (1 + T)t + b(l). I (1) 

Now consider a second execution in which all processes are still correct, but have 
their physical clocks running at the minimum possible rate. That is, for all processes 
j, Rj2’(t) = (1 + p)-‘t. Let the transmission delay for each message be d( 1 + P)~. 
Again, by accuracy, in this execution for all correct processes i and for some 
constant a”), 

(1 + T)-‘t + ac2) 5 C$(t). (2) 

Assume that, for each process i, the initial state is the same in both executions. 
That is, in both executions, a process starts executing the algorithm at the same 
reading of its physical clock. In the second execution, physical clocks and the speed 
at which messages are delivered are slowed down by the same factor, (1 + P)~, with 
respect to the first execution. Therefore, from within the system, both executions 
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appear identical to every process. Hence, considering a particular process i, the 
rate at which its logical time advances with respect to its physical time must be the 
same in both executions. In particular, if Rl’)(t,) = Rj2)(t2) for some tl and t2, then 
Cj’)(t,) = c$2)(t2). 

Since R!‘)(t) = (1 + p)t and Rj2)(t) = (1 + p)-‘t, it follows that, if t2 = (1 + p)2tl, 

then Ri’)(tl) = RP)(t2) and therefore @(tl) = Cj2)(t2). Therefore, from eqs. (1) 
and (2), (1 + T)tl + b(‘) L (1 + y)-‘(1 + p)2tl + u(2) for all tl. This implies 
that y 1 p. 0 

3.3.2 An Algorithm for Optimal Accuracy. We now describe a modification to 
our algorithm to achieve optimal accuracy. In the algorithm of Figure 1, correct 
processes start their kth clocks as soon as they accept a (round k) message. However, 
there iS an UnCertainty Of tdel in the time it takes for COKeCt processes t0 accept 
a message. It is this uncertainty that introduces a difference in the logical time 
between resynchronizations. For the fastest clock, the logical time between 
resynchronizations is P - a! (Lemma 9), and for the slowest clock, this interval 
is P - (Y + tdel/( 1 + p) (Lemma 10). Informally, we can compensate for this as 
follows: If a process accepts a (round k) message early, it delays the starting of 
the kth clock by tdel/2( 1 + p). If it accepts the message late, it advances 
the starting of the kth clock by tdel/2( 1 + p). Thus, in the cases described in 
both Lemmas 9 and 10, the logical time between resynchronizations becomes 
P - (Y + /3, where B = tdel/2( 1 + p). This is used to show that the drift of logical 
clocks is bound above by 

P 
P- a+Bu +P) 

and below by 

By slowing down the logical clocks by a factor of P/P - a! + 8, we obtain an 
algorithm where the rate of drift of logical clocks is optimal: bounded by (1 + p) 
above and by (1 + p)-’ below. 

More precisely, suppose process i accepts (round k) at time t, and let T = C!-‘(t). 
If T 5 kP + /3, we say the (round k) message was accepted early. Process i delays 
the starting of C: by setting it to kP + cr when Ct-’ reads min(T + 8, kP + 8). In 
this case, the start of Cf is delayed by at most /3, but never beyond the time when 
Cf-’ reads kP + 8. 

If T > kP + /3, we say (round k) was accepted late. Process i advances the starting 
of C!, by setting it to kP + a! when C?’ reads T’ = max(T - 8, kP + 8). Note 
that C! must be started when Cf-’ reads T’ c T, that is, “in the past.” This is 
achieved by setting Cf to kP + LY + (T - T’) when Cf-l reads T. That is, C! is set 
to min(Cf-‘(t) + (Y - /3, kP + (Y + /3) at time t. In this case, the start of C! is 
advanced by at most /3, but never started before C!-’ reads kP + 8. 

The definitions of readyk, begk, and endk are the same as before: readyk is the 
earliest time at which a correct process sends a (round k) message, and begk and 
endk are the earliest and latest times at which some correct process starts its kth 
clock (setting it to kp + LY). 

We first show that this modified algorithm achieves agreement by showing that 
Lemmas l-8 still hold. 
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PROOF OF LEMMA 1. The first correct process to start its kth clock can start it 
@ in logical time (or /3( 1 + p) in real time) before it accepts a (round k) message. 
Every correct process accepts (round k) within t&l of the first correct process 
accepting it and starts its kth clock within a further @( 1 + p). Therefore endk - 
begk 5 tdel + 2/3( 1 + p) = 2tdel. Therefore Lemma 1 is satisfied with dmin = 2&l. 0 

PROOF OF LEMMA 2. Same as in Section 3. 0 

PROOF OF LEMMA 3. Consider any correct process i. By definition, Cf-‘(ready7 
I kP. Let process i accept the (round k) message at real time t. Note that t L 
readyk. If Cf’(t) 5 kP + /?, then process i delays the starting of the kth clock. If 
C:-‘(t) > kP + p, process i starts its kth clock no earlier than at real time t’ such 
that Cf’(t ‘) = kP + p. Clearly, t ’ L readyk. Hence no correct process starts its kth 
clock before readyk. Cl 

PROOF OF LEMMA 4. Every correct process that broadcasts a (round k) message 
does so by real time tl = readyk + (1 + p)Dmax. Therefore every correct process 
accepts (round k) by t2 = tl + t&l. For any correct process i, Cf-‘(t,) 2 kP, and 
hence Cf’(t2) L kP + tdel/( 1 + p) = kP + 2/I. Thus, with the modified algorithm, 
every correct process starts its kth clock at real time t < t2. Therefore endk - readyk 
5 (1 + p)&ax + tdel. 0 

PROOF OF LEMMA 5. Consider any correct process i. Process i accepts 
a (round k + 1) message by real time t = endk + (P - a)( 1 - p) + tdel. Also, 
C:(t) r kP + tdel/( 1 + p). Therefore process i starts its k + 1st clock by real 
time t, proving the lemma. 

PROOFS OF LEMMAS 6, 7, AND 8. Same as in Section 3. 0 

Thus the modified algorithm achieves agreement. To show that the modified 
algorithm achieves optimal accuracy, we first evaluate the bounds on the drift of 
logical clocks from real time. 

LEMMA 9’. For any execution of the modified algorithm, there exists a constant 
d, such that for all correct processes i, all k L 1, and t E [endk, endk+‘], 

Cb(t) 5 p-;+BU +p)t+d. 

PROOF. Let @to) be the set of executions of the algorithm in which 
ready’ = to. Consider an execution e E E(to) in which, for all k 2 1, correct process 
j broadcasts and accepts (round k) at readyk. In execution e the physical clock of 
process j runs at the maximum possible rate, that is, (1 + p) with respect to real 
time. 

Process j accepts (round k) at readyk when CT-l reads kP (i.e., early). There- 
fore C$ is started at real time t such that C!-‘(t) = kP + ,8, that is, when 
t = readyk + p/(1 + p). Note that no correct physical clock increases by more 
than /3 between readyk and t. 

Consider another correct process i. By definition of readyk, @‘(ready9 5 kP, 
and therefore C!-‘(t) zz kP + /3. Suppose process i accepts (round k) when C:-’ 
reads Ti. This must occur after readyk, and therefore, at time t, C;-‘(t) 5 Ti + /3. 
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We consider two cases: 
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(1) If Ti 5 kP + @, then process i starts Cf at real time t ’ when Cf-‘(t ‘) = 
min(Ti + /3, kP + p). Since both C:-‘(t) 5 Ti + /? and C!-‘(t) I kP + /3, then 
t 5 t’. 

(2) If Ti > kP + /3, process i starts C: at real time t ’ when Cf-‘(t ‘) = max(Ti - p, 
kP + Is). Therefore, Cf-‘(t’) h kP + ,f3 z C:-‘(t) and t’ L t. 

Thus, in execution e, for any k L 1, the kth clock of process i is started no earlier 
than that of process j. Between resynchronizations Cf runs at the maximum 
possible rate. Therefore Cj” is an upper bound on the kth logical clock of all correct 
processes in execution e. As in Lemma 9, we can also show that Cjk is an upper 
bound on the kth clock of all correct processes in any execution in E&J. 

Between every two successive resynchronizations, the logical clock of process j 
is advanced by P, and the time that elapses on the logical clock ofj is P - (Y + 0. 
(E.g., at the kth resynchronization, the clock is set to kP + cy, the k + 1st 
resynchronization occurs when this clock reads (k + l)P + /3, and the new clock 
is set to (k + l)P + (Y.) Since the clock of process j runs at (1 + p) with respect 
to real time, the real time that elapses between two resynchronizations is 
(P - (Y + p)/(l + p). Hence, for all k L 1 and t E [en&‘, en&+‘], 

c;w 5 p _ E + @ (1 +p)t+d 

for some constant d that depends on to. Cl 

LEMMA 10’. For any execution of the modified algorithm, there exists a constant 
c, such that for all correct processes i, all k 2 1, and t E [endk, endk+‘], 

P 
P- 

(y + B (1 + p)-‘t + c 5 Cf(t>. 

PROOF. Let F(to) be the set of executions of the algorithm in which end’ = to. 
Define lastk to be the latest real time at which a correct process accepts (round k). 
Consider an execution e E F(to) in which the first logical clock of a correct process 
j, Cj is started at end ‘, and for all k L 1, process j accepts (round k) at lastk, and 
tdel (in real time) after its logical clock reads kP. The physical clock of process j 
runs at the minimum possible rate, that is, at (1 + p)-’ with respect to real time. 
In the modified algorithm, since Cf-‘(lastk) = kP + 2fi, process j sets its kth clock 
to kP + CY + p at lastk. 

We now show that the logical clock of process j is as slow as that of any other 
correct process in any execution in F(to). That is, we show that, for all k L 1 
and t E [lastk, lastk+‘], C;(t) I C:(t) for any correct process i in any execution 
in F(to). The proof is by induction on k. 

For k = 1 note that C,! is started at end ’ = to, and process j runs at the minimum 
possible rate. In any execution in F(to), for any other correct process i, C! is started 
no later than at end ‘. Therefore, for t L end ‘, and specifically for t E [last’, last’], 
we see that Cj(t) 5 C!(t). For the inductive step, assume that, for some k > 1 and 
t E [lastk-‘, lastk], we have Cf-‘(t) 5 C!-‘(t) for any correct process i. Define Si to 
be the real time such that Cp-‘(si) = kP + p, for any process i. Let ti and Ti be the 
real and the corresponding logical time at which a process i accepts (round k). 

Consider any correct process i in any execution in F(to). From the induction 
hypothesis, it follows that si I sj for all correct i. Since sj = lastk - /3(1 + p), 
lastk - Si 1 p( 1 + p). By assumption, tj = lastk and Tj = kP + 2p. We consider two 
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(1) If Ti I kP + p (i.e., ti I Si 5 sj), then Cf is set to kP + (Y no later than Si. Since 
lastk - si 2 p( 1 + p), C: increases by at least ,f3 between si and lastk. Therefore 
Cf(lastk) 2 kP + a + /3 = Cf(lastk). 

(2) If Ti > kP + p, then process i sets its kth clock to Cf(ti) = min(Ct-‘(ti) + a! - 
B, kP + (Y + p). Since Cf and Cf-’ increase by the same amount between ti 
and lastk, C!(lastk) = min(Cf-‘(ti) + cy - fl, kP + (Y + /3) + Cf’(lastk) - 
CF-‘(ti). Since Cf-‘(lastk) L kP + 2& Cf(lastk) z kP + a + p = Cjk(lastk). 

Thus Cf(lastk) 5 Cf(lastk). The physical clock of process j runs at the mini- 
mum possible rate. Therefore, for t E [last”, lastk+*], CT(t) 5 C&t) for any correct 
process i in any execution in F(C0). 

The logical clock of process j is incremented by P over successive resynchroni- 
zations. The real time that elapses between successive resynchronizations of pro- 
cess j is (P - (Y + @)( 1 + p). Thus, for any execution of the modified algorithm, 
there exists a constant c (that depends on to), such that for all correct processes i, 
all k 2 1, and t E [lastk, lastk+‘], 

P 
P- 

(y + B (1 + p)-‘t + c I Cf(t). 

Since for t E [endk, lastk] C!(t) L C!-‘(t), the above inequality also holds for 
t E [endk, endk+‘]. Cl 

By Lemmas 9’ and lo’, in any execution of the algorithm, for k 2 1 and 
t E [endk, endk+‘], the logical clock of any correct process i is within the 
envelope 

h(l + $2 + c I C;(t) I cL( 1 + p)t + d, 

where ~1 = P/(P - (Y + /3), and c and d are constants depending on the initial 
conditions of this execution. Therefore 

(1 + $9 + 5 < a I(1 + p)t + ;. 
CL- P 

Hence, if correct processes slow down their logical clocks by this factor of II, that 
is, process i uses L!(t) = Cf(t)/p as its logical time, optimal accuracy is achieved. 
Also, since p > 1, agreement is still guaranteed. Process i continues to use Cp 
for the synchronization algorithm. 

THEOREM 3. With the modt@ation described above, the algorithm of Figure 1 
achieves optimal accuracy. 

PROOF. Follows from the above discussion. 0 

3.4 BOUNDS ON FAULTS TOLERATED. Consider a system with a weak type of 
failure: A process is faulty only by violating assumption Al (i.e., its physical clock 
may run slower or faster than the specified bound). We now show that even with 
this weak type of failure, optimal accuracy cannot be achieved unless fewer than 
half the processes are faulty. 

THEOREM 4. Any synchronization algorithm that achieves optimal accuracy 
must have a majority of correct clocks. 

PROOF. Assume that there exists a synchronization algorithm that achieves 
optimal accuracy for systems with n I 2J We show that this is impossible by first 
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considering a system with two processors pI and ~2, one of which can be faulty 
(i.e., 12 = 2 andf= 1). 

Since the algorithm achieves optimal accuracy, in any execution of the algorithm, 
the logical clock of correct process i satisfies the following relation for all t L end’: 

(1 + p)-9 f a 5 ci(t) 5 (1 + p)t + b, 

where a and b are constants. Also, since the algorithm achieves agreement, there 
exists a constant D,, such that, if pl and p2 are correct, then 1 C,(t) - G(t) 1 I 
D,, for all t L end’. 

We now consider three possible executions of the algorithm. In what follows, 
superscripts correspond to execution numbers. For simplicity, we assume that all 
physical clocks start at 0 at real time 0. Assume that the initial state of a given 
process is the same in all executions. That is, a given process starts executing the 
algorithm at the same reading of its physical clock. 

Execution el. Both processes are correct. The physical clock of p1 runs at the 
maximum rate possible and that of p2 at the minimum rate possible. That is, 
R\‘)(t) = (1 + p)t and @j(t) = (1 + p)-‘t. The transmission time for each 
message is exactly d, where d 5 t&( 1 + P)~. 

Execution e2. Process pl is correct, and the rate of its physical clock is given by 
R\‘)(t) = (1 + P)-‘t. The clock of p2 is faulty and runs at Ri2)(t) = (1 + p)-3t, but p2 
is otherwise correct and follows the algorithm. The transmission time of each 
message is d( 1 + P)~. 

Execution e3. Process p2 is correct, and its physical clock is given by R13)(t) = 
(1 + p)t. The clock of p1 is faulty and runs at Ri3)(t) = (1 + p)3t, but pl is otherwise 
correct. All messages now take d/( 1 + p)’ to be delivered. 

We see that all three executions are possible. Since optimal uccurucy is achieved 
and pl is correct in el , its logical clock satisfies the relation C’,“(t) 5 (1 + p)t + b(l). 
Since R’,‘)(t) = (1 + p)t, we see that C\‘)(t) 5 R?(t) + b(l). Similarly, in execution 
e2, we see that RP)(t) + a’ 2, 5 C\‘)(t). But the two executions look identical to pl, 
and hence the relation between its logical and physical clocks must be the same 
in both executions. Therefore, to satisfy the two relations above, we see that 
fork= 1,2, 

R?(t) + d2) 5 C\@(t) I R\“‘(t) + b”‘. 

Therefore, in execution el , there exists a time T such that for all t L T 

(1 + ,o)t + uC2) I Cc,‘)(t) 5 (1 + ~)t + b(? 

Similarly, by considering executions el and e3, in both of which p2 is correct, we 
see that there exists a time 7 ’ such that for all t 2 7 ’ 

(1 + P)-lt + a”’ 5 C:‘)(t) 5 (1 + P)-‘t + bc3). 

From these two relations, it follows that in execution el , for any given D,,, there 
is some time t’ such that, for all t L t’, the deviation between the two correct 
logical clocks is greater than D,,, which violates the agreement condition. 

This can be generalized to any system of n ~2 processes, where n zz 2f: Partition 
the processes into two sets P, and P2, with not more thanfprocesses in either set. 
By constructing executions similar to those above, we can prove that no synchro- 
nization algorithm can achieve optimal accuracy if n % 2f: Cl 
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The authenticated algorithm of Figure 1 requires n > 2f processes. By The- 
orem 3, this algorithm can be modified to achieve optimal accuracy. From 
Theorem 4, it follows that the modified algorithm is also optimal in the number 
of faults tolerated. 

4. Synchronization without Authentication 
4.1 SIMULATING AUTHENTICATED BROADCASTS. The proofofcorrectness and 

the analysis of the authenticated algorithm rely on the following properties of the 
message system: 

Pl. Correctness. If at least f + 1 correct processes broadcast (round k) messages 
by time t, then every correct process accepts the message by time t + tdel. 

P2. Unforgeability. If no correct process broadcasts a (round k) message by 
time t, then no correct process accepts the message by t or earlier. 

P3. Relay. If a correct process accepts the message (round k) at time t, then every 
correct process does so by time t + t&l, 

As seen earlier, implementing authentication using digital signatures provides 
these three properties. However, the correctness of the algorithm does not depend 
on this particular implementation, and any other implementation providing these 
properties can be used instead. A broadcast primitive to simulate authentication 
is described in [ 141. By replacing authenticated broadcasts in the algorithm of 
Figure 1 with this primitive, we get a logically equivalent nonauthenticated 
algorithm having the properties of the authenticated algorithm. However, the 
number of messages sent by correct processes is O(n’) per resynchronization. 

We now modify this broadcast primitive to achieve the three properties described 
above at a cost of only O(n2) messages per resynchronization. The primitive is 
presented in Figure 2 and requires n 2 3f+ 1. With this primitive, each broadcast 
now requires two phases of communication. Therefore, t&l, the upper bound on 
the time required for a message to be prepared by a process, sent to all processes, 
and processed by the correct processes accepting it, must be reevaluated. Let 7 be 
the maximum transmission delay between any two processes. Then, t&l > 27. 

THEOREMS. The broadcast primitive achieves properties of correctness, unforge- 
ability, and relay. The number of messages sent by correct processes is O(n2) per 
resynchronization. 

PROOF 

Correctness. Since at least f + 1 correct processes broadcast (round k) by time t, 
every correct process receives at least f + 1 (init, round k) messages by time t + 7 
and sends (echo, round k). Hence, by time t + 27, every correct process receives 
at least 2f + 1 (echo, round k) messages. That is, every correct process accepts 
(round k) by time t + tdel. 

Unforgeability. Since no correct process sends an (init, round k) message by 
time t, a correct process could have received (init, round k) messages from at most 
f processes and (echo, round k) messages from at most f processes. Thus no correct 
process sends an (echo, round k) message by time t. Hence no correct process 
accepts (round k) by time t. 

Relay. Since a correct process accepts (round k) at time t, it must have received 
at least 2f + 1 (echo, round k) messages. Every correct process receives at least 
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To broadcast a (round k) message, a correct process sends (init, round k) to all. 

for each correct process: 
if received (init, round k) from at leastf+ 1 distinct processes 

+ send (echo, round k) to all; 
0 received (echo, round k) from at leastf+ 1 distinct processes 

+ send (echo, round k) to all; 
ii 
if received (echo, round k) from at least 2f+ 1 distinct processes 

-+ accept (round k) fi 

FIG. 2. A broadcast primitive to achieve properties Pl, P2, and P3. 

cobegin 
if C?‘(t) = kP 

+ broadcast (round k) fi 
I/ 

/* ready to start Ck */ 
/* using the primitive in Figure 2 */ 

if accepted the message (round k) /* according to the primitive */ 
+ c”(t) := kP + a fi /* start Ck */ 

coend 

FIG. 3. A nonauthenticated algorithm for clock synchronization for process 
p for round k. 

f+ 1 of these within another 7 and sends an (echo, round k) if it has not already 
done so. Hence, by t + 27 (i.e., by t + tdeI), every process accepts a (round k) 
message. 

Since each correct process sends at most two messages for each resynchronization 
round (an init and an echo), the total number of messages sent by correct processes 
is at most 2n2 per round. Cl 

4.2 A NONAUTHENTICATED ALGORITHM FOR CLOCK SYNCHRONIZATION. Re- 
placing signed communication with our broadcast primitive extends the synchro- 
nization algorithm of Figure 1 to one for systems without authentication. The relay 
property of the primitive implies that we need not explicitly relay messages since 
the primitive does this automatically. Since the primitive requires n > 3f the 
nonauthenticated algorithm also has this limit on the number of faulty processes. 
It has been shown that, if authentication is not available, then synchronization is 
impossible unless n > 3f[3, 51. 

As in Section 2, we assume that clocks are initially synchronized such that, at 
ready’, all correct processes are using C” and these clocks are at most D,, apart. 
The nonauthenticated algorithm is described in Figure 3. 

THEOREM 6. The nonauthenticated algorithm in Figure 3 achieves agreement 
and accuracy. Correct processes send O(n*) messages per resynchronization. 

PROOF. By properties Pl-P3 of the primitive of Figure 2, it is easy to see that 
the proofs of Lemmas l-10 and Theorem 1 hold. Also, by Theorem 5, correct 
processes send O(n2) messages for each resynchronization round. Cl 

Thus the number of messages sent by correct processes for each resynchronization 
is similar to that in [lo]. 

In Section 3.3 we showed how the authenticated algorithm could be modified to 
achieve optimal accuracy. Translating this modified algorithm with our broadcast 
primitive results in a nonauthenticated algorithm that achieves optimal accuracy. 
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broadcast (round 0); /* using the primitive in Figure 2 */ 

if accepted the message (round 0) /* according to the primitive */ 
+ C”(f) := a ii /* start Co */ 

FIG. 4. A nonauthenticated algorithm for achieving initial synchronization. 

send (joining) to all processes; 
accept a (round i) message for some i; /* received f + 1 signed (round i) messages ‘/ 

if accepted the message (round i + 1) /* wait for round i + 1 */ 
+ C’+‘(t) := (i + 1)P + LY fi /* start Ci+’ */ 

FIG. 5. A nonauthenticated algorithm used by a process to join the system. 

5. Initialization and Integration 

The algorithms presented in the previous sections can be used, with simple 
modifications, to achieve initial synchronization and to integrate new processes 
into the network. 

Here we show how processes start their 0th clocks close to each other. A process 
decides, independently, that it is time to start clock Co and broadcasts a (round 0) 
message. On accepting a (round 0) message at real time t, it starts Co by setting 
Co(t) = LY. The number of processes required and the rules for accepting messages 
are as described in Sections 2 and 4, for the authenticated and nonauthenticated 
systems, respectively. Since the authenticated and nonauthenticated algorithms are 
equivalent, we illustrate only the nonauthenticated version here (Figure 4). 

It is easy to see that all processes start Co within tdel of each other. Also no correct 
process starts Co until at least one correct process is ready to do so. Once they have 
started Co, processes run the resynchronization algorithm. At ready’, which by 
definition is the time when the first correct process sends a (round 1) message, 
every correct logical clock reads P or less. That is, every correct process is using 
Co. By proofs similar to those in Lemmas 2 and 6, it can be seen that at ready’ 
correct clocks are no more than D,,, apart. Thus this algorithm justifies assump- 
tions Sl and S2 for k = 1 in the proof of Lemma 8. 

We now describe how a process joins a system of synchronized clocks. This 
could be used by new processes to enter the system, or by processes that have 
become unsynchronized (possibly due to failures) to reestablish synchronization 
with the rest of the system. The algorithms are based on the idea in [lo], modified 
to the context of our algorithms. 

When a process p wishes to join the system, it sends a message (joining) to the 
processes already in the system. It then receives messages from these processes and 
determines the number i of the round being executed. Since p could have started 
this algorithm in the middle of a resynchronization period, it waits for resynchro- 
nization period i + 1 and starts its logical clock Ci+’ when it accepts a (round 
i + 1) message. It is easy to prove that its clock is now synchronized with respect 
to the clocks already in the system. Process p now begins to run the resynchro- 
nization algorithm described earlier. We present only the nonauthenticated version 
in Figure 5. This algorithm can also be modified as described in Section 3.3 to 
ensure that optimal accuracy is achieved. 

This integration scheme prevents a (possibly faulty) process joining the system 
from affecting the correct processes already in the system. Hence we prefer this 
“passive” scheme to that presented in [7]. However, with our method, a joining 
process might have to wait longer than in [7] before its clock is synchronized. 
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To broadcast a (round k) message, a correct process sends (hit, round k) to all. 

for each correct process: 
if received (init, round k) from at leastf+ 1 distinct processes 

+ accept (round k); 
send (echo, round k) to a& 

II received (echo, round k) from any process 
---, accept (round k); 

send (echo, round k) to all; 
fi 

FIG. 6. A broadcast primitive to achieve properties PI, P2, and P3 for a 
system with sr-omission failures. 

6. Restricted Models of Failure 
In the preceding sections we have assumed that faulty processes can exhibit arbitrary 
behavior. Fault-tolerant algorithms have also been studied under simpler, more 
restrictive models of failure. It is likely that, in certain applications, faults are not 
as arbitrary as we have assumed so far. In such cases, developing algorithms for 
the simpler model of failure could result in easier and less expensive solutions. 

The most benign type of failure is that of crash faults, where processes fail by 
just stopping [6, 81. Less restrictive models are omission, where faulty processes 
occasionally fail to send messages [6], and sr-omission, where faulty processes fail 
to send or receive messages [ 131. In this section we show how the algorithms 
developed so far can be adapted to these models. 

The algorithm of Figure 1 was shown to overcome arbitrary failures. The proof 
relied on an authenticated message system providing properties Pl-P3. Consider 
systems with sr-omission failures, where a process is faulty either because it 
occasionally fails to send or receive messages, or because its physical clock does 
not satisfy assumption Al (i.e., they violate the specified bounds on the rate of 
drift from real time). For such systems we can achieve properties PI-P3 without 
authentication, using the broadcast primitive of Figure 6. With this broadcast 
primitive, the algorithm of Figure 3 is a synchronization algorithm for systems 
with sr-omission faults. Since crash faults and omission faults are a proper subset 
of sr-omission faults, the algorithm of Figure 3 can also tolerate these faults. As 
explained in Section 3.3, this algorithm is easily modified to achieve optimal 
accuracy. The primitive in Figure 6 requires n > 2f processes. A broadcast by a 
correct process is accepted by all the correct processes within T, and hence t&l = 7. 
In contrast, the primitive of Figure 2 requires y1> 3fprocesses and tdel = 27, but it 
overcomes arbitrary failures. 

As seen in Section 3.4, the lower bound proofs of Theorem 2 do not assume any 
process or clock failures, and Theorem 4 holds even if only clocks fail. Thus our 
synchronization algorithm is optimal in the number of faults that can be tolerated 
for all the models of failure we consider. 

Initial synchronization and integration of new clocks are achieved as in previous 
sections. 

1. Maintaining Continuous Clocks 
To simplify the presentation and analysis, we adopted the standard convention 
that a process starts a new logical clock after each resynchronization [7]. When a 
new clock is started, it is set to a value greater than that shown by the previous 
clock, thus ensuring that clocks are never set back. For some applications this 
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scheme has two shortcomings. Since a process starts several clocks, there is 
ambiguity as to which clock a process should use when an external application 
requests the time. Moreover, setting the clock forward at each resynchronization 
introduces a discontinuity in the logical time (when a process switches to a new 
logical clock). As Lamport and Melliar-Smith noted in [9], an algorithm for 
discontinuously resynchronizing clocks can be easily transformed into one where 
logical clocks are continuous. This can be achieved by spreading out each resyn- 
chronization adjustment over the next resynchronization period. In this section we 
provide details on how to modify our algorithm so that each process can maintain 
a single continuous logical clock. This also removes ambiguity as to which clock is 
in use at any given time. 

Each process i runs the algorithm described in Section 3, maintaining its logical 
clocks CF. Let tf be the real time of the kth resynchronization of process i, that is, 
the time at which process i starts the new clock CF. The logical time of process i is 
given by 

C!(t) = Cf(tf) + l&(t) - R&f) for tf 5 t 5 $+I, 

where Ri(t) is the value of the physical clock of process i at time t. Let A; be the 
forward adjustment that process i makes to its logical clock at the kth resynchro- 
nization, namely, A? = Ct(tf) - Cf-‘(tf). We have the following: 

C!(t) = Cf’(t~) + Af + Ri(t) - Ri(tf) for tf 5 t I tf+‘. (*I 

Using the logical clocks, CF, we can define a single continuous clock Ci for 
process i as follows: 

Ci(t) = C:(t) for t 25 tf, 
Ci(t) = Ci(tf) + Xf(t)Af + &(t) - Ri(tQ for tf I t I tP+‘, 

where xf(t) = min( 1, &(t) - Ri(tP)/P - a! - D,,). 
We now show that, at the kth resynchronization, the continuous clock Cl matches 

the logical clock Cf-‘. That is, for all k 2 1 

Ci(tf) = CF-‘(tf). (**I 

The proof is by induction on k. For k = 1 this is obvious from the definition of 
Ci(t). Suppose (**) holds. From the definition of Ci(t), we have the following: 

Ci(tf”) = Ci(tF) + X~(t:“)A~ + Ri(tf+‘) - Ri(tf). 

By induction hypothesis, Ci(tf) = Cf’(tF). It is also easy to see that $(t?‘) = 1, 
since &($+I) - Ri(tf) L P - cY - D,,. Hence from (*) we have Ci(tf”) = 
Cf(tf”), and the proof is complete. 

We can easily show that the continuous clock Ci(t) satisfies both the agreement 
and optimal accuracy properties. In fact, for all t L 0, 1 Ci(t) - C’(t) I I DA, I 
Dmax + (Y. Furthermore, the optimal accuracy of Ci follows immediately from the 
fact that 1 Ci(t) - C;(t) 1 is bounded by Af 5 Dmax + (Y, for all k and all 
tk < t < tk+’ I- -*. 

8. Discussion 
The requirements of synchronization can also be stated as follows [3, 71: There 
exist constants &in, P, D,,,,,, and ADJ, such that clocks are resynchronized 
at logical times that are multiples of P, and for all correct clocks i and j and 
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all k 1 1: 

Cl. Vt E [endk, endk+‘] 
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1 C!(t) - Cj(t) 1 5 D,,,. 

C2. If Cf is started at time t, then 

0 5 C!(t) - C!-‘(t) 5 ADJ. 

C3. 0 s endk - begk 5 dmi”. 

These conditions assert that the maximum deviation between correct clocks is 
bounded, the amount by which clocks are readjusted is bounded, and the size 
of a resynchronization period is small. Our algorithms satisfy these conditions. 
Lemmas 1 and 6 show that conditions Cl and C3 are satisfied. From Lemma 4, 
we see that clocks are never set back. It is easy to show that the maximum 
adjustment made is (Y + D,,,. Hence, by setting ADJ = cy + D,,,, condition C2 
is also met. 

A feature of our algorithm is that dminy P, and ADJ depend only on the system 
parameters p and tdel, and on the constraint &,,. In the authenticated algorithm 
in [7], the adjustment ADJ is proportional to the number of faulty processes. Our 
solution does not use averaging, and for the nonauthenticated case, given D,,,, the 
maximum permitted deviation between correct clocks, our algorithm needs about 
half as many resynchronizations as in the best previous result [lo]. The minimum 
value of D,,, that our algorithm can achieve depends only on p and tdel. In [9], the 
minimum D,,, possible is proportional to the number of processes in the system. 

In the preceding sections, we have assumed a completely connected network. 
This assumption can be relaxed using well-known techniques. For an authenticated 
system, node connectivity off+ 1 is sufficient. This ensures that there is at least 
one fault-free path between every pair of correct processes. As in [7], by defining 
t&I to be the maximum time to transmit a message between correct processes along 
at least one fault-free path in the network, the results of Section 2 hold. 

Similarly, a nonauthenticated system with node connectivity of 2f+ 1 provides 
at least f+ 1 distinct fault-free paths between each pair of correct processes. Define 
tdel to be twice the maximum time taken for a message to be relayed alongf + 1 
fault-free paths. Again, the results proved earlier for the nonauthenticated system 
hold. 

9. Conclusion 

In this paper we have presented a unified solution to the problems of synchronizing 
clocks, initializing these clocks, and integrating new clocks, for systems with 
different types of failures: crash, omission, and arbitrary failures with and without 
message authentication. This solution was derived with the help of the methodology 
described in [ 141. 

This is the first known solution that achieves optimal accurucy, that is, the 
accuracy of synchronized clocks (with respect to real time) is as good as that 
specified for the underlying hardware clocks. The algorithms presented are also 
optimal with respect to the number of faulty processes that can be tolerated to 
achieve this accuracy. 

In another paper [ 11, we describe some initial experimental results from an 
implementation of this algorithm on a collection of workstations connected by a 
local-area broadcast network. The version that we implemented overcomes arbi- 
trary process and clocks faults. Our experience shows that these Byzantine faults 
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are not necessarily expensive to overcome: The algorithm is simple, effkient, and 
easy to implement. Our initial results indicate that it can form the basis of an 
accurate, reliable, and practical distributed time service. 
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