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ABSTRACT
We propose an approach to topology control based on the
principle of maintaining the number of neighbors of every
node equal to or slightly below a specific value k. The ap-
proach enforces symmetry on the resulting communication
graph, thereby easing the operation of higher layer proto-
cols. To evaluate the performance of our approach, we es-
timate the value of k that guarantees connectivity of the
communication graph with high probability. We then define
k-Neigh, a fully distributed, asynchronous, and localized
protocol that follows the above approach and uses distance
estimation. We prove that k-Neigh terminates at every
node after a total of 2n messages have been exchanged (with
n nodes in the network) and within strictly bounded time.
Finally, we present simulations results which show that our
approach is about 20% more energy-efficient than a widely-
studied existing protocol.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]: Computer-
Communication Networks—Network Architecture and De-
sign: Wireless Communication

General Terms
Algorithms, Performance

Keywords
Wireless ad hoc networks, topology control, energy con-
sumption, symmetric range assignment, connectivity.

1. INTRODUCTION
It is a widely accepted fact that the limited energy avail-

able at the nodes of a wireless ad hoc network must be used
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as efficiently as possible. If energy conservation techniques
are used at different levels, the functional lifetime of both
individual nodes and the network can be extended consid-
erably. For this reason, energy conserving protocols at the
MAC, routing, and upper layers have been proposed [7, 12,
15]. Further energy can be saved if the network topology it-
self is energy-efficient, i.e., if the nodes’ transmitting ranges
are set in such a way that a target property (e.g., connectiv-
ity) of the resulting network topology is guaranteed, while
the global energy consumption is reduced. A protocol that
attempts to achieve this is called a topology control protocol.
Several examples of topology control mechanisms have been
recently introduced [1, 5, 11, 16, 17, 23, 25, 30].

In order to be easily implementable in a realistic scenario,
a topology control protocol should be fully distributed, asyn-
chronous, and localized (i.e., the computation at every node
should be based on information concerning neighbor nodes
only). These features in general ensure that the protocol is
fast and requires little message exchange; thus, it can be eas-
ily adapted to deal with dynamic and/or mobile networks.
Another desirable property of a topology control protocol is
that it does not rely on information that can be provided
only by expensive devices, such as location information gen-
erated by a GPS receiver. In these conditions, the task of
ensuring a global network property (e.g., connectivity) while
reducing energy consumption is challenging.

In this paper, we evaluate the effectiveness of a topol-
ogy control approach based on the generation of a symmet-
ric subgraph of the k-neighbors graph. We evaluate (both
theoretically and experimentally) the value of k that en-
sures connectivity with high probability (w.h.p.). We also
present a specific protocol based on this approach, called
k-Neigh, that generates the desired topology in a fully dis-
tributed, asynchronous, and localized way. Our k-Neigh

protocol relies on distance estimation, a technique which
can be implemented at a reasonable cost in many realis-
tic scenarios. However, other implementations are possible
(e.g., with GPS or using the approach of [30], in which a
suitable set of neighbor nodes is computed by stepping up
the transmission power). In case of k-Neigh, we are able
to prove that the overall number of messages exchanged is
exactly 2n, where n is the number of nodes in the network.
We report the results of simulation experiments which show
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that our approach reduces energy consumption considerably
with respect to the case where no topology control is used,
and that it compares favorably with the CBTC protocol of
[16, 30].

2. RELATED WORK
In [25], Rodoplu and Meng presented a distributed topol-

ogy control algorithm that leverages on position information
(provided by low-power GPS receivers) to build a topology
that is proved to minimize the energy required to commu-
nicate with a given master node. Unfortunately, the proto-
col relies on global knowledge and specialized hardware (the
GPS receiver), which makes it infeasible in many application
scenarios. Further, the topology generated by the Rodoplu
and Meng protocol (which is optimal for communications
directed towards a single master node) can be significantly
different from the energy optimal topology for the all-to-all
communication scheme.

In [30], Wattenhofer et al. introduced a distributed topol-
ogy control protocol based on directional information, called
CBTC (Cone Based Topology Control). The basic idea is
that a node i transmits with the minimum power pi,ρ such
that there is at least one neighbor in every cone of angle ρ
centered at i. The obtained communication graph is made
symmetric by adding the reverse edge to every asymmetric
link. The authors show that setting ρ≤2π/3 is a sufficient
condition to ensure connectivity. A set of optimizations
aimed at pruning energy-inefficient edges without impairing
connectivity (and symmetry) is also presented. Further, the
authors prove that if ρ≤ π/2, every node in the final com-
munication graph has degree at most 6. A more detailed
analysis of CBTC, along with an improved set of optimiza-
tions (which, however, rely on distance estimation), can be
found in [16]. The CBTC protocol has been extended to
the three-dimensional case in [1]. The authors of [1] also
presented a modification of the protocol aimed at ensuring
k-connectivity. In [11], the CBTC protocol is implemented
using directional antennas.

In [5], Borbash and Jennings introduced a protocol which
is also based on directional information. The goal of the
protocol is to build the Relative Neighbor Graph of the net-
work in a distributed fashion. The choice of the RNG as
the target graph of the protocol is due to the fact that it
guarantees connectivity and it shows good performance in
terms of average transmitting range, node degree and hop
diameter.

Contrary to the protocols described above, the goal of
COMPOW [19] is to determine, using a fully distributed
approach, the minimum common value of the transmitting
range needed to ensure network connectivity. Recently, this
approach has been extended to the case of non-uniform node
distribution [13], a scenario in which COMPOW would per-
form poorly.

The protocols that are most closely related to our work
are the MobileGrid protocol of [17] and the LINT protocol of
[23]. Both protocols try to keep the number of neighbors of a
node within a low and high threshold centered around an op-
timal value. When the actual number of neighbors is below
(above) the threshold, the transmitting range is increased
(decreased), until the number of neighbors is in the proper
range. However, for both protocols no characterization of
the optimal value of the number of neighbors is given, and,
consequently, no guarantee on the connectivity of the result-

ing communication graph is provided. Another problem of
the MobileGrid and LINT protocols is that they estimate
the number of neighbors by simply overhearing control and
data messages at different layers. This approach has the
advantage of requiring no overhead, but the accuracy of the
resulting neighbor number estimate heavily depends on the
traffic present in the network. In the extreme case, a node
which remains silent is not detected by any of its actual
neighbors.

Similarly to MobileGrid and LINT, the goal of our ap-
proach is to keep the number of neighbors of a node equal
to, or slightly below, a given value k that guarantees connec-
tivity w.h.p. However, differently from the cited works, we
are able to formally characterize the optimal (i.e., minimum)
value of k.

Contrary to MobileGrid and LINT, our approach enforces
symmetry on the resulting communication graph. As the
support of unidirectional links is in general technically dif-
ficult and expensive (in terms of number of messages ex-
changed), we believe that the explicit requirement for a con-
nected backbone of bidirectional links is vital in the design
of a topology control mechanism. For further motivations
of our symmetry requirement see Section 4.

Compared with CBTC, our k-Neigh protocol (which im-
plements the k neighbors approach outlined above) relies
on a weaker assumption, i.e., distance estimation vs. di-
rectional information. Furthermore, CBTC has no bound
on the number of messages nor on the energy expended in
determining the proper transmit power, whereas in our al-
gorithm each node transmits only two messages at a pre-
defined power (the maximum transmit power). Finally, the
simulation results reported in Section 6.3 show that the
topologies generated by our protocol are (on the average)
20% more energy efficient than those generated by CBTC.

3. PRELIMINARIES
Let N be a set of n nodes placed in [0, 1]2 according to

some distribution. A range assignment for N is a positive
real valued function RA :N→ (0, rmax] that assigns to every
element of N a value in (0, rmax], representing its transmit-
ting range. Parameter rmax is called the maximum trans-
mitting range of the nodes in the network and depends on
the features of the radio transceivers equipping the nodes.
We assume that all the nodes are equipped with transceivers
having the same features; hence, we have a single value of
rmax for all the nodes in the network.

Given N and a range assignment RA, the communication
graph induced by RA on N is defined as the directed graph
G=(N, E), where the directed edge [i, j] exists if and only
if RA(i)≥ δ(i, j), and δ(i, j) denotes the distance between
nodes i and j. In this paper, we are concerned with two
variants of this graph, defined as follows:

Definition 1. The symmetric super-graph of G is de-
fined as the undirected graph G+ obtained from G by adding
the undirected edge (i, j) whenever edge [i, j] or [j, i] is in
G. Formally, G+ = (N, E+), where E+ = {(i, j)|([i, j] ∈
E) or ([j, i] ∈ E)}.

Definition 2. The symmetric sub-graph of G is defined
as the undirected graph G− obtained from G by removing all
the non-symmetric edges. Formally, G− = (N, E−), where
E−={(i, j)|([i, j] ∈ E) and ([j, i] ∈ E)}.
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The set of neighbors of a node i, denoted N(i), is defined
as the set of nodes to which i is directly connected, i.e.
N(i)={j|[i, j] ∈ E}. Neighbor sets are defined similarly in
graphs G+ and G−. Note that for these graphs i∈N(j) if
and only if j∈N(i).

Given a parameter k, with 0 < k < n, the k-neighbors
graph is the communication graph Gk in which every node
is directly connected to its k nearest nodes. Formally, Gk is
the communication graph induced by the range assignment
RAk, where RAk(i)= δ(i, j) and j is the k-th nearest node
to node i.

Several connectivity problems on the communication graph
have been studied in the literature. Before formally defin-
ing these problems, which are related to some extent to the
problem considered in this paper, we need some further def-
initions.

A range assignment RA is said to be connecting if it in-
duces a strongly connected communication graph, while it
is said to be r-homogeneous if all the nodes have the same
transmitting range r, with 0<r≤rmax.

It is known [20] that the power pi required by node i to
correctly transmit data to node j must satisfy inequality
pi
δα

ij
≥ β, where α ≥ 2 is the distance-power gradient and

β ≥ 1 is the transmission quality parameter. In ideal con-
ditions we have α = 2; however, in general it is 2 ≤ α ≤ 6
depending on environmental conditions. Setting β = 1,
we can define the energy cost of a range assignment RA
as c(RA) =

P
i∈N (RA(i))α.

We are now ready to formally define the range assignment
problems:

Definition 3. Let N be a set of points in [0, 1]2, and as-
sume that the rmax-homogeneous range assignment is con-
necting.
Ra: Determine a connecting range assignment RA such
that c(RA) is minimum.
Wsra: Determine a range assignment RA such that the
symmetric sub-graph of the communication graph is con-
nected and c(RA) is minimum.
Hra: Determine the minimum value of r such that the r-
homogeneous range assignment is connecting.

Note that Hra can be equivalently restated as the problem
of finding a connecting homogeneous range assignment of
minimum energy cost.

Ra and Wsra have been shown to be NP-hard in the
two and three-dimensional cases [3, 8, 14], while Hra can
be easily solved if node positions are known. Hra has been
studied also in the case of nodes distributed according to
some probability distribution [10, 27].

In this paper, we are concerned with the following con-
nectivity problem on the symmetric sub-graph of the k-
neighbors graph. Motivations for our interest in G−

k can
be found in Sections 4 and 5.

Definition 4 (KnRa). (Same assumptions as in Def-
inition 3). Determine the minimum value of k such that G−

k

is connected.

As in the case of Hra, the problem can be equivalently
restated in terms of minimum energy cost; furthermore, the
optimal solution can be easily found if node positions are
known. In the next section, we analyze KnRa in the hy-
pothesis that nodes are distributed uniformly at random in
[0, 1]2. Our analysis will be used to provide a (probabilistic)

guarantee on the connectivity of the topology generated by
our k-Neigh protocol.

4. THE MINIMUM NUMBER OF NEIGH-
BORS FOR CONNECTIVITY

Our approach to topology control consists of setting the
nodes’ transmitting ranges in such a way that the resulting
symmetric sub-graph G−

k is connected w.h.p., using local in-
formation only. The choice of limiting our consideration to
G−

k is motivated by the following reasons:
– although implementing wireless unidirectional links is tech-
nically feasible (see [2, 21, 22, 24] for unidirectional link
support at different layers), the actual advantage of using
unidirectional links is questionable. For example, in [18]
Marina and Das have shown that the high overhead needed
to handle unidirectional links in routing protocols outweighs
the benefits that they provide, and better performance can
be achieved by simply avoiding unidirectional links;
– a recent theoretical result [3] has shown that the opti-
mal solution to Ra and Wsra have the same energy cost
(asymptotically). In other words, starting from a strongly
connected graph, obtaining a connected backbone of sym-
metric edges incurs in no additional (asymptotic) energy
cost.

While a formal analysis of the conditions on k under which
Gk is strongly connected w.h.p. is not straightforward, a
recent result by Xue and Kumar [31] gives us the necessary
technical machinery to work on its symmetric variants.

Theorem 1. Assume that n nodes are placed uniformly
at random in [0, 1]2, and let G+

k be the symmetric super-
graph of the k-neighbors graph. There exist two constants
c1, c2, with 0<c1 <c2, such that:

lim
n→∞

Prob{G+
c1 log n is disconnected} = 1 , and

lim
n→∞

Prob{G+
c2 log n is connected} = 1 .

The authors also provide explicit values for c1 and c2, which
are c1 =0.074 and c2 >5.1774.

Although the difference between the number of neighbors
necessary and sufficient for connectivity is quite large, The-
orem 1 is very important, since it states that Θ(log n) neigh-
bors are necessary and sufficient for connectivity w.h.p.

Theorem 1 refers to the symmetric super-graph of Gk, in
which a link that is physically unidirectional is considered
as bidirectional. In other words, the connectivity of G+

k is in
general higher than that of Gk, since in G+

k there are links
that do not exist in the actual communication graph. As
a consequence, the number of neighbors stated as sufficient
to obtain connectivity w.h.p. in Theorem 1 may not be so
in the actual communication graph. The following Theorem
extends Xue and Kumar’ result to the symmetric sub-graph
Gk.

Theorem 2. The same result of Theorem 1, with G+
k re-

placed by G−
k .

Proof. The necessity part follows immediately by The-
orem 1, since G−

c1 log n is a sub-graph of G+
c1 log n. To prove

the sufficiency part, we have to show that the construc-
tion used in the proof of Theorem 1 holds for G−

c2 log n also.

The proof of Theorem 1 is based on the fact (proved in
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[31]) that any node in G+
c2 log n is directly connected w.h.p.

to every node that is within distance of (1 − ε)rn, where

rn =
q

η log n
πn

, ε is an arbitrary constant in (0, 1), and η is a

constant that depends on ε. In words, this means that the
communication graph G(1−ε)rn generated by the (1 − ε)rn-

homogeneous range assignment is a sub-graph of G+
c2 log n

(asymptotically, for n → ∞). Since G(1−ε)rn is connected

w.h.p. (for n → ∞) by Theorem 3.2 in [10], then G+
c2 log n

is also connected w.h.p.. The proof of our Theorem follows
immediately by observing that, since any node is directly
connected w.h.p. to every node that is within distance of
(1 − ε)rn, and distance is obviously symmetric, G(1−ε)rn is

a sub-graph of G−
c2 log n too.

Having a connected backbone of symmetric edges, as pro-
vided by the G−

k graph, allows us to use standard bidirec-
tional link-based protocols in the upper layers, avoiding the
expensive and technically difficult implementation of unidi-
rectional links. Given the theoretical result of [3] and The-
orem 2, this additional requirement on the communication
graph will come with a limited additional energy cost1.

5. THE K-NEIGH PROTOCOL
In this section, we describe the k-Neigh topology control

protocol - an implementation of the computation of G−
k -

and prove its correctness and complexity.
The protocol is based on the following assumptions:

1. nodes are stationary;
2. the maximum transmission power P is the same for all
the nodes;
3. given n, P is chosen in such a way that the communication
graph that results when all the nodes transmit at power P
is connected w.h.p.;
4. a distance estimation mechanism, possibly error prone, is
available to every node;
5. the nodes initiate the k-Neigh protocol at different times.
However, the difference between node wake up times is upper
bounded by a known constant ∆.

Assumption 4 is clearly the most critical and deserves
some comments. The distance estimation techniques pro-
posed in the literature so far are based on:
– Radio Signal Strength: distance is estimated comparing
the transmitted power at the sender (which is piggybacked
in the message) and the received power at the receiver of the
message. This technique can be implemented at virtually no
cost (RSSI registers are a standard feature in many wireless
network cards [28]), but provides poor accuracy. In [28], it is
shown that RSSI-based distance estimation is feasible only
in a quite idealized setting (football field with all the nodes
positioned at the ground level).
– Time of Arrival: distance is estimated comparing the time
of arrival of different kinds of signals. Typically, the radio
signal is used in combination with acoustic, ultrasound or in-
frared signals. ToA-based techniques provide a much better
accuracy than RSSI-based mechanisms, and can be imple-
mented at a reasonable cost. For example, the technique
proposed in [9] uses a standard PC sound card to generate
an acoustic signal, which is received by a cheap microphone.
The authors show that this technique provides good accu-
racy (below 3%) in realistic conditions. However, accuracy
1In Section 6.1 we will validate this statement through ex-
tensive simulation.

drops to only 23% when the line of sight between the nodes
is obstructed by heavy obstacles. In order to overcome this
problem, several signals of different kind can be combined
together.

Other well-known topology control protocols are based on
assumptions that appear at least as much strong. For ex-
ample, the protocol of [25] is based on location information,
which is provided by a GPS receiver. Although the cost of
such devices has decreased in recent years, and their form
factor reduced, they are still expensive and cumbersome de-
vices. Furthermore, the GPS signal can be received only in
open air environments. The protocol of [30] and all of its
variants [1, 11, 16], and the protocol of [5], are based on
directional information, which can be provided using direc-
tional antennas (which are also very expensive).

At least in outdoor environments, such as in case of, e.g.,
sensor networks, our solution is then an acceptable imple-
mentation. Moreover, we did not overlook the potential ef-
fects of errors in the distance estimation mechanism. Hence,
we have included realistic distance estimation error models
in our simulator (see Section 6.2 for details).

In the protocol specification below, we assume without
loss of generality that the first node wakes up at time 0.
The protocol is as follows:

The k-Neigh protocol (for a generic node i):
1. Node i wakes up at time ti, with ti ∈ [0, ∆]. At random
time t1i chosen in the interval [ti + ∆, ti + ∆ + d] (the value
of the parameter d is set in Lemma 1), node i announces its
ID at maximum power;
2. For every message received from other nodes, i stores the
identity and the estimated distance of the sender;
3. At time ti +2∆+ d, i orders the list of its neighbors (i.e.,
of the nodes from which it has received the announcement
message) based on the estimated distance; let Li be the list
of the k nearest neighbors of node i (if i has less than k
neighbors, Li is the list of all its neighbors).
4. At random time t2i chosen in the interval [ti + 2∆ + d +
τ, ti +2∆+2d + τ ] (τ is an upper bound on the duration of
step 3), node i announces its ID and the list Li at maximum
power.
5. At time ti + 3∆ + 2d + τ node i, based on the lists Lj

received from its neighbors, calculates the set of symmetric
neighbors2 in Li. Let LS

i be the list of symmetric neighbors
of node i, and let j be the farthest node in LS

i .
6. Node i sets its transmitting power Pi to the power needed
to transmit at distance δe

ij , where δe
ij is the estimated dis-

tance between nodes i and j.
7. (Optional Pruning stage) Apply an optimization pro-
cedure to reduce the number of edges in the graph obtained
so far (see below).

At the end of the protocol execution, node i considers as
neighbors (e.g., for the purpose of routing) only the nodes
in the list LS

i . Note that these are logical neighbors, and
the set of physical neighbors in general is larger than LS

i :
when i transmits at power Pi, it is possible that some node
j /∈ LS

i receives the message. However, these are asymmetric
neighbors, which are not considered. Also, the following
pruning stage can be executed to further reduce the number
of logical neighbors and (possibly) the actual transmission
power required at some node.

2Nodes i and j are said to be symmetric neighbors if and
only if i ∈ Lj and j ∈ Li.
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Pruning stage of the k-Neigh protocol (for a generic

node i):

Let G−
k = (N, E) be the undirected graph obtained as the

results of steps 1–6 of the k-Neigh protocol, and, for any
(i, j) ∈ E, let P (i, j) denote the transmission power suffi-
cient for i to reach node j. This information is included in
the message sent by node i during step 4.

1. Node i sorts the list LS
i according to increasing values

of P (i, j) (initially, this is equivalent to the order given by
the increasing distances from i). Let j1, . . . , jk be the sorted
list (without loss of generality, we assume that LS

i contains
k elements; otherwise, the sorted list will be composed by
k1 <k elements).
2. For l = 2, . . . , k, do the following.

a. Check whether jl can be reached using a transmission
power lower than P (i, jl) by routing through some jq ,
q <l. Clearly, given the information available to node
i, this is possible only if (jq , jl) ∈ E, a circumstance
that is known to i from step 5 of the k-Neigh protocol.

b. If P (i, jq) + P (jq , jl) ≤ P (i, jl), logically delete the
(outgoing) edge (i, jl) and set P (i, jl) = P (i, jq) +
P (jq, jl). If more than one node satisfies this require-
ment, choose the node q such that P (i, jq) + P (jq, jl)
is minimum.

3. Set the transmitting power to the power needed to reach
the farthest node in LS

i which is still an immediate neighbor
of node i.

The following results prove that the k-Neigh protocol is
correct.

Lemma 1. Let t̄ be the time necessary to transmit a mes-
sage. For d = mt̄, the probability that no contention will
occur in the wireless channel during step 1 of the k-Neigh

protocol is strictly greater than e−
3h(h−1)

2m , where h is the
number of nodes that are contending for the channel when
transmission is done at maximum power.

Proof. See the full version of the paper [4].

Lemma 1 can be used to lower bound the probability of no
contention when accessing the wireless channel. For exam-
ple, if n=100 nodes are distributed uniformly at random in
a square region and P is chosen in accordance with Assump-
tion 3, the expected number of nodes within the maximum
transmitting range is about 33 (see Section 6 for details).
Given these settings, d must be around 16000t̄ to obtain a
probabilistic guarantee of no contention of at least 0.9. With
t̄ in the order of, say, milliseconds, d will be in the order of
tenth of seconds, which is reasonable for most topology con-
trol scenarios. Clearly, Lemma 1 provides only a crude lower
bound on Pr{no contention}, and smaller values of d can be
used in practice.

Lemma 2. Let G−
k =(N, E) be the undirected graph com-

puted by steps 1-6 of the k-Neigh protocol, and suppose G−
k

is connected. Let G′ = (N, E′) be the directed graph obtained
as the result of the pruning stage of k-Neigh. Then, G′ is
strongly connected and symmetric.

Proof. See the full version of the paper [4].

Theorem 3. Assume that k is chosen in accordance with
Theorem 2. Then the k-Neigh protocol:
a. terminates at time at most 4∆ + 2d + τ (where d is set
in Lemma 1), i.e., by this time all the nodes have set their
transmitting power correctly and terminated the protocol ex-
ecution;
b. generates a symmetric communication graph which is con-
nected w.h.p. under the hypothesis that nodes are distributed
uniformly at random in [0, 1]2;
c. has communication complexity Θ(n) .

Proof. A generic node i wakes up at an arbitrary time
ti in [0, ∆]. Before announcing its ID, node i has to wait
at least time ∆ to avoid that its message is not received by
nodes that are not yet awake. The additional random time
(in the interval [0, d]) is needed to avoid (with high prob-
ability) contention in accessing the wireless channel. Once
the node has announced its ID at step 1, it has to wait
for messages coming from other nodes. The waiting time
is ∆ + d, accounting for the difference in the initial wake
up times and for the maximum possible difference between
random time choices. Thus, at time ti +2∆ + d, node i can
safely order neighboring nodes based on the distance esti-
mated when the announcement messages are received. We
recall that messages are sent at maximum power, which is
the same for all the nodes by assumption. This implies that
at time ti + 2∆ + d node i has received the announcement
messages of all the nodes within its maximum transmitting
range. The ordering phase lasts at most time τ , and at time
ti +2∆+ d+ τ node i is ready to send the message contain-
ing its k-neighbors list. Once more, the node waits for an
additional random time chosen in the interval [0, d] to avoid
contention. Before ending the protocol, node i must be sure
to have received the k-neighbors lists of all its neighbors, so
that asymmetric neighbors can be removed. Thus, starting
at time ti +2∆+d+τ node i waits for further ∆+d units of
time. At time ti +3∆+2d+τ , node i is then ready to set its
transmitting power correctly and the protocol execution in
node i terminates. The proof of the part a. of the theorem
follows by observing that the maximum possible value for
the wake up time ti is ∆.

The proof of the part b. of the theorem follows by The-
orem 2. The part c. of the Theorem is immediate, since
every node sends exactly two messages. By definition of the
pruning stage and by Lemma 2, it is immediate that prun-
ing occurs with no further message exchange, and produces
a graph which is connected w.h.p. and symmetric.

6. SIMULATION RESULTS
To evaluate our k-Neigh protocol we have designed an ad

hoc simulator and performed a considerable body of exper-
iments. The goals of our simulations include evaluation of:
– preferred value of k: the result stated in Theorem 2 is
mainly of theoretical interest. In the first set of experi-
ments, we have evaluated which values of k should be used
in practice to achieve a target probability (e.g., 0.95) of con-
nectivity. We call this value the preferred value of k;
– effect of errors: as discussed in Section 5, distance esti-
mation techniques are error-prone. We have evaluated the
effect of errors in distance estimation on the preferred value
of k;
– energy cost: in the third set of experiments, we have com-
pared the performance of our algorithm (in terms of energy
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Figure 1: Empirical distribution of the minimum k for connectivity in the asymmetric (left) and symmetric
(right) case for n=100. Data are shown as frequencies.

cost, as defined in Section 3) to that of other algorithms.
The results of each set of simulations are presented in

separate subsections.

6.1 Preferred value of k

The preferred value of k is defined as the minimum value of
the node degree k which guarantees that Pr(G−

k is connected)
is above a certain target probability. Since a theoretical
characterization of this value is very difficult, we have eval-
uated it through extensive simulations.

The setting used for our experiments is the following. The
n nodes, all with the same maximum transmitting range Rn,
are distributed uniformly at random in [0, 1]2. According to
Assumption 3 of Section 5, Rn should be chosen so that the
communication graph that results when all nodes transmit
at maximum power is connected with high probability. An
easy choice would be to make Rn independent of n, and
sufficiently high to ensure connectivity w.h.p. even with
very few nodes (e.g., Rn =1). However, the choice of Rn has
a strong influence on the energy cost of the graph generated
by topology control algorithms in general. For example, in
the CBTC protocol of [30], boundary nodes are very likely to
transmit at full power (after the first phase of the protocol).
As a consequence, larger values of Rn produce higher energy
costs for CBTC.

For this reason, we have decided to choose Rn accord-
ing to the following procedure: for every value of n consid-
ered in the simulations, we have generated 10000 random
placements and, for every placement, we have evaluated the
longest edge of the Euclidean MST.3 Using these values, we
have built the empirical distribution of the critical trans-
mitting range, and taken the 0.95 quantile.4 This value,
further increased by 50% for safety, gives Rn. For all prac-
tical purposes, the transmitting range Rn calculated in this
way accomplishes Assumption 3, and gives a uniform pa-
rameter that can be used in the implementation of k-Neigh

and other topology control protocols. The values of n used
in our simulations and the corresponding values of Rn are
shown in Table 1.

We have investigated the preferred value of k for differ-
ent values of n. In the first experiment, n ranged from 10
to 100 in steps of 10. The reason for the small steps of n

3It is known that this value corresponds to the critical trans-
mitting range, in case the range assignment is homogeneous
(see [26]).
4We recall that the q quantile of a series of data gives the
point such that 100q percent of the data lie before.

n Rn n Rn

10 0.86622 75 0.37041
20 0.66420 80 0.36291
25 0.60431 90 0.34787
30 0.55589 100 0.33326
40 0.48635 250 0.23634
50 0.44526 500 0.19691
60 0.41456 750 0.17885
70 0.38336 1000 0.17274

Table 1: Values of the maximum transmitting range
Rn used in our simulations.

is that in most ad hoc network applications the number of
nodes is expected to be in this range. For every value of n,
and for every random node placement, we have calculated
the minimum value of k such that Gk is strongly connected
(denoted kasym), and the minimum value of k such that G−

k

is connected (denoted ksym), subject to the constraint that
every node has maximum transmitting range Rn. Given
our choice for Rn, such minimum values for k always ex-
ist in practice. For each setting of n, we generated 100000
random node placements, and recorded kasym and ksym for
each of them. These data gave us the empirical distribu-
tion of kasym and ksym, which can be used to evaluate the
preferred value of k. The two distributions for the case of
n = 100 are shown in Figure 1. From the figure, it is evi-
dent that the requirement for symmetry has little influence
on the minimum value of k for connectivity. This is made
clearer by Figure 2, which reports the preferred value of k in
the asymmetric and symmetric cases when the target prob-
ability of connectivity is set to 0.95. These values can be
easily obtained by the cumulative distribution of kasym and
ksym: the preferred value is the minimum value of k such
that the cumulative frequency is above 0.95.

The plots reported in Figure 2 show that the preferred
value of k in the symmetric case is at most 1 greater than
the value in the asymmetric case. To a certain extent, this
confirms the theoretical results of Theorem 2 and of [3]. Fig-
ure 2 also reports the average node degree in the symmetric
case. We recall that k is the number of asymmetric neigh-
bors, while only symmetric neighbors contribute to the node
degree of G−

k . The plot seems to confirm the logarithmic be-
havior predicted by Theorem 2.

In the second experiment, we have evaluated how the pre-
ferred value of k varies for larger values of n. We have used
the following settings for n: 10, 25, 50, 75, 100, 250, 500,
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Figure 2: Preferred values of k in the asymmetric
and symmetric cases (y-axis), with target proba-
bility 0.95, for different values of n (x-axis). The
graphic also reports the average node degree in the
symmetric case, and the lower and upper bounds on
k derived from Th. 2.

750, 1000. For every value of n, we have calculated the
preferred value of k in the asymmetric and symmetric cases
(with target probability 0.95), proceeding as in the previous
experiment. The results of this experiment are shown in Fig-
ure 3, along with the average node degree in the symmetric
case. Again, the difference between the preferred value of
k in the asymmetric and symmetric cases is at most 1, and
the two values are the same for many settings of n. Con-
cerning the average node degree in the symmetric case, the
logarithmic scaling with n is confirmed.

Interestingly, setting k = 9 produces a symmetric graph
which is connected with probability at least 0.95 for values
of n in the range 50–500. In [17], it is shown that when
all the nodes have the same transmitting range, a number
of neighbors in the range 3–9 is optimal from the network
capacity point of view, and it is also close to the optimal
value for power efficiency. In this respect, our result can be
seen as an improvement of [17], since we achieve connectivity
with adaptive transmitting ranges.

A final investigation concerned the number of asymmetric
neighbors when k = ksym, i.e., in the minimal scenario for
achieving connectivity in G−

k . We recall that asymmetric
neighbors (and the corresponding asymmetric links) will be
removed by the k-Neigh protocol. From our experiment,
whose results are not reported for lack of space, we observed
that the average number of asymmetric links removed per
node is slightly above 1.2, independently of n.

Overall, the results of this first set of simulations have
shown that the requirement for symmetry has little influence
on the preferred value of k, and that setting k = 9 in the
k-Neigh protocol provides connectivity w.h.p. for a wide
range of network sizes (from 50 to 500 nodes).

6.2 Errors in distance estimation
In this Section, we investigate how the preferred value

of k is influenced by errors in distance estimation. To this
purpose, we have implemented two models, which account
for errors in RSSI- and ToA-based techniques.

In case of RSSI, error is due to the fact that the propa-
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Figure 3: Preferred values of k in the asymmetric
and symmetric cases (y-axis), with target proba-
bility 0.95, for different values of n (x-axis). The
graphic also reports the average node degree in the
symmetric case, and the lower and upper bounds
on k derived from Th. 2. Values on the x-axis are
reported in logarithmic scale.

gation of the radio signal in the air is influenced by many
factors (weather changes, obstacles, and so on), and, con-
sequently, an accurate model of the signal attenuation with
distance is very difficult to obtain. Thus, the transforma-
tion of the difference between the transmitted and received
power into a distance estimation induces a considerable er-
ror, which can be unacceptable in many situations. In [28],
it is shown that the accuracy of RSSI-based distance esti-
mation is reasonable only in quite idealized settings, such as
all the nodes placed in a flat open environment.

We have modeled the error in RSSI-based distance esti-
mation using the scheme proposed in [29], which is defined
as follows:

RSSI(δ) = δ(1− 10
Xσ
10α ) ,

where δ is the actual distance, α is the distance-power gradi-
ent, and Xσ is a random variable with normal distribution of
parameters (0, σ). According to the measurements reported
in [28], in our simulations we set σ =0.84 and α=2. With
these settings, 70% of the estimations are within 10% of the
actual distance δ.

To model errors in ToA-based distance estimation, we
have simplified the scheme of [29], which is based on the
acoustic ranging technique of [9]. In this case, the error can
be seen as the sum of three independent components:
– speed of sound error: changes in the atmospheric condi-
tions can generate both a positive and a negative error in
the distance reading. We denote this error with SSE.
– Non-Line-Of-Sight error: this error, which is always posi-
tive, occurs when obstacles obstruct the line of sight between
nodes. We denote this error with NLOS.
– orientation error: this error, which is always positive, oc-
curs when the emitter and the receiver of the acoustic signal
have different orientations. We denote this error with OE.

In our simulations, we have used the following settings
for SSE, NLOS and OE, which are based on the measure-
ments reported in [9]:
– SSE is modeled as a uniform error centered at δ. More
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precisely, SSE(δ) = U [−0.005δ, 0.005δ], where U [−0.005δ,
0.005δ] is a random variable with uniform distribution in
the interval [−0.005δ, 0.005δ].
– the experiments reported in [9] have shown that, while
“light” obstacles (e.g., a stack of small cardboard boxes)
have little influence on the accuracy of distance estimation,
“heavy” obstacles (e.g., a large mattress) cause a relevant
error. In our model, we have considered three types of ob-
structions: no obstruction, light obstruction, and heavy ob-
struction. In case of no obstruction, NLOS(δ) = 0; with
light obstacles, we have NLOS(δ) = U [0.006δ, 0.01δ], and
with heavy obstacles we set NLOS(δ)=U [0.18δ, 0.22δ]. For
every pair of nodes within each other maximum transmitting
range, we perform an independent random experiment, and
choose “no obstruction” with probability p1, “light obstruc-
tion” with probability p2, and “heavy obstruction” with
probability 1 − (p1 + p2). In our experiments, we have set
p1 and p2 to the values 0.5 and 0.25 respectively, which de-
scribe an open air environment with relatively few heavy
obstacles. Admittedly, modeling actual NLOS errors (that
are not independent) is a complicated task, and more inves-
tigations are needed on this subject.
– for every pair of nodes within maximum transmitting range,
we perform an independent random experiment with four
possible equiprobable outcomes, namely 0, 90, 180, 270.
These values correspond to an orientation error of 0 degrees,
90 degrees, and so on. We set OE(δ)=0 when the outcome
is 0, OE(δ) = U [0.004δ, 0.006δ] when the outcome is 90 or
270, and OE(δ)=U [0.014δ, 0.016δ] when the outcome is 180.
As in the case of NLOS error, our independence assumption
introduces a slight approximation, but simplifies the model
considerably.

In summary, the ToA-based distance estimation error is
defined as follows:

ToA(δ) = SSE(δ) + NLOS(δ) + OE(δ) .

We have incorporated the two distance estimation error
models in the simulator, and performed a set of experiments
to evaluate the impact of errors on the preferred value of k.
To account for possible errors in distance estimation, the
simulator has been modified as follows. For every node, we
store two neighbor lists: the list L with the actual distances,
and the list Le with the estimated distances. Both lists are
ordered for increasing values of distance. The estimated dis-
tances are generated during a preprocessing phase in which,
for every pair of nodes within maximum transmitting range
Rn, we calculate the estimated distance according to the
chosen error model. We assume that errors in distance esti-
mation are symmetric: if node i estimates that node j is at
distance δe

ij , also node j performs the same estimation δe
ij .

Since in the k-Neigh protocol nodes estimate distances to
their neighbors in a very narrow time interval, this assump-
tion is coherent with our error models.

Based on the list Le, node i sets its transmitting power to
the value needed to reach the k-th node in the list, say node
j, which is at estimated distance δe

ij . Since δe
ij is only an es-

timate of the actual distance, there could exist one or more
nodes h such that h precedes j in the list Le, but δih >δe

ij .
Similarly, there could exist some node v that follows j in Le,
but such that δiv ≤ δe

ij . In words, the k-th node in Le may
not be the actual k-th nearest neighbor of i. For this rea-
son, once we have set the transmitting range to δe

ij , for every
node h that precedes j in Le we check (using the list L of the

n ToA RSSI n ToA RSSI
10 6 7 10 6 7
20 8 9 25 8 9
30 8 9 50 9 9
40 8 9 75 9 9
50 9 9 100 9 10
60 9 9 250 9 10
70 9 9 500 9 10
80 9 9 750 10 10
90 9 10 1000 10 11
100 9 10

Table 2: Preferred values of k (with target proba-
bility 0.95) with ToA and RSSI error. The values of
k with ToA error always coincide with those of the
exact case.

actual distances) whether the link to h actually exists. Note
that, since the k-Neigh protocol will only consider the first
k nodes in Le, possible links to nodes that follows j in Le

are not included in the generated graph. Once we have gen-
erated the (asymmetric) communication graph according to
the procedure described above, we consider only symmetric
links and check for connectivity, as in the previous set of
experiments.

As in Section 6.1, we have simulated networks of sizes in
the range 10–100 in steps of 10, and in the range 10–1000,
and evaluated the preferred value of k (with target proba-
bility 0.95) in case of RSSI and ToA errors. The results of
our simulations are reported in Table 2. As expected, ToA
distance estimation performs much better than the simpler
RSSI technique: for all the values of n considered, the pre-
ferred value of k with ToA error was always the same as in
the exact case (see Figures 2 and 3). With RSSI error, the
preferred value of k is at most 1 greater than the value in the
exact scenario, and it is the same value for many settings of
n. The relatively little influence of error in distance estima-
tion on the minimum value of k for connectivity is further
evidenced in Figure 4, which shows the empirical distribu-
tion of k in the exact, ToA error, and RSSI error cases, for
n = 100. The better performance of ToA with respect to
RSSI distance estimation is due to the fact that ToA error,
although occasionally large when heavy obstacles obstruct
the line of sight, is essentially on the positive side. Thus,
the situation described above in which a “close” neighbor
cannot be actually reached is less likely to occur.

Overall, the results of this second set of experiments have
shown that the k-Neigh protocol is resilient to errors in
distance estimation, also in the scenario in which obstacles
obstruct the line of sight of a considerable fraction of node
pairs.

6.3 Energy cost
In the last set of experiments, we have compared the per-

formance of k-Neigh with that of other topology control al-
gorithms. The performance is measured in terms of energy
cost, which, we recall, is defined as c(RA) =

P
i∈N(RA(i))α,

where RA is the range assignment as defined at the end of
the protocol execution. The energy cost gives a measure
of the “energy efficiency” of the topology generated by a
topology control algorithm.

Another important parameter used in the literature to
evaluate the protocols is the average node degree. We recall
that, besides reducing energy consumption, topology con-
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Figure 4: Empirical distribution of the minimum k for connectivity in the exact (left), ToA error (center),
and RSSI error (right) case for n=100. Data are shown as frequencies.
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Figure 5: Energy cost of different topology control protocols. For k-Neigh and CBTC, we have considered
Phase 1 only (left), and Phases 1 and 2 implemented (right). The energy cost is normalized with respect to
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trol mechanisms have the positive effect of increasing spa-
tial reuse, which means that fewer nodes are expected to
experience contention in accessing the wireless link. Hence,
a reduced average node degree in general implies that con-
tention is reduced as well. However, it is important to note
that what really matters is the physical, rather than the log-
ical, degree. In fact, many protocols (such as k-Neigh and
CBTC, for instance) generate a logical topology, in which
some of the actual links are not considered, because they
are either asymmetric or energy inefficient. Thus, the num-
ber of logical neighbors, which determines the logical node
degree, could be significantly smaller than the actual num-
ber of neighbors, which “measures” the likelihood of con-
tention. Given the same physical degree, a higher logical
degree has a positive effect on network capacity, since fewer
bottlenecks are likely to occur in the topology. This point
has often been disregarded in the previous analyses of topol-
ogy control protocols, and will be carefully investigated in
our simulations.

In our simulations, we have considered values of n ranging
from 10 to 1000, as in Sections 6.1 and 6.2. For each value of
n, we have generated 10000 random node placements, and
executed the following topology control algorithms:
–MST: although impractical (its computation requires global
knowledge), the Euclidean Minimum Spanning Tree pro-
duces a range assignment that is within a factor of 2 from
the optimal weakly symmetric range assignment (see [3]).
We have used the MST as the “optimal” topology against
which the topologies generated by the other protocols will

be compared.
– k-Neigh: for each setting of n, the value of k used in the
protocol is the preferred value as evaluated in Section 6.1.
– CBTC: we have simulated CBTC using two values for ρ
(the maximum angular gap required): ρ= 2

3
π and ρ= π

2
.

– Homogeneous: we have also considered the situation in
which no topology control is used. In this case, the value of
the transmitting range is defined as the 0.95 quantile of the
empirical distribution of the critical transmitting range (see
Section 6.1).

First, we have evaluated the energy cost of the differ-
ent protocols. For the k-Neigh and CBTC protocols, we
have considered both the result of the Phase 1 only (with-
out pruning), and of the protocols with the pruning stage
implemented. The rationale for this investigation is that in
some situations (e.g., high mobility scenario), implementing
the pruning step could be very difficult. We have consid-
ered two values for the distance-power gradient α, i.e., α=2
and α = 4. The value of the distance-power gradient has
a strong influence on the pruning phase of k-Neigh and
CBTC, which are essentially based on triangular inequali-
ties on the power function: the higher α, the more edges are
pruned.

In Figure 5, we show the energy cost (normalized with
respect to the cost of the MST) of the different protocols
when α = 2, for increasing values of n. As can be seen,
the Phase 1 of our k-Neigh protocol performs much bet-
ter than that of CBTC, for both values of ρ: for n =1000,
the energy cost of k-Neigh is 83% lower than Phase 1 of
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control, k-Neigh-Phase 1 provides an improvement of 16%
when n = 10, and of 77% when n = 1000. Observe that
CBTC performs worse than the case of no topology control:
this is due to the fact that the maximum transmitting range
Rn used in CBTC is 50% larger than the 0.95 quantile of the
critical transmitting range distribution used in the Homoge-
neous protocol. In case a lower value of Rn would be used,
CBTC would perform better, at the expense of an increased
probability of generating a disconnected graph. Contrary
to CBTC, our k-Neigh protocol is almost independent of
the choice of Rn: using the same value of Rn of CBTC, k-

Neigh is several times better than Homogeneous. This is
due to the fact that in CBTC, several nodes (those lying
on the boundary of the region) are expected to transmit at
maximum power, since it is very unlikely that the required
angular gap ρ can actually be achieved. Conversely, in k-

Neigh we require the connection to the k nearest nodes,
independently of their direction.

The implementation of the pruning stage decreases the en-
ergy cost significantly in both k-Neigh and CBTC protocols
(see Figure 5 – right). Nevertheless, k-Neigh still performs
better than CBTC: except for small network sizes (n=10 to
20), the energy cost of k-Neigh is about 20% smaller than
that of CBTC. The experiments show that the topologies
generated by k-Neigh can be as much as 87% more energy
efficient than in those with no topology control, while they
are at most a factor of 2.28 away from the cost of the “opti-
mal” MST topology. A sample of the topologies generated
by the various protocols for n=100 is shown in Figure 6.

In Figure 7 we report the average logical (left) and phys-

ical (right) node degree of the topologies generated using
k-Neigh and CBTC. As in the previous case, we have con-
sidered both protocols without and with the pruning stage
implemented. From Figure 7, it is evident that k-Neigh-
Phase 1 outperforms CBTC-Phase 1 in terms of both logical
and physical degree. Observe that in k-Neigh we have the
upper bound k on the number of physical neighbors of any
node, which holds for Phase 1 also. On the contrary, the re-
sult of [30] on the maximum number of neighbors (which, we
recall, is 6) regards the topology generated by CBTC after
pruning; furthermore, the upper bound is on the number
of logical neighbors. Finally, note that k-Neigh performs
better than CBTC also when Phase 2 is implemented.

We have performed the same simulations with α=4. The
results of these experiments, which are not reported for lack
of space, confirmed on a larger scale that k-Neigh performs
better than CBTC in terms of energy cost, logical and phys-
ical average node degree. In terms of energy cost, k-Neigh-
Phase 1 performs as much as 97% better than CBTC-Phase
1, and as much as 94% better than the case of no topology
control. With Phase 2 implemented, k-Neigh is as much as
29% better than CBTC, and as much as 98% better than
the case of no topology control.

Overall, the results of this last set of experiments have
shown that:
– k-Neigh-Phase 1 performs significantly better than CBTC-
Phase 1. Essentially, this is due to the fact that, contrary to
the case of CBTC, after the execution of k-Neigh-Phase 1
relatively few nodes are expected to transmit at maximum
power. To some extent, this seems to indicate that k-Neigh

is well suited to be implemented in a high mobility scenario
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(see Section 7 for further discussion on this point).
– If pruning is implemented, k-Neigh still performs better
than CBTC, in terms of energy cost, as well as logical and
physical average node degree.

7. DISCUSSION AND FUTURE WORK
In this paper we have presented an approach to topology

control, based on the computation of a symmetric subgraph
of the k nearest neighbors graph, and a fully distributed and
localized protocol (called k-Neigh) that implements this ap-
proach. We have seen that k-Neigh does not require the
knowledge of the exact number n of nodes in the network
to work, as k is only loosely dependent on n (e.g., k = 9
for n in the range 50-500). Also, the maximum transmit-
ting range of nodes can be overestimated without problems,
since our protocol (contrary, for instance, of CBTC) is not
influenced by the choice of a specific maximum transmitting
range. Whenever distance estimation is a viable choice, our
protocol can then be implemented in practice.

A first possible direction for future work is studying the
protocol behavior in a dynamic setting, i.e., when nodes
join the network at unpredictable times. From a prelimi-
nary analysis, the number of messages exchanged to update
the G−

k graph in response to a newcomer’s “hello” message
seems approximately equal to k′, where k′ is the number of
nodes that are within the maximum transmitting range of
the newcomer, which is in a sense the minimum achievable
for a single update. For the whole sequence this leads to an
O(n2) messages worst case bound, which applies when all
the nodes are close together. However, we suspect that the
actual average bound is much smaller.

We also plan to investigate the performance of our proto-
col in presence of multi-hop data traffic, and using a more
sophisticated model for the radio signal propagation, such
as that recently proposed in [6].

Another important topic for future work is to adapt the k-

Neigh protocol to deal with mobility. In a mobile network,
the topology is continuously changing and the topology con-
trol protocol must be reexecuted periodically. A quantita-
tive evaluation of k-Neigh in mobile environments is beyond
the scope of this paper. However, here we present a brief
qualitative discussion of how the protocol can be adapted
for mobile environments and how it compares to other algo-

rithms in this case.
In the k-Neigh protocol presented herein, the number of

neighbors is set to a very precise value. If this protocol is
extended to mobile networks, it would be quite expensive
to control the neighbor set size so precisely: this could re-
quire re-execution of the protocol each time the neighbor
set changed. Instead, we adopt the approach taken in Mo-
bileGrid and LINT, where low and high water marks are
specified such that the neighbor set size falling below the
low water mark or exceeding the high water mark causes
the protocol to be reexecuted. Since the value of k deter-
mined in Theorem 2 is sufficient for connectivity, it is a likely
candidate for the low water mark for the mobile version of
the protocol. The high water mark could be determined
based on the velocity of nodes and the expected transmit-
ting range to ensure that the protocol does not need to be
reexecuted too often. The initial value of the desired num-
ber of neighbors in the protocol should then be set to the
average of the low and high water marks.

Since any topology control protocol needs to be executed
periodically in a mobile network, the energy consumed dur-
ing the protocol execution becomes even more important
than the “quality” of the topology produced. Thus, we be-
lieve that the benefits of the k-Neigh protocol will be even
greater in this situation. This is because ours is the only
known protocol with a proven upper bound on the number
of messages exchanged during its execution. The number of
messages exchanged in the k-Neigh protocol is expected to
be far lower than CBTC in practice since CBTC iteratively
sends messages in a first phase and then sends even more
messages during a second optimization phase. Our future
work will focus on specification and evaluation of a mobile
k-Neigh protocol, with the goal of showing that the signifi-
cant benefits shown herein for the stationary version of the
protocol are maintained in mobile environments.
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