
Initializing Newly Deployed Ad Hoc and Sensor Networks

Fabian Kuhn
Computer Engineering and

Networks Laboratory
ETH Zurich, Switzerland

kuhn@tik.ee.ethz.ch

Thomas Moscibroda
Computer Engineering and

Networks Laboratory
ETH Zurich, Switzerland

moscitho@tik.ee.ethz.ch

Roger Wattenhofer
Computer Engineering and

Networks Laboratory
ETH Zurich, Switzerland

wattenhofer@tik.ee.ethz.ch

ABSTRACT
A newly deployed multi-hop radio network is unstructured
and lacks a reliable and efficient communication scheme. In
this paper, we take a step towards analyzing the problems
existing during the initialization phase of ad hoc and sensor
networks. Particularly, we model the network as a multi-
hop quasi unit disk graph and allow nodes to wake up asyn-
chronously at any time. Further, nodes do not feature a
reliable collision detection mechanism, and they have only
limited knowledge about the network topology. We show
that even for this restricted model, a good clustering can be
computed efficiently. Our algorithm efficiently computes an
asymptotically optimal clustering. Based on this algorithm,
we describe a protocol for quickly establishing synchronized
sleep and listen schedule between nodes within a cluster.
Additionally, we provide simulation results in a variety of
settings.

Categories and Subject Descriptors: F.2.2 [Analysis of
Algorithms and Problem Complexity]: Nonnumerical Algo-
rithms and Problems

General Terms: Algorithms, Theory.

Keywords: ad-hoc networks, sensor networks, initializa-
tion, clustering, asynchronous wake-up, distributed algo-
rithms, dominating set algorithms.

1. INTRODUCTION
In view of the great potential of ad hoc and sensor net-

works in a variety of application scenarios such as disaster
relief, community mesh networks, monitoring and surveil-
lance, or data gathering, it is not surprising that there has
recently been a flurry of research activity in the field. Ad
hoc and sensor networks are formed by autonomous nodes
communicating via radio, without any additional backbone
infrastructure. Typically, if two nodes are not within mutual
transmission range, they communicate through intermediate
nodes relaying their message, i.e., the communication infras-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiCom’04,Sept. 26-Oct. 1, 2004, Philadelphia, Pennsylvania, USA.
Copyright 2004 ACM 1-58113-868-7/04/0009 ...$5.00.

tructure is provided by the nodes themselves. Setting up
and organizing such a virtual infrastructure is an important
common challenge.

During and shortly after the “big bang” (i.e., the deploy-
ment) of an ad hoc or sensor network, there is no established
pattern based on which nodes could efficiently communi-
cate. In other words, the lack of structure (for instance,
nodes do not know their neighbors, or the number of neigh-
bors) is characteristic of wireless multi-hop radio networks
when being deployed. Before the network can actually start
carrying out its intended task, the nodes must establish an
efficient structure, that provides reliable point-to-point con-
nections to higher-layer protocols and applications. The
self-organized transition from an unstructured to a struc-
tured multi-hop radio network with efficient media access
control (MAC) layer is called the initialization. The task
of initializing an ad hoc and sensor network is certainly the
most urgent task at hand immediately after the deployment.

In practice, the initialization problem plays a major role
for various reasons. First, current initialization procedures
tend to be slow. Even in a single-hop ad hoc network such
as Bluetooth and for a small number of devices, the time-
consumption for establishing a reasonable communication
pattern is considerable. Clearly, the situation is even worse
in a multi-hop scenario with large number of nodes. In wire-
less sensor networks [1], where the frugal usage of energy is
a key issue and power control is usually an integral part
of MAC layer protocols [27, 36], the initialization phase
becomes even more important. Many of these protocols
achieve energy savings by letting nodes sleep, i.e., turn off
their radio, periodically. Until such a sleep/listen scheme is
established, nodes must be awake all the time, thus dissi-
pating valuable energy. In fact, we know of applications in
which a large fraction of the node’s battery is already used
up during the initialization phase.

There is a multitude of excellent protocols and algorithms
in literature on ad hoc and sensor networks (as well as
on distributed computing in general) which would be well
suited for the task of initializing and structuring newly de-
ployed networks. Most notably, clustering algorithms seem
to be tailor-made for the purpose of bringing structure into
a chaotic network [3, 6, 7, 11, 14, 29]. Evaluating the perfor-
mance of an algorithm is only sensible under a model cap-
turing the circumstances the algorithm works under. Un-
fortunately, most of the above algorithms have not been
primarily designed for the initialization phase, and hence,
are based on model assumptions which do not closely reflect
the particularly harsh conditions during the deployment.

Many distributed algorithms are expressed under some
kind of message-passing model. In this model, the schedul-
ing of transmission is assumed to be handled by an exist-
ing MAC layer providing point-to-point connections between
neighboring nodes. In other words, it is taken for granted
that a MAC layer has previously been established on top
of which the algorithm can operate. Assuming an opera-
tional MAC layer solves a variety of problems that arise in
unstructured networks, such as asynchronous wake-up, col-
lision detection, or the hidden terminal problem. Studying
clustering in absence of an established MAC layer highlights
the chicken-and-egg problem of the initialization phase. A
MAC layer (“chicken”) helps achieving a clustering (“egg”),
and vice versa.1 In a newly deployed ad-hoc/sensor net-
work, however, there is no structure, i.e. there are neither
“chickens” nor “eggs”. Consequently, none of the various
existing clustering algorithms based on the classic message
passing model helps in the initialization process, since they
basically focus on the problem of computing the “egg”, given
the “chicken”.

Another frequent problem is that too much knowledge or
additional hardware capability is required. Even algorithms
which “merely” assume that nodes know their one or two
hop neighbors are not suited for the initialization phase since
the necessary discovery phase preceding the actual execution
is prone to collisions and is non-trivial. Basically, if nodes
knew their neighbors (or even only the number of neighbors)
at the beginning of the algorithm, efficient approaches could
be implemented easily. Unfortunately, in most real-world
scenarios, this is not the case.

A major concern with existing algorithms and models is
that they usually assume nodes to wake up or start the algo-
rithm at the same time. In a multi-hop environment, how-
ever, it is realistic to assume that some nodes wake up (e.g.
become deployed, or switched on) later than others. Due
to asynchronous wake-up, a node cannot assume that all its
neighbors have received its last transmission. New nodes
may have woken up in the meantime, being completely ig-
norant of what has been going on in the network up to
the moment. Not surprisingly, letting nodes wake up asyn-
chronously has a big impact on almost all algorithms and
naturally leads to new algorithmic designs and concepts.

The widely employed model for the study of wireless multi-
hop networks is the Unit Disk Graph (UDG) model. The un-
derlying assumption of this model is that nodes are placed in
the plane, all of them having the same — normalized to one
— transmission range. There is an edge between two nodes
u and v if and only if the Euclidean distance between u and
v is at most 1. The UDG model is an evident simplification
of reality, since, even in a homogeneous network, the model
does not account for obstacles which may obstruct signal

1In a clustering based on dominating sets, for instance, we
could obtain a coloring as follows: Starting with a connected
dominating set — which can be computed from a domi-
nating set [33] —, the cluster-heads choose colors, so that
no two cluster-heads within a certain range have the same
color. If this range is chosen to be large enough and a color
is associated with a frequency, no two neighboring clusters
interfere. Reversely, we can derive a maximal independent
set (MIS) from a coloring of the cluster-heads by first choos-
ing all nodes of color 1, and then adding as many nodes not
violating independence as possible for subsequent colors. In
a Unit Disk Graph, a MIS is a constant approximation for
a minimum dominating set[32].

propagation. Furthermore, it is well-known that there is no
sharp threshold for the transmission (or interference) range
as implied by the UDG model. A model significantly closer
to reality, yet concise enough to permit stringent theoretical
results, has been motivated and proposed in [5, 24]. In this
paper, we will adopt this so-called Quasi Unit Disk Graph
model (see Section 2).

Although neither the Unit Disk Graph model nor the
Quasi Unit Disk Graph model is quite practical, they have
generally been respected as a first step by practitioners. It
is surprising, however, that in many theoretical papers in
literature, even further audacious assumptions are made. In
particular, it is often assumed that nodes are distributed
uniformly at random in the plane. From a practical point
of view, it is not clear whether a uniform node distribu-
tion makes sense. While even “randomly” distributed sen-
sor networks often feature heterogenous node distributions,
there are many applications scenarios where the placement
of nodes is not random at all (monitoring and data gathering
in a building, along a road, or within a city, for instance).

In short, in the traditional models based on which algo-
rithms for ad hoc and sensor networks are currently ana-
lyzed, deployment specific characteristics are not addressed
properly, or simply abstracted away. Algorithms, regardless
of how efficient they may be in case of an established network
with reliable point-to-point connections between nodes, may
be of no use in a deployment scenario. This circumstance
highlights the need for a common model that permits proper
evaluation and comparison of protocols working during the
initialization phase of ad hoc and sensor networks. On the
one hand, such a model ought to be realistic enough to actu-
ally capture the characteristics of newly deployed networks.
But on the other hand, we want a model which allows ob-
taining precise mathematical results, such that we do not
need to resort solely to simulations or random distribution
assumptions. In Section 2, we introduce such a model, which
we believe balances the two contradicting aims.

The aim of the initialization phase is to quickly estab-
lish an efficient MAC layer. In this paper, we take a step
towards this ultimate goal by giving an algorithm which effi-
ciently computes a clustering of excellent quality under our
restricted model. As mentioned, clustering is one prominent
approach to solving the problem of bringing structure into
a multi-hop radio network, and it may therefore work as an
important building block when organizing a MAC layer.

Clustering allows the formation of virtual backbones, it
enables efficient routing [30], it improves the usage of scarce
resources, such as bandwidth and energy [15], and clustering
helps realizing spatial multiplexing in non-overlapping clus-
ters. Depending on the specific network organization prob-
lem at hand, various forms of clustering have been proposed.
In this paper, we consider a clustering in which each node
in the network is either a cluster-head or has a cluster-head
within its communication range, such that cluster-heads can
act as coordination points for the MAC scheme.

When we model a multi-hop radio network as a graph G =
(V, E), clustering can be formulated as a classic graph theory
problem: In a graph, a dominating set is a subset of nodes
such that for every node v, either a) v is in the dominating
set or b) a direct neighbor of v is in the dominating set. As
it is advantageous to compute a dominating set with few
dominators (i.e. cluster heads), we study the well known
minimum dominating set (MDS) problem which asks for

a dominating set of minimum size. Once the dominators
are chosen by the algorithm, non-dominator nodes can be
clustered around dominators in various, application-specific
ways. For example, non-dominators may associate with the
dominator providing the strongest signal, or it may associate
with all dominators within its transmission range. Since
our algorithm is guaranteed to produce at most a constant
number of dominators within the transmission range of any
given node, even this latter procedure is feasible from the
point of view of energy efficiency.

In this paper, we propose a clustering algorithm which is
explicitly defined for being used during the initialization of
unstructured multi-hop radio networks lacking any kind of
a-priori structure or MAC layer. In spite of the vast litera-
ture on dominating set algorithms, this is — to the best of
our knowledge — the first algorithm addressing the require-
ments of newly deployed networks. Even under our “harsh”
initialization model, the algorithm computes an asymptoti-
cally optimal clustering in polylogarithmic time. Capable of
working in total absence of any MAC layer, we believe that
the algorithm has practical relevance in scenarios in which
traditional dominating set algorithms fail.

Based on this clustering algorithm, we briefly discuss a
protocol for setting up periodic sleep/listen schedules within
clusters in a quick and energy-efficient way. As mentioned
above, organizing such schedules is of practical importance
in many sensor network applications, and we believe that
our protocol is a first step towards a solution.

The paper is organized as follows. Section 2 introduces
the model for the initialization phase. After introducing no-
tations in Section 3, the algorithm is developed and analyzed
using multiple communication channels in Sections 4 and 5.
The subsequent Section 6 extends our analysis to the single-
channel case. Simulation results are presented in Section 8.
The technique of simulating several independent channels
with a single channel may be of independent interest. An
overview over related work is given in Section 9, before the
paper is concluded in Section 10.

2. MODEL
In this section we introduce our model which will be used

throughout the rest of this paper. We believe that the model
is on the one hand strong enough to derive mathematically
precise results, but on the other hand close enough to reality
to actually have practical merit. In particular, we model the
conditions of an ad hoc or sensor network after its deploy-
ment by making the following assumptions.

• We model the network as a Quasi Unit Disk Graph
(QUDG) [5, 24]. In a d-QUDG, two nodes are con-
nected if their Euclidean distance is less than or equal
to d, d being a parameter between 0 and 1. Further-
more, if the distance between two nodes is greater than
1, there is no edge between them. In the range be-
tween d and 1, the existence of an edge is unspecified.
Such an edge may or may not be available. The signal
propagation of omnidirectional antennas does not form
a clear-cut disk. Up to a certain distance (modelled
with the parameter d), the signal is strong enough to
(almost) completely ensure communication. Beyond a
certain distance (normalized to 1), on the other hand,
reception is impossible due to physical constraints. In
the area in between these two regions, a transmission

may or may not be successfully received. Observe that
the QUDG model is equivalent to the traditional unit
disk graph model when setting d := 1. Further, note
that reasonable values for d are constants and inde-
pendent of the number of nodes N in the network.

� �
� �
� �

� �
� �
� �

d
1

u

Figure 1: The transmission range of node u varying
between d and 1.

• In most ad hoc and sensor networks, there exist nodes
that are not within mutual transmission range. We
consider such wireless multi-hop networks. The multi-
hop nature of such networks entails a variety of ad-
ditional problems. Some of the neighbors of a send-
ing node may receive a transmission, while others are
experiencing interference from other senders and do
not receive the transmission. Further, the hidden ter-
minal problem complicates building a maximal inde-
pendent set on which several proposed dominating set
algorithms are based [2, 32, 33].

• Nodes do not feature a reliable collision detection mech-
anism. That is, nodes are not capable of distinguishing
between the situation in which two or more neighbors
are sending and the situation in which no neighbor is
sending. Further, a sending node itself does not have a
collision detection mechanism either, it does not know
how many (if any at all!) neighbors have received its
transmission correctly. It has been argued that not
assuming any collision detection mechanism is realis-
tic from a practical point of view in many scenarios.
Nodes may be tiny sensors in a sensor network where
equipment is restricted to the minimum due to lim-
itations in energy consumption, weight, or cost [34].
Naturally, algorithms without collision detection are
less efficient than algorithms with collision detection.
Note that the absence of a reliable collision detection
mechanism prevents us from using protocols such as
Busy Tone Multiple Access (BTMA) [31] or Dual Busy
Tone Multiple Access (DBTMA) [8].

• Nodes can wake up asynchronously at any time and
consequently, they do not have access to a global clock.
Due to asynchronous wake-up, some nodes may still be
sleeping, while others are already transmitting. There-
fore, at any moment in time, there may be sleeping
nodes which do not participate in the communication
in spite of their being within the transmission range of
a sending node. Sleeping nodes can neither send nor

receive any messages, and they are not woken up by
messages sent by neighboring nodes. In a multi-hop
environment, it is realistic to assume that some nodes
wake up (e.g. become deployed, or switched on) later
than others. It is important to observe the implica-
tions of asynchronous wake-up. If all nodes started
the algorithm simultaneously, we could easily assume
an ALOHA kind of MAC-layer in which each node
sends with probability Θ(1/n). It is well known that
this approach leads to a quick and simple communi-
cation scheme on top of which existing dominating
set algorithms can be used. If nodes wake up asyn-
chronously, however, the same approach results in an
expected linear runtime if only one single node wakes
up for a long time. More sophisticated algorithms are
required to guarantee polylogarithmic runtime in case
of asynchronous wake-up.

• We assume that nodes have no knowledge about the
other nodes’ distribution or wake-up pattern. Particu-
larly, nodes are completely clueless about the number
of nodes in their neighborhood. The only knowledge
a-priori given to the nodes is an upper bound N for the
total number of nodes n = |V | in the graph. While n is
unknown, all nodes have the same estimate N ≥ n. As
proved in [18], it is impossible to construct efficient al-
gorithms if nodes wake up asynchronously and do not
have access to a global clock without having any esti-
mate of n. More precisely, it was proved that at least
Ω(n/ log n) time-slots are required before even one sin-
gle message can be transmitted without collision in
such a scenario. In order to circumvent this unsatis-
factory, almost linear running time, an estimate N for
n is inevitable. In practice, the number of nodes in a
network may not be known exactly, but it can roughly
be estimated in advance. Optionally, the algorithm’s
runtime may be improved by giving all nodes an addi-
tional upper bound ∆ for δ, δ denoting the maximum
degree (number of neighbors) in the network.

• Finally, for reasons mentioned in the introduction, we
do not assume any kind of random node distribution.
Instead, we aim for results holding for every possible
placement of nodes.

Working precisely under this model, the algorithm in Sec-
tion 4 computes (within polylogarithmic time) a dominating
set which is only a constant factor larger than the optimum.
Being able to obtain “hard” provable results for this algo-
rithm serves as an example of the models conciseness.

3. NOTATION
In this Section, we formally introduce some technicalities

and notations used in the sequel of the paper.
A node is called sleeping before its wake-up, and active

thereafter. Sleeping nodes can neither send nor receive any
messages. In Sections 4 and 5, we assume that nodes have
three independent communication channels Γ1, Γ2, and Γ3.
These independent channels may be realized using a fre-
quency division multiple access (FDMA) scheme. Having
three communication channels simplifies the analysis, but it
is not an indispensable necessity to obtain our results. We
prove in Section 6 that the same approximation-ratio can

be achieved even with a single communication channel in
polylogarithmic time.

For the sake of simplicity, we assume — for the analy-
sis of the algorithm — that time is divided into time-slots.
However, we attach importance to the observation that our
algorithm does not rely on synchronized time-slots in any
way. Since nodes do not have access to a global clock and
synchronizing time-slots is an expensive task, such an as-
sumption would be highly unrealistic. In this paper, it is
solely for the purpose of analyzing the algorithm that we
assume slotted channels. This simplification of the analysis
is justified due to the standard trick which has been intro-
duced in the analysis of slotted vs. unslotted ALOHA [28].
In [28], it is shown that the realistic unslotted case and the
idealized slotted case differ only by a factor of 2. The basic
intuition is that a single packet can cause interference in no
more than two successive time-slots. Similarly, by analyzing
our algorithm in an “ideal” setting with synchronized time-
slots, we obtain a result which is only by a factor 2 better
as compared to the more realistic unslotted setting.

In each time-slot, a node can either send or not send. A
node successfully receives a message in a time-slot if and only
if exactly one node in its neighborhood has sent a message in
the same time-slot. The variable pk denotes the probability
that node k sends a message in a given time-slot on channel
Γ1. The term sum of sending probabilities refers to the sum
of sending probabilities on channel Γ1.

4. ALGORITHM
The main idea of the algorithm is that nodes, after some

initial waiting, compete to become dominators by exponen-
tially increasing their sending probability on Γ1. Note that
in light of asynchronous wake-up, this exponential increase
is indispensable in order to achieve sublinear running time.
Channels Γ2 and Γ3 are then used to guarantee that the
number of further dominators emerging in the neighborhood
of an already existing dominator remains small.

Each node starts executing the quasi unit disk graph clus-
tering algorithm (Algorithm 1) immediately upon waking
up. In case the algorithm is invoked without the additional
estimate ∆ for δ, N simply serves as an upper bound for
the node degree ∆ := N . As shown in Theorem 4.2, the
algorithm’s runtime decreases slightly if ∆ is given as part
of the input.

The algorithm starts with a waiting phase (lines 4 to 8) in
which a newly awakened node waits for messages on all three
channels without sending itself. Intuitively, nodes which are
waking up late should not interfere with already existing
dominators. Before actively trying to become a dominator,
a node first listens for existing dominators in their neigh-
borhood. More specifically, we will choose the parameter α
as to ensure that a awakening node, which is already within
an existing dominators transmission range, does not become
dominator itself.

The competition phase starting in line 9 succeeds the wait-
ing phase. Nodes not having received any messages from a
dominator during the waiting phase will now try to compete
for becoming a dominator themselves. Technically, the com-
petition phase consists of log ∆ + 1 rounds, each of which
contains α · dlog N/d2e time-slots. As described in Section
2, these time-slots are not required to be synchronized be-
tween the nodes. In every time-slot, a node sends with prob-
ability p on channel Γ1. Starting from a small value, this

Algorithm 1 QUDG Clustering Algorithm

decided := false;
dominator := false;
upon wake-up do:
1: if ∆ not given as input then
2: ∆ := N ;
3: fi
4: for s := 1 to α · dlog2N/(d2 log log N)e do
5: if message received then
6: decided := true;
7: fi
8: od
9: for r := 0 to dlog ∆e do

10: for s := 1 to α · dlog N/d2e do
11: γ1 := 0; γ2 := 0; γ3 := 0;
12: if not decided then
13: γ1 := 1 , with probability p := ηd22−dlog ∆e+r;
14: if γ1 = 1 then
15: dominator := true;
16: else if message received then
17: decided := true;
18: fi
19: fi
20: if dominator then
21: γ2 := 1 , with probability ηd2 log log N/ log N ;
22: γ3 := 1 , with probability ηd2 log log N/ log2N ;
23: fi
24: for c := 1 to 3 do
25: if γc = 1 then
26: send on channel Γc

27: fi
28: od
29: od
30: od
31: if not decided then
32: dominator := true;
33: decided := true;
34: fi
35: if dominator then
36: loop
37: send on Γ2 , with prob. ηd2 log log N/ log N ;
38: send on Γ3 , with prob. ηd2 log log N/ log2N ;
39: end loop
40: fi

sending probability p is doubled in every round. A node be-
comes a dominator when sending its first message on channel
Γ1. After becoming a dominator, a node starts sending on
channels Γ2 and Γ3 with probability ηd2 log log N/ log N and
ηd2 log log N/ log2N , respectively, in addition to its sending
on Γ1 with probability p. Once a node becomes a dominator,
it will remain so for the rest of the algorithm.

A key observation is that we have to prevent the sum
of sending probabilities on channel Γ1 of all nodes in a
neighborhood from reaching too high values. Otherwise,
too many collisions will occur, leading to a large number
of dominators. Therefore, upon receiving its first message
(without collision) on any of the channels, a node becomes
decided and stops sending on Γ1. A node v being decided
means that v knows of the existence of a dominator in its
neighborhood. Consequently, such a node v stops competing

to become dominator itself by sending on Γ1. The parame-
ters η and α of the algorithm are defined as follows:

α := dlog−1 (753/752)e η := 2−7

The parameter α is chosen large enough to ensure that with
high probability, there is a round in which one competing
node will send without collision. Once this happens, all
other (awake) nodes in the vicinity of the sending nodes will
know about their being covered. Finally, the choice of η
maximizes the probability of a successful execution of the
algorithm. The exact values of η and α are determined by
the necessity that all claims in Section 5 hold with high
probability.

It remains to give an intuitive explanation why the send-
ing probabilities on channels Γ2 and Γ3 are chosen as in
the algorithm. Basically, the idea is that a newly awak-
ened node v should received a message during the first α ·
dlog2N/(d2 log log N)e waiting slots in case it is already dom-
inated. The number of dominators in v’s vicinity being un-
known, we have to make sure that v receives a message
regardless of how many dominators have previously been
chosen. It turns out that for that purpose, two communica-
tion channels are necessary (see Lemma 5.10). Defining the
sending probabilities too small or too large could lead to the
undesirable situation in which nodes become dominator in
spite of their being covered at the time of their waking up.

Correctness of the algorithm and time-complexity (defined
as the number of time-slots of a node between wake-up and
decision) follow immediately:

Theorem 4.1. The algorithm computes a correct domi-
nating set.

Proof. Every node which has not received a message
from a dominator at the end of the algorithm will decide to
become a dominator in line 28. Hence, every node is either
dominator or has a dominator in its neighborhood.

Theorem 4.2. Every node decides whether or not to be-
come dominator in time

O

(
log N

d2

(
log ∆ +

log N

log log N

))

Proof. The number of iterations in the first for-loop is
α · dlog2N/(d2 log log N)e. The two nested loops of the al-
gorithm are executed dlog ∆e + 1 and α · dlog N/d2e times,
respectively. At the end of these two loops, all remaining
undecided nodes decide to become dominator. The time-
complexity now follows from α being a constant.

Remark 1: For all reasonable (constant) values of d, the
time-complexity given in Theorem 4.2 reduces to

O

(
log2N

log log N

)
for 1 ≤ ∆ ≤ N1/ log log N ,

O(log N log ∆) for N1/ log log N ≤ ∆ ≤ N.

Remark 2: Note that the upper bounds N and ∆ do
not have to be particularly tight in order to obtain a good
time-complexity. If, for instance, N ≤ nλ and ∆ ≤ δλ

for a given λ ≥ 1, the time-complexity only increases to

O
(

λ2 log N
d2

(
log ∆ + log N

log log N

))
.

5. ANALYSIS
This section contains the main theoretical contribution of

this paper. It shows that the expected number of domina-
tors in the network is within O

(
1/d2

)
of an optimal solution,

which reduces to O(1) for any constant value of d. As men-
tioned in Section 3, we can simplify the analysis by assum-
ing all nodes operate with synchronized time-slots, such that
the slot boundaries are perfectly aligned and a single packet
transmission may cause a collision in exactly one time-slot.
This idealized analysis yields a result which is better only
by a factor 2 as compared to the realistic unsynchronized
setting.

We start the section by providing two facts, the first of
which has been proven in [18] and the second can be found
in standard mathematical textbooks.

Fact 5.1. Given a set of probabilities p1 . . . pn with ∀i :
pi ∈ [0, 1

2
], the following inequalities hold:

(
1

4

)∑n
k=1 pk

≤
n∏

k=1

(1− pk) ≤
(

1

e

)∑n
k=1 pk

.

Fact 5.2. For all n, t, such that n ≥ 1 and |t| ≤ n,

et

(
1− t2

n

)
≤

(
1 +

t

n

)n

≤ et.

In order to analyze the performance of the algorithm, we
cover the plane with imaginary circles Ci of radius r = d/2
by placing them on an hexagonal grid as shown in Figure
2. Let Di be the circle centered at the center of Ci having
radius R = 1 + d/2. It can be seen that Di is fully or
partially covering a number of smaller circles Cj . In the
analysis, we will continuously make use of the observation
that every node in a circle Ci can hear all other nodes in Ci.
On the other hand, nodes outside Di are not able to cause
a collision in Ci. The following lemma bounds the number
of circles covered by Di.

Lemma 5.3. Circle Di is covering at most 5/d2+15/d+11
circles Ci.

Proof. Letting χ be the smallest number of disks of ra-
dius r needed to cover a disk Di, the limit of the ratio of

the area of Di to the area of the smaller disks is 3
√

3
2π

[20].
All circles intersecting Di are completely inside the area D′

i,
where D′

i has radius R′ := R + 2r = 1 + 3d
2

. Hence, we can
write

(
1 + 3d

2

)2
π

χ · (d
2

)2
π

≥ 3
√

3

2π

and by solving for χ, we obtain χ

χ ≤ 3
√

3

2π
·
(

1

d2
+

3

d
+

9

4

)
.

We first give a broad outline of the proof which contains
four major steps, from Lemma 5.6 to Lemma 5.10. First, we
bound the sum of sending probabilities in a circle Ci. In a
second step, this gives us an upper bound on the number of
collisions in a circle before at least one dominator emerges.
Thirdly, we give a probabilistic bound on the number of
sending nodes per collision. In the last step, we show that

Dv

Cv

�
�
�
�

2r

r
R

Figure 2: Circles Ci and Di with radii r = d/2 and
R = 1+d/2. All Ci are entirely within circle D′

i having
radius R′ = 1 + 3d/2

nodes waking up late in an already covered circle do not
become dominator. More specifically, we show that all these
claims hold with high probability.

While the quality of the upper bounds N and ∆ does
influence the algorithm’s running time, it does not affect its
approximation ratio. The following lemma shows that it is
sufficient to assume N = n and ∆ = δ in order to derive an
upper bound for the expected number of dominators.

Lemma 5.4. The expected number of dominators in the
case n < N or δ < ∆ is at most the expected number of
dominators in the case n = N and δ = ∆.

Proof. Assume for contradiction that n1 < N leads to
more dominators than n2 = N . Since the adversary con-
trols the wake-up schedule of all nodes, it can simply let
n2 − n1 nodes sleep infinitely long, such that, the two cases
are indistinguishable. For that reason, the expected number
of dominators must be equal in both cases, which contra-
dicts the assumption. The same argument holds for δ = ∆,
too.

For the sake of readability, we will use the notation n and
∆ to denote the values N = n and ∆ = δ for the rest of the
analysis.

When bounding the sum of sending probabilities in the
first step, we are interested in time-slots in which exactly
one nodes sends.

Definition 5.1. Consider a circle Ci. Let t be a time-
slot in which a message is sent by a node v ∈ Ci on channel
Γ1 and received (without collision) by all other nodes in Ci.
We say that circle Ci clears itself in time-slot t. Let t0 be
the first such time-slot. We say that circle Ci terminates
itself in time-slot t0. For all time-slots t′ ≥ t0, we call Ci

terminated.

Further, we are interested in time-slots in which the sum
of sending probabilities exceeds a certain threshold.

Definition 5.2. Let pk(t) be the sending probability of
node k on channel Γ1 in time-slot t. We define the time
slot tj

i such that, for the jth time in Ci, the sum of sending
probabilities in Ci exceeds the threshold ηd2. Formally, for
each such time slot tj

i , it holds that
∑

k∈Ci

pk(tj
i − 1) < ηd2 and

∑

k∈Ci

pk(tj
i) ≥ ηd2.

In other words, t0i is the time-slot in which the sum of
sending probabilities in Ci exceeds ηd2 for the first time
and tj

i is the time-slot in which this threshold is surpassed
for the jth time in Ci. The following lemma bounds the sum
of sending probabilities in a circle.

Lemma 5.5. Let ϕ be α · dlog n/d2e. For all time-slots
t′ ∈ [tj

i . . . tj
i + ϕ− 1], the sum of sending probabilities in Ci

is bounded by
∑

k∈Ci

pk ≤ 3ηd2.

Proof. According to the definition of tj
i , the sum of send-

ing probabilities
∑

k∈Ci
pk at time tj

i − 1 is less than ηd2.
By the definition of Algorithm 1, all nodes which are active
at time tj

i will double their sending probability pk exactly
once in the following α · dlog N/d2e time-slots. Previously
inactive nodes may wake up during that interval. There are
at most δ of such newly active nodes and each of them will

send with the initial sending probability ηd2

2log ∆ = ηd2/∆ in

the given interval. In [tj
i . . . tj

i + ϕ− 1], we get

∑

k∈Ci

pk ≤ 2ηd2 +
∑

k∈Ci

ηd2

∆

≤ 2ηd2 +
d2ηδ

∆
≤ 3ηd2.

Using the above lemma, we can formulate a probabilistic
bound on the sum of sending probabilities in a circle Ci. In-
tuitively, we show that before the bound can be surpassed,
Ci does either clear itself or some nodes in Ci become de-
cided such that the sum of sending probabilities decreases.

Lemma 5.6. The sum of sending probabilities of nodes in
a circle Ci is bounded by

∑

k∈Ci

pk ≤ 3ηd2

with probability at least 1 − o
(

1
n2

)
. The bound holds for all

Ci in G with probability at least 1− o
(

1
n

)
.

Proof. Again, let ϕ denote α·dlog n/d2e. The proof is by
induction over all time-slots tj

i in ascending order. Let t′ :=
t0i be the very first such time-slot in the network. Lemma 5.5
states that the sum of sending probabilities in Ci is bounded
by 3ηd2 in the interval [t′ . . . t′ + ϕ − 1]. We now show
that in this interval, the circle Ci either clears itself or the
sum of sending probabilities falls back below ηd2 with high
probability.

If some of the active nodes in Ci receive a message from a
neighboring node, the sum of sending probabilities may fall
back below ηd2. In this case, the sum does obviously not
exceed 3ηd2.

If the sum of sending probabilities does not fall back below
ηd2, the following two inequalities hold for the duration of
the interval [t′ . . . t′ + ϕ− 1]:

ηd2 ≤
∑

k∈Ci

pk ≤ 3ηd2 : in Ci (1)

0 ≤
∑

k∈Cj

pk ≤ 3ηd2 : in Cj ∈ Di, i 6= j. (2)

The second inequality holds because t′ is the very first time-
slot in which the sum of sending probabilities exceeds ηd2.
Hence, in each Cj ∈ Di, the sum of sending probabilities is
at most 3ηd2 in the interval [t′ . . . t′ + ϕ − 1]. (Otherwise,
one of these circles would have reached ηd2 before circle Ci

and t′ is not the first time-slot considered).
We will now compute the probability that Ci clears it-

self within the interval [t′ . . . t′ + ϕ − 1]. Circle Ci clears
itself when exactly one node in Ci sends and no other node
in Di \ Ci sends. The probability P0 that no node in any
neighboring circle Cj ∈ Di, j 6= i sends is

P0 =
∏

Cj∈Di
j 6=i

∏

k∈Cj

(1− pk)

≥
Fact 5.1

∏
Cj∈Di

j 6=i

(
1

4

)∑
k∈Cj

pk

≥
Lemma 5.5

∏
Cj∈Di

j 6=i

(
1

4

)3ηd2

≥
[(

1

4

)3ηd2] 5
d2 + 15

d
+11

≥
(

1

4

)η(15+45d+33d2)

>

(
1

4

) 3
4

. (3)

Let Psuc be the probability that exactly one node in Ci

sends:

Psuc =
∑

k∈Ci

pk ·

∏

l∈Ci
l6=k

(1− pl)

≥
∑

k∈Ci

pk ·
∏

l∈Ci

(1− pl)

≥
Fact 5.1

∑

k∈Ci

pk ·
(

1

4

)∑
k∈Ci

pk

(4)

≥ ηd2 ·
(

1

4

)ηd2

.

The last inequality holds because function (4) is strictly in-
creasing in [ηd2, 3ηd2].

The probability Pc that exactly one node in Ci and no
other node in Di sends is therefore given by

Pc = P0 · Psuc ≥ ηd2

(
1

4

)ηd2+ 3
4

.

Pc is a lower bound for the probability that Ci clears itself
in a time-slot t ∈ [t′ . . . t′ + ϕ− 1].

Using abbreviations k1 := η
(

1
4

)3/4
and k2 :=

(
1
4

)η
, we

can write the probability Pterm that circle Ci does not clear
itself during the entire interval of length ϕ as,

Pterm ≤
(

1− ηd2

(
1

4

)ηd2+ 3
4
)α·dlog n/d2e

≤
[(

1− k1d
2kd2

2

)(1/d2)
]α log n

≤
[(

1− k1d
2k2

)(1/d2)
]α log n

≤ e−k1k2k3 log n ≤ n−k1k2α/ ln 2 ∈ o
(
n−2) .

We have thus shown that within the interval [t′ . . . t′+ϕ−
1], the sum of sending probabilities in Ci either falls back
below ηd2 or Ci clears itself with high probability.

So far, we have only shown that the lemma holds for the
first tj

i (i.e., t′). For the induction step, we consider an arbi-

trary tj
i . By the induction hypothesis, we can assume that

all previous such time-slots have already been dealt with.

In other words, all previously considered time-slots tj′
i′ have

either lead to a clearance of circle Ci′ or the sum of proba-
bilities in Ci′ has decreased below the threshold ηd2. Imme-
diately after a clearance, the sum of sending probabilities in
a circle Ci is at most ηd2, which is the sending probability
in the last round of the algorithm. This is true because only
one node in the circle remains undecided. All other nodes
will stop sending on channel Γ1. By Lemma 5.5, the sum
of sending probabilities in all neighboring circles (both the
cleared and the not cleared ones) is bounded by 3ηd2 in the
interval [tj

i . . . tj
i + ϕ − 1] (otherwise, this circle would have

been considered before tj
i). Therefore, we know that the

bounds (1) and (2) hold with high probability. And conse-
quently, the computation to show the induction step is the
same as the one for the base case t′ and it also holds that
Pterm ∈ o

(
1

n2

)
.

Each step of the induction only holds with high probabil-
ity. But, because there are n nodes to be decided and at
most nonempty n circles Ci, the number of induction steps
tj
i is bounded by n. Hence, the probability that the lemma

holds for all steps is at least
(
1− o

(
1

n2

))n ≥ 1−o
(

1
n

)
, which

concludes the proof.

Using Lemma 5.6, we can now compute the expected num-
ber of dominators in each circle Ci. In the analysis, we will
separately compute the number of dominators before and af-
ter the termination (i.e. the first clearance) of Ci. To prove
our results, we will need three more lemmas.

Lemma 5.7. Let C be the number of collisions (more than
one node is sending in one time-slot on Γ1) in a circle Ci.
The expected number of collisions in Ci before its termina-
tion is E [C] < 5. Further, C < 6 log n with probability at
least 1− o

(
1

n2

)
.

Proof. Only channel Γ1 is considered in this proof. We
assume that Ci is not yet terminated and we define the fol-
lowing events

A : Exactly one node in Di is sending

X : More than one node in Ci is sending

Y : At least one node in Ci is sending

Z : Some node in Di \ Ci is sending

For the proof, we consider only rounds in which at least one
node in Ci sends. (There will be no new dominators in Ci if

no node sends). We want to get a bound for the conditional
probability P [A | Y] that exactly one node in Di is sending
and this one node is located in Ci. Using P [Y | X] = 1 and
the fact that Y and Z are independent, we get

P [A | Y] = P
[
X | Y] · P [

Z | Y]

= P
[
X | Y] · P [

Z
]

= (1− P [X | Y]) · (1− P [Z])

=

(
1− P [X] · P [Y | X]

P [Y]

)
· (1− P [Z])

=

(
1− P [X]

P [Y]

)
· (1− P [Z]) . (5)

We can now compute bounds for the probabilities P [X],
P [Y], and P [Z]:

P [X] = 1−
∏

k∈Ci

(1− pk)−
∑

k∈Ci

pk

∏

l∈Ci
l6=k

(1− pl)

≤ 1−
(

1

4

)∑
k∈Ci

pk

−
∑

k∈Ci

pk ·
(

1

4

)∑
k∈Ci

pk

= 1−

1 +

∑

k∈Ci

pk

(
1

4

)∑
k∈Ci

pk

(6)

P [Y] = 1−
∏

k∈Ci

(1− pk) ≥ 1−
(

1

e

)∑
k∈Ci

pk

. (7)

The first inequality for P [X] follows from Fact 5.1 and in-
equality (4). The inequality for P [Y] also follows from Fact
5.1. In the proof for Lemma 5.6, we have already computed
a bound for P0, the probability that no node in Di\Ci sends.
Using this result, we can write P [Z] as

P [Z] = 1−
∏

Cj∈Di\Ci

∏

k∈Cj

(1− pk) ≤
Eq. (3)

1−
(

1

4

) 3
4

. (8)

Plugging inequalities (6), (7), and (8) into equation (5) for
P [A | Y], it can be shown that the term P [X] /P [Y] is max-
imized for

∑
k∈Ci

pk = 3ηd2 and therefore

P [A | Y] =

(
1− P [X]

P [Y]

)
· (1− P [Z])

≥

1− 1− (1 + 3ηd2)

(
1
4

)3ηd2

1− (
1
e

)3ηd2

(
1

4

) 3
4

.

Since this expression is minimized for d = 1, we obtain
P [A | Y] ≥ 0.211 by plugging in all values. Hence, whenever
a node in Ci sends, Ci terminates with constant probability
at least P [A | Y]. This allows us to compute the expected
number of collisions in Ci before the termination of Ci as a
geometric distribution:

E [C] =
1

P [A | Y]
≤ 5.

The high probability result can be derived as

P [C ≥ 6 log n] = (1− P [A | Y])6 log n ∈ O
(
n−2) .

So far, we have shown that the number of collisions be-
fore the clearance of Ci is constant in expectation. The next
lemma shows that the number of new dominators per colli-
sion is also constant. In a collision, each of the sending nodes
may already be dominator. Hence, if we assume that every
sending node in a collision is a new dominator, we obtain an
upper bound for the true number of new dominators.

Lemma 5.8. Let D be the number of nodes in Ci sending
in a time-slot and let Φ denote the event of a collision. Given
the occurrence of a collision, the expected number of sending
nodes (i.e., new dominators) is E [D | Φ] ∈ O(1). Further-
more, P [D < 3 log n/ log log n | Φ] holds with high probabil-
ity.

Proof. Let m, m ≤ n, be the number of nodes in Ci

and M = {1 . . . m}. D is a random variable denoting the
number of sending nodes in Ci in a given time-slot. We
define Ak := P [D = k] as the probability that exactly k
nodes send. For example, the probability that exactly two
nodes in Ci send is

A2 =
∑

k∈Ci

pk ·

∏

l∈Ci
l6=k

(1− pl)

.

Let
(
M
k

)
be the set of all k -subsets of M (subsets of M having

exactly k elements). We define A′k as

A′k :=
∑

Q∈(Mk)

∏
i∈Q

pi

1− pi
.

We can then write Ak as

Ak =
∑

Q∈(Mk)

∏

i∈Q

pi ·
∏

i/∈Q

(1− pi)

=

∑

Q∈(Mk)

∏
i∈Q

pi

1− pi

 ·

m∏
i=1

(1− pi)

= A′k ·
m∏

i=1

(1− pi). (9)

Fact 5.9. The following recursive inequality holds between
two subsequent A′k:

A′k ≤ 1

k

m∑
i=1

pi

1− pi
·A′k−1

A′0 = 1.

Proof. The base case A′0 = 1 follows directly from equa-
tion (9) and the fact that the probability A0 that no node
sense is

∏m
i=1 (1− pi). For general A′k, we have to group the

terms
∏

i∈Q
pi

1−pi
in such a way that we can factor out A′k−1:

A′k =
∑

Q∈(Mk)

∏
j∈Q

pj

1− pj

=
1

k

m∑
i=1

 pi

1− pi
·

∑

Q∈(M\{i}
k−1)

∏
j∈Q

pj

1− pj

≤ 1

k

m∑
i=1

 pi

1− pi
·

∑

Q∈(M
k−1)

∏
j∈Q

pj

1− pj

=
1

k

m∑
i=1

pi

1− pi
·

∑

Q∈(M
k−1)

∏
j∈Q

pj

1− pj

=
1

k

m∑
i=1

pi

1− pi
·A′k−1.

We now continue the proof of Lemma 5.8. The conditional
expected value E [D | Φ] is

E [D | Φ] =

m∑
i=0

(i · P [D = i | Φ]) =

m∑
i=2

Bi. (10)

where Bi is defined as i ·P [D = i | Φ]. For i ≥ 2, the condi-
tional probability reduces to

P [D = i | Φ] =
P [D = i]

P [Φ]
. (11)

In the next step, we consider the ratio between two consec-
utive terms of sum (10).

Bk−1

Bk
=

(k − 1) · P [D = k − 1 | Φ]

k · P [D = k | Φ]

=
Eq. (11)

(k − 1) · P [D = k − 1]

k · P [D = k]

=
(k − 1) ·Ak−1

k ·Ak
=

(k − 1) ·A′k−1

k ·A′k
.

It follows from Fact 5.9, that each term Bk can be upper
bounded by

Bk =
kA′k

(k − 1)A′k−1

·Bk−1

≤
Fact 5.9

k
(

1
k

∑m
i=1

pi
1−pi

·A′k−1

)

(k − 1)A′k−1

·Bk−1

=
1

k − 1

m∑
i=1

pi

1− pi
·Bk−1

≤ 2

k − 1

m∑
i=1

pi ·Bk−1.

The last inequality follows from ∀i : pi < 1/2 and pi ≤
1/2 ⇒ pi

1−pi
≤ 2pi.

From the definition of Bk, it naturally follows that B2 ≤ 2.
Furthermore, we can bound the sum of sending probabil-
ities

∑m
i=1 pi using Lemmas 5.3 and 5.6 to be less than

3ηd2 · (5
d2 + 15

d
+ 11

) ≤ 3
4
. We can thus sum up over all

Bi recursively in order to obtain E [D | Φ]:

E [D | Φ] =

m∑
i=2

Bi

≤ 2 +

∞∑
i=3

[
2

(i− 1)!

(
3

4

)i−2
]

=
3

8
e3/4 − 3

8
≤ 2.98.

In order to derive the high probability result, we solve the
recursion of Fact 5.9 and obtain

A′k ≤ 1

k!

(
m∑

i=1

pi

1− pi

)k

. (12)

The probability P+ := P
[
D ≥ 3 log n

log log n
| Φ

]
is

P+ =

n∑

k=d 3 log n
log log n

e

Ak ≤
n∑

k=d 3 log n
log log n

e

A′k

≤
Eq. (12)

n∑

k=d 3 log n
log log n

e

 1

k!
·
(

m∑
i=1

pi

1− pi

)k

≤
n∑

k=d 3 log n
log log n

e

 1

k!
·
(

2 ·
m∑

i=1

pi

)k

≤
(

n−
⌈

3 log n

log log n

⌉)
·
(
2 ·∑m

i=1 pi

)d 3 log n
log log n

e

d 3 log n
log log n

e!

≤ n · (3/4)
d 3 log n
log log n

e

d 3 log n
log log n

e! ∈ O
(
n−2) .

The last key lemma shows that the expected number of
new dominators after the termination of circle Ci is also
constant.

Lemma 5.10. Let A be the number of new dominators af-
ter the termination of Ci. Then, A ∈ O(1) with high proba-
bility.

Proof. We define B and Bi as the set of dominators in
Di and Ci, respectively. Immediately after the termination
of Ci, only one node in Ci remains sending on channel Γ1,
because all others will be decided. By Lemmas 5.7 and 5.8,
we can bound the number of dominators in a Ci with high
probability as |Bi| ≤ τ ′ log2n/ log log n for a small constant
τ ′. Potentially, all Cj ∈ Di are already terminated and
therefore,

1 ≤ |B| ≤
(

5

d2
+

15

d
+ 11

)
· τ ′ log2n

log log n
(13)

with high probability. For simplicity, we write τ(d) :=
τ ′

(
5

d2 + 15
d

+ 11
)
.

We distinguish the two cases 1 ≤ |B| ≤ τ(d) log n/ log log n
and τ(d) log n/ log log n < |B| ≤ τ(d) log n2/ log log n. We
consider channels Γ2 and Γ3 in the first and second case, re-
spectively. Particularly, we prove that in the first (second)
case, a new node will receive a message on Γ2 (Γ3) with
high probability during the waiting period at the beginning
of the algorithm.

Consider case one, i.e. 1 ≤ |B| ≤ τ(d) log n/ log log n.
The probability P0 that one dominator is sending alone on
channel Γ2 is

P0 = |B| · q1 · (1− q1)
|B|−1

where q1 := ηd2 log log n/ log n as defined in the algorithm.
As this is a concave function in |B|, it is sufficient to

consider the two extreme values. For |B| = 1, we get P0 =
q1 = ηd2 log log n/ log n and for |B| = τ(d) log n/ log log n,
n ≥ 2, we have

P0 ≥ τ(d)ηd2 ·
(

1− ηd2 log log n

log n

) τ(d) log n
log log n

≥ τ(d)ηd2 ·
(

1− d2τ(d)/2β

τ(d) log n
log log n

) τ(d) log n
log log n

≥ τ(d)ηd2e−τ(d)ηd2

(
1−

(
τ(d)ηd2

)2

τ(d) log n
log log n

)

≥ τ(d)ηd2e−τ(d)ηd2 (
1− d4η2τ(d)

) ∈ Ω(1) .

A newly awakened node in a terminated circle Ci will not
send during the first αdlog2n/(d2 log log n)e time-slots. If
during this period, the node receives a message (without
collision) from an existing dominator, it will become de-
cided and hence, will not become dominator. The probabil-
ity Pno that such an already covered node does not receive
any messages from an existing dominator during the first
αdlog2n/(d2 log log n)e time-slots is asymptotically bounded
by

Pno ≤
(

1− ηd2 log log n

log n

)α·dlog2n/(d2 log log n)e

≤
Fact 5.2

e−ηα log n ∈ O
(
n−4) .

This shows that the probability of new dominators emerging
in Ci after the termination of Ci is small and with high
probability, the number of new dominators is bounded by a
constant in this case.

The analysis in the second case follows along the same
lines, the only difference being that we consider channel Γ3

instead of Γ2. For |B| = τ log n/ log log n, we get

P0 ≥ ηd2τ(d)

log n

(
1− ηd2 log log n

log2n

) τ(d) log n
log log n

≥ ηd2τ(d)

log n
·
(

1− ηd2τ(d)/(log n)

τ(d) log n/ log log n

) τ(d) log n
log log n

≥ ηd2τ(d)

log n
e
− ηd2τ(d)

log n
(
1− η2d4τ(d)

) ∈ Ω(1/ log n) .

For |B| = τ(d) log2n/ log log n, it can be shown that P0 ∈
Ω(1) and hence, the remainder of the analysis is analogous
to the first case.

We are now ready to prove the following theorem.

Theorem 5.11. The expected number of dominators in
circle Ci is E [D] ∈ O(1).

Proof. We consider a circle Ci. By Lemma 5.7, the ex-
pected number of collisions before the termination of Ci is
less than 5. Lemma 5.8 states that the expected number of

new dominators per collision is not higher than 2.98. Be-
cause C and D | Φ are independent events, we can compute
the expected number of dominators in Ci before the termi-
nation of Ci as

E [D] = E [C] · E [D | Φ] ≤ 15 ∈ O(1)

By Lemma 5.10, the number of dominators emerging after
the termination of Ci is also constant.

Note that the exact value of the constant in Theorem 5.11
is an artefact of the analysis and does not closely reflect the
algorithm’s performance in real settings. In Section 8, we
show that, for reasonable parameter values, the real bounds
are close to 2.

Theorem 5.12. The algorithm computes a correct domi-
nating set in time

O

(
log N

d2

(
log ∆ +

log N

log log N

))

and achieves an approximation ratio of O
(
1/d2

)
in expecta-

tion.

Proof. Correctness and runtime follow directly from The-
orems 4.1 and 4.2. For the approximation ratio, Theorem
5.11 bounds the number of dominators in each circle Ci by a
constant. On the other hand, even the optimal solution must
choose at least one dominator in Di. The Theorem then fol-
lows from the fact that Di covers at most 5/d2 + 15/d + 11
circles Ci by Lemma 5.3.

6. SINGLE-CHANNEL
In this section, we analyze the single-channel scenario.

We prove that the constant approximation-ratio (for d be-
ing constant) also holds in this case, by showing how each
time-slot in the multi-channel model can be simulated by a
number of time-slots in the single-channel model. The time
complexity of the algorithm remains polylogarithmic.

Let s and t be time-slots in the single-channel and multi-
channel model, respectively. We write suc(t) = 1 if a mes-
sage is successfully transmitted in time-slot t and suc(t) = 0
otherwise.

Lemma 6.1. Time-slot t can be simulated with O
(
log3n/d2

)
time-slots si, i ∈ [1 . . . 3β log3n/d2], for a large enough con-
stant β such that suc(t) = 1 ⇔ ∃i : suc(si) = 1 with proba-
bility 1−O

(
1

n2

)
.

Proof. We first investigate the critical cases by analyz-
ing the different sending possibilities which can occur in the
multi-channel case (channels Γ1, Γ2, and Γ3) and how they
map to the single-channel model.

Γ1 Γ2 Γ3 Multi Single Critical
0 0 0 0 0 no
0 1 0 1 1 no
0 1 1 1 0 yes
1 1 1 1 0 yes
0 ≥ 2 0 0 0 no
1 ≥ 2 0 1 0 yes
1 ≥ 2 1 1 0 yes
≥ 2 ≥ 2 1 1 0 yes
≥ 2 ≥ 2 ≥ 2 0 0 no

The table shows some of the possible cases. The columns Γ1,
Γ2, and Γ3 denote how many senders are sending on these
channels in a given time-slot. The next two columns show
whether or not the transmission was successful, depending
on the number of channels used. For the single-channel case,
we assume that all senders sending on any channel are send-
ing on a common channel Γ. The critical cases are those
in which a node receives a message in the multi-channel
case, but does not receive it in the single-channel case, due
to a collision. When simulating three channels by a single
channel, we must ensure that a message can be successfully
transmitted (without collision) in these critical cases.

We write send(t) = 1 if a sender sends in time-slot t and
send(t) = 0, otherwise. Further, we use the abbreviations
λ := β log3n/d2 and p := d2/ log2n. Each node simulates
time-slot t by 3λ single-channel time-slots s1 . . . s3λ in the
following way:

send(t) = 0 ⇒ ∀si ∈ [s1 . . . s3λ] :

send(si) := 0

send(t) = 1 ⇒ ∀si ∈ [s1 . . . sλ , s2λ . . . s3λ] :

send(si) := 0

send(t) = 1 ⇒ ∀si ∈ [sλ . . . s2λ] :

send(si) :=

{
1, with probability p
0, with probability 1− p

In words, each node which sends on Γ1, Γ2, or Γ3 in a
time-slot t sends randomly with probability d2/ log2n in the
λ time-slots [sλ . . . s2λ] on channel Γ. We call [sλ . . . s2λ]
sending period, [s1 . . . sλ] and [s2λ . . . s3λ] quiet periods.

Obviously, if there is more than one sender, they may
choose the same or overlapping time-slots, which will lead
to collisions. Unless there is at least one time-slot in which
exactly one sender is sending, the message is not transmit-
ted successfully. Thus, there is a non-zero probability that
sending a message fails in the critical cases, as defined above.
We will now show, however, that this probability becomes
sufficiently small to make sure the algorithm works the same
way as in the multi-channel case.

Let T be the set of sending nodes in time-slot t. Due to
asynchronous wake-up, we can not assume that the periods
[s1 . . . s3λ] of sending nodes v ∈ T are aligned. It is easy to
observe, however, that the probability of a successful trans-
mission is minimized when these periods are exactly aligned.
If some nodes v ∈ T are in the sending period while others
are in a quiet period, the probability of a successful trans-
mission (exactly one node sends in a time-slot s) is bigger
compared to the case when all sending nodes are in the send-
ing period at the same time. Consequently, we only have to
consider the case of perfect alignment between sending pe-
riods.

By Lemma 5.8, we know that the number of sending
nodes on channel Γ1 in a given time-slot does not exceed
log n/ log log n with high probability. By Equation (13), we
know that the number of nodes sending on Γ2 and Γ3 is
bounded by τ(d) log2n/ log log n < τ(d) log2n (see remark
at the end of the proof).

The probability P1 that exactly one node v ∈ T sends in
a time-slot s is

P1 =
d2|T |
log2n

(
1− d2

log2n

)|T |−1

Since this is a concave function, we again have to consider

the cases |T | = 2 and |T | = 2τ(d) log2n + 1. In the first
case, the probability Pno that no message is successfully
transmitted in the entire sending period is

Pno = (1− P1)
λ

≤
(

1− 2d2

log2n

(
1− d2

log2n

)) β log3n

d2

=

(
1− 2d2 log2n− 2d4

log4n

) β log4n

d2 log n

≤
Fact 5.2

e
−2β(log n− d2

log n
) ∈ O

(
1

n2β

)
.

As for the second case, |T | = 2τ(d) log2n + 1, we have

Pno = (1− P1)
λ

≤
(

1− 2d2τ(d)

(
1− d2

log2n

)2τ(d) log2n
) β log3n

d2

≤
(
1− 2d2τ(d)e−2d2τ(d)

)β log3n

∈ O

(
1

nβ log2n

)
.

Since the same computation holds for all three channels, a
message from each channel is successfully transmitted with
high probability.

Remark: The simulation’s running time can easily be
improved by an additional log log n factor by using the im-
proved bound τ(d) log2n/ log log n on the maximum number
of sending nodes, rather than the weaker τ(d) log2n. We
chose to present the slightly worse result for the sake of
readability.

Corollary 6.2. The dominator algorithm in the single-
channel model has time-complexity O

(
polylog(n)/d4

)
. All

critical steps are executed like in the multi-channel algorithm

with probability at least 1−O
(

log2n
d2n2β−1

)
, for a constant β.

Proof. It only remains to show correctness. We com-
pute the probability P that at least one step of the en-
tire algorithm’s execution is not handled correctly by our
single-channel simulation. In the multi-channel case, the al-
gorithm’s execution takes no more O(1) · n log2n/d2 steps.
The probability P that none of these critical steps fails is

P ≥
(

1− 1

n2β

)O(1)·n log2n/d2

∈ 1−O

(
log2n

d2n2β−1

)
.

Thus, we have shown that even with a single communi-
cation channel, we can compute an asymptotically optimal
clustering in polylogarithmic time. As for a constant ap-
proximation, algorithms with sublogarithmic running time
appear to be impossible, future improvements may focus on
reducing the logarithm’s power.

7. APPLICATIONS
One way to look at our algorithm is to regard it as a first

step towards analyzing (and hopefully solving) the charac-
teristic problems existing during and immediately after the
deployment of ad hoc and sensor networks. From this point

of view, the algorithm serves as an example that our ini-
tialization model allows to obtain interesting results. We
believe, however, that the algorithm in its current state has
relevance beyond being a mere building block for future work
or serving as an example for a proposed model. In this
section, we briefly discuss the design of a straight-forward
protocol for energy-saving which is based on our algorithm.

As mentioned in the introduction, a problem frequently
encountered in sensor networks is that a significant fraction
of the node’s energy supply is used up during the initializa-
tion phase. Consider for instance a scenario where sensor
nodes are installed indoors and the installation process re-
quires a few days time. When being deployed (installed),
nodes become switched on one after the other. Before neigh-
boring nodes have agreed on a common sleep/listen sched-
ule, they must basically remain awake all the time in order
to learn about new neighbors. Considering the scarcity of
battery power in sensor networks, remaining switched on for
a period of days is costly.

The protocol consists of a periodic sleep and listen sched-
ule, a period being of length πp := πs + πl. Each period
consists of a sleeping phase of length πs, followed by a typ-
ically much shorter listen phase of length πl. Upon waking
up, nodes are constantly awake and execute Algorithm 1.
Instead of sending dummy messages, however, dominators
will use their messages to “synchronize” associated nodes,
such that all nodes in the same cluster listen and sleep at
the same time.

More precisely, the protocol works as follows. Each node v
maintains a local2 counter cv, initially set to 0 for all nodes.
Dominator nodes increment their counter by 1 in each time-
slot and attach the current counter value to each message
they send. Once the counter reaches πp, dominators reset
their counter, i.e., cv := 0. Intuitively, the counter value cv

denotes how many time-slots have passed since the start of
the last sleep phase in v’s schedule.

A non-dominator node u associates itself with the first
dominator v from which it hears a message, adopting v’s
sleep/listen schedule. Particularly, upon receiving its first
message from a dominator (containing counter cv), a node u
immediately goes to sleep mode for exactly min {πs − cv, 0}
time-slots.

Observe that this simple procedure ensures that all non-
dominator nodes in the same cluster (having the same dom-
inator) wake up and sleep at the same time. This, in turn,
allows non-dominators to go to sleep mode quickly, i.e., af-
ter listening for no more than O(log2N) time-slots. Clearly,
dominator nodes require more energy since they frequently
have to send on channels Γ2 and Γ3. Each time a dominator
has sent a message, it can randomly choose its next sending
time-slot. By going into sleep mode between these two sub-
sequent sending time-slots, even dominators can reduce their
energy-consumption during the initialization phase. More
precisely, a dominator sends on channels Γ2 and Γ3 with
probabilities ηd2 log log N/ log N and ηd2 log log N/ log2N ,
respectively. Hence, dominators need only be awake for
roughly a fraction of log log N/ log N of all time-slots during
the initialization.

2recall that due to asynchronous wake-up, there are no syn-
chronized or global clocks.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

10 100 1000 10000 100000

#Nodes

#D
o

m
in

at
o

rs
 in

 N
ei

g
h

b
o

rh
o

o
d

 � =2 � =5

 � =10 � =100

Figure 3: Synchronous Wake-up (p=1)

0

1

2

3

4

5

6

7

8

10 100 1000 10000 100000

#Nodes

#D
o

m
in

at
o

rs
 in

 N
ei

g
h

b
o

rh
o

o
d

 � =2 � =5

 � =10 � =100

Figure 4: Asynchronous Wake-up (p=10−5)

1

2

3

4

5

6

7

8

1 10 100

Factor �

#D
o

m
in

at
o

rs
 in

 N
ei

g
h

b
o

rh
o

o
d

 n=100

 n=1000

 n=10000

Figure 5: Synchronous Wake-up (p=1)

1

2

3

4

5

6

7

8

9

10

1 10 100

Factor �

#D
o

m
in

at
o

rs
 in

 N
ei

g
h

b
o

rh
o

o
d

 n=100

 n=1000

 n=10000

Figure 6: Asynchronous Wake-up (p=10−5)

8. SIMULATION
In this section, we give an indication of the efficiency of

the algorithm in a variety of test settings. We show how the
different parameters influence the quality of the dominating
set, as well as the runtime of individual nodes. We have
implemented a test setting in which n nodes are randomly
distributed in a 5×5 square. Each node’s transmission range

0

500

1000

1500

2000

2500

3000

3500

10 100 1000 10000 100000
#Nodes

A
ve

ra
g

e
R

u
n

ti
m

e

p = 1

p = 10E-3

p = 10E-4

p = 10E-5

Figure 7: Runtime (α = 10)

is 1. Simulating the behavior of a quasi unit disk graph is
difficult, since it is not clear how to treat “edges” if their
existence is unspecified. Therefore, in order to obtain con-
sistent results, we have adopted the unit disk graph model
for the simulations, i.e., d = 1. Further, η = 2−6.

The following parameters are used. n is the number of
nodes in the network. α corresponds to the parameter as
defined in Algorithm 1. Clearly, the larger α, the larger the
running time of the algorithm. On the other hand, choosing
α too small increases the chance of having multiple domina-
tors in the same vicinity. The third parameter, p, describes
the nodes’ wake-up behavior. Let s be the number of sleep-
ing nodes at time t. In time-slot t + 1, each sleeping node
wakes up with probability np

s
. This yields an even distribu-

tion in the first p−1 time-slots. In the case p = 1, all nodes
wake up immediately and we have a synchronous wake-up
behavior. For small p, the nodes wake up widely dispersed
in time. For all our simulations, we assume N = ∆ = n.
Clearly, for N > n, the number of dominators subsides and
the runtime increases.

Figures 3 and 4 relate the number of dominators to the
number of nodes in the graph. In both cases, the y-axis
denotes the average number of dominators in the neighbor-
hood of a node. In Figure 3, all nodes wake up synchronously
in the very first time-slot, while in Figure 4, they wake up
asynchronously. In both the synchronous and asynchronous
case, the number of dominators converges to a constant of
about 2, if the parameter α is chosen large enough. Note
that this indicates a dominating set of excellent quality. For
α ≥ 10, the differences become negligibly small, even when
compared to the value used in the analysis section, where α
must be large to obtain all necessary high probability results.
If α is chosen too small, however, the number of dominators
in each node’s neighborhood may increase, particularly in
the case of asynchronous wake-up. This increase is caused
by a growing number of collisions as well as the fact that the
listen-only phase at the beginning of the algorithm becomes
too short.

Note that the larger α, the slower the sending probabilities
reach large values leading to an increase in the running-time.
Thus, it is desirable to choose α as small as possible. The
question is, how small can we choose α before the quality
of the resulting dominating set starts worsening. We study
this issue in Figures 5 and 6. The charts relate the average
number of dominators in the neighborhood of a node to the
parameter α. It can be seen that the number of dominators
reaches its low at around α = 10 in the asynchronous case
(and already at α = 5 in the synchronous case) and remains

constant thereafter. For practical purposes, it is therefore
sufficient to run the algorithm using α := 10 which yields a
good running time, as shown in Figure 7.

The y-axis of Figure 7 denotes the average number of
time-slots passing between the wake-up of a node and its
becoming decided. Approximately, for large p, the runtime
increases asymptotically as O

(
log2n

)
. For small values of p

(i.e., for asynchronous wake-up), the average running time
is much lower and does not significantly increase in the
range n ∈ [10 . . . 100000]. This chasm is natural considering
that each node listens during the first αdlog2n/(d2 log log n)e
time-slots without sending. In the case of synchronous wake-
up, all nodes execute these time-slots simultaneously and
they all end up waiting at the same time, causing an increase
in the average running time. In the asynchronous case,
most nodes wake up at a time when existing dominators
are already sending. Most of these nodes will decide not to
become a dominator within the first αdlog2n/(d2 log log n)e
time slots as shown in Lemma 5.10. The running time gap
between the synchronous and asynchronous case is therefore
a direct consequence of the way the algorithm works.

Concluding the simulation section, we can state that for
practical purposes, the parameter α can be chosen to be
smaller than in the analysis section. Various simulations
indicate that it is sufficient to set α ≈ 10. This improves the
running time while maintaining an excellent quality of the
dominating set. The average running time asymptotically
increases in O

(
log2n

)
if wake-up is more-or-less synchronous

and becomes significantly smaller the more the nodes’ wake-
up is dispersed in time.

9. RELATED WORK
The problem of finding a minimum dominating set has

been proven to be NP-hard [12, 19]. Furthermore, it has
been shown in [10] that the best possible approximation ra-
tio for this problem is ln ∆, ∆ being the highest degree in
the graph, unless NP has deterministic nO(log log n)-time algo-
rithms. For unit disk graphs, the problem remains NP-hard
but allows a polynomial time approximation scheme [16].

A multitude of distributed dominating set algorithms have
been proposed, both for general graphs [17, 23, 25, 35] and
the unit disk graph [2, 11, 32]. In [23], a distributed linear
program is used to compute a dominating set of expected
size O(k∆2/k log ∆|DSOPT|) in a constant number of rounds
with ∆ being the maximum degree in an arbitrary graph,
and k2 being the number of communication rounds. On the
other hand, it was proven in [22] that in k communication
rounds, no algorithm can find a better approximation than

the maximum of Ω(nc/k2
/k) and Ω(∆c/k/k).

The case of unit disk graphs has also attracted much at-
tention. The algorithm proposed in [11] achieves constant
approximation in time O(log log n), but relies on the ability
of nodes to sense the distance to neighboring nodes. The
algorithms in [2, 32] make use of the fact that a maximal in-
dependent set (MIS) is a constant approximation to the min-
imum dominating set. Assuming that each node knows the
IDs of all its neighbors and that collision-free point-to-point
connections between two neighbors are established, the dis-
tributed computation of a MIS is relatively straight-forward.
If MAC layer issues are considered, however, computing a
MIS suddenly becomes a difficult task in view of the hidden-
terminal problem. All the above algorithms assume existing
point-to-point connections between neighboring nodes.

A first step towards a theoretical analysis of structuring
unstructured multi-hop radio networks was made in [21]. In
particular, a dominating set based clustering is computed
in a model featuring asynchronous wake-up and absence of
collision detection. In contrast to this paper, the algorithm
in [21] is designed for the unit disk graph model and is not
applicable in the single-channel case.

Models related to the one used in this paper have been
studied in the context of analyzing the complexity of broad-
casting in multi-hop radio network yielding a vast and rich
literature, e.g. [4, 9]. In single-hop radio networks, this
“broadcast” model has also been the focus of research on
two problems called initialization problem and leader elec-
tion problem in single-hop radio networks, e.g. [26]. A strik-
ing difference to our model is that these algorithms consider
synchronous wake-up, i.e. nodes have access to a global clock
and it is assumed that all nodes start the distributed algo-
rithm at the same time. A model featuring asynchronous
wake-up has been studied in recent papers on the so-called
wake-up problem in single-hop networks [13, 18]. In com-
parison to our model, these papers define a much weaker
notion of asynchrony. Particularly, it is assumed that sleep-
ing nodes are woken up by a successfully transmitted mes-
sage. In a single-hop network, the problem of waking up
all nodes reduces to analyzing the number of time-slots un-
til one single message is successfully transmitted without
collision. While this definition of asynchrony leads to the-
oretically interesting problems and algorithms, it does not
closely reflect reality.

10. CONCLUSIONS
How can we efficiently structure a wireless ad hoc or sen-

sor network after its “big bang”? In this paper, we have
taken a step towards an answer to this question by ana-
lyzing the initialization of multi-hop radio networks, that
is, the transition from an unstructured to a structured net-
work. Based on the quasi unit disk graph, we formulated a
model containing many of the harsh, but realistic character-
istics of unstructured networks, including the hidden termi-
nal problem, asynchronous wake-up and no reliable collision
detection. Further, instead of resorting to the assumption of
random node distribution, we give theoretical bounds hold-
ing even in the worst-case.

The problem of bringing structure into a network (i.e.,
organizing an efficient medium access scheme) is related to
the problem of clustering in absence of an established MAC
layer. Explicitly addressing the “chicken-and-egg” problem
of the initialization, our randomized algorithm computes
an asymptotically optimal dominating set in polylogarith-
mic time without relying on any MAC layer support. As a
straight-forward application of the algorithm, we have de-
scribed an energy-efficient way of establishing synchronized
sleep and listen schedules between nodes in the same cluster.

Aspiring towards the goal of modeling reality as closely
as possible, it would be desirable to restrict our model as-
sumptions even further; particularly, we would like to drop
the assumption that nodes know an upper bound for the
total number of nodes. Unfortunately, the theoretical lower
bound proven in [18] thwarts these hopes. Incorporating as-
pects such as mobility and node-failures into our model and
algorithm promises to be an interesting direction for future
research.

11. REFERENCES
[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and

E. Cayirci. Wireless Sensor Networks: A Survey. Computer
Networks Journal, 38(4):393–422, 2002.

[2] K. Alzoubi, P.-J. Wan, and O. Frieder. Message-Optimal
Connected Dominating Sets in Mobile Ad Hoc Networks.
In Proc. of the 3 rd ACM Int. Symposium on Mobile Ad
Hoc Networking and Computing (MobiHOC), pages
157–164, EPFL Lausanne, Switzerland, 2002.

[3] D. J. Baker and A. Ephremides. The Architectural
Organization of a Mobile Radio Network via a Distributed
Algorithm. IEEE Transactions on Communications,
COM-29(11):1694–1701, 1981.

[4] R. Bar-Yehuda, O. Goldreich, and A. Itai. On the
Time-Complexity of Broadcast in Radio Networks: an
Exponential Gap between Determinism and
Randomization. In Proc. 6 th ACM Symp. on Principles of
Distributed Computing (PODC), pages 98–108, 1987.

[5] L. Barrière, P. Fraigniaud, and L. Narayanan. Robust
Position-Based Routing in Wireless Ad Hoc Networks with
Unstable Transmission Ranges. In Proc. 5 th Int. workshop
on Discrete algorithms and methods for mobile computing
and communications, pages 19–27, 2001.

[6] S. Basagni. Distributed Clustering for Ad Hoc Networks.
In Proceedings of the IEEE International Symposium on
Parallel Architectures, Algorithms, and Networks
(I-SPAN), pages 310–315, 1999.

[7] M. Chatterjee, S. K. Das, and D. Turgut. An On-Demand
Weighted Clustering Algorithm (WCA) for Ad-Hoc
Networks. In Proceedings of IEEE GLOBECOM 2000,
pages 1697–1701. ACM Press, 2000.

[8] J. Deng and Z. Haas. Dual Busy Tone Multiple Access
(DBTMA): A New Medium Access Control for Packet
Radio Networks. In Proceedings of IEEE ICUPC,
volume 1, pages 973–977, 1998.

[9] Y. M. E. Kushilevitz. An Ω(D log(N/D)) Lower Bound for
Broadcast in Radio Networks. SIAM Journal on
Computing, 27:702–712, 1998.

[10] U. Feige. A Threshold of ln n for Approximating Set Cover.
Journal of the ACM (JACM), 45(4):634–652, 1998.

[11] J. Gao, L. Guibas, J. Hershberger, L. Zhang, and A. Zhu.
Discrete Mobile Centers. In Proc. 17 th Symposium on
Computational Geometry (SCG), pages 188–196, 2001.

[12] M. R. Garey and D. S. Johnson. Computers and
Intractability, A Guide to the Theory of NP-Completeness.
W. H. Freeman and Company, 1979.

[13] L. Gasieniec, A. Pelc, and D. Peleg. The wakeup problem
in synchronous broadcast systems (extended abstract). In
Proceedings of the 19 th ACM symposium on Principles of
Distributed Computing (PODC), pages 113–121, 2000.

[14] M. Gerla and J. Tsai. Multicluster, mobile, multimedia
radio network. ACM/Baltzer Journal of Wireless
Networks, 1(3):255–265, 1995.

[15] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan.
Energy-Efficient Communication Protocol for Wireless
Microsensor Networks. In Proceedings of the 33rd Annual
Hawaii International Conference on System Sciences,
pages 3005–3014, 2000.

[16] H. B. Hunt, III, M. V. Marathe, V. Radhakrishnan, S. S.
Ravi, D. J. Rosenkrantz, and R. E. Stearns.
NC-Approximation Schemes for NP- and PSPACE-hard
Problems for Geometric Graphs. Journal of Algorithms,
26(2):238–274, 1998.

[17] L. Jia, R. Rajaraman, and R. Suel. An Efficient
Distributed Algorithm for Constructing Small Dominating
Sets. In Proc. of the 20 th ACM Symposium on Principles
of Distributed Computing (PODC), pages 33–42, 2001.

[18] T. Jurdzinski and G. Stachowiak. Probabilistic Algorithms
for the Wakeup Problem in Single-Hop Radio Networks. In
Proceedings of 13 th Annual International Symposium on
Algorithms and Computation (ISAAC), volume 2518 of
Lecture Notes in Computer Science, pages 535–549, 2002.

[19] R. M. Karp. Reducibility Among Combinatorial Problems.
In Proc. of a Symposium on the Complexity of Computer
Computations, pages 85–103, 1972.

[20] R. Kershner. The number of circles covering a set.
American Journal of Mathematics, 62, 1939.

[21] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Radio
Network Clustering from Scratch. In Proceedings of the
12 th Annual European Symposium on Algorithms (ESA),
2004.

[22] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What
Cannot be Computed Locally! In Proceedings of the 23rd

ACM Symposium on the Principles of Distributed
Computing (PODC), 2004.

[23] F. Kuhn and R. Wattenhofer. Constant-Time Distributed
Dominating Set Approximation. In Proceedings of 22nd

ACM Int. Symposium on the Principles of Distributed
Computing (PODC), pages 25–32, 2003.

[24] F. Kuhn, R. Wattenhofer, and A. Zollinger. Ad-hoc
Networks Beyond Unit Disk Graphs. In Proceedings of the
2003 Joint Workshop on Foundations of Mobile Computing
(DIALM-POMC), pages 69–78. ACM Press, 2003.

[25] S. Kutten and D. Peleg. Fast Distributed Construction of
Small k-Dominating Sets and Applications. Journal of
Algorithms, 28:40–66, 1998.

[26] K. Nakano and S. Olariu. Energy-Efficient Initialization
Protocols for Single-Hop Radio Networks with no Collision
Detection. IEEE Transactions on Parallel and Distributed
Systems, 11(8), 2000.

[27] V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves.
Energy-efficient collision-free medium access control for
wireless sensor networks. In Proceedings of the 1 st

International Conference on Embedded Networked Sensor
Systems (SenSys), pages 181–192. ACM Press, 2003.

[28] L. G. Roberts. Aloha Packet System with and without
Slots and Capture. ACM SIGCOMM, Computer
Communication Review, 5(2):28–42, 1975.

[29] J. Sharony. An architecture for mobile radio networks with
dynamically changing topology using virtual subnets.
Mobile Networks and Applications, 1(1):75–86, 1996.

[30] P. Sinha, R. Sivakumar, and V. Bharghavan. Enhancing
Ad Hoc Routing with Dynamic Virtual Infrastructures. In
IEEE Conference on Computer Communications
(INFOCOM), pages 1763–1772, 2001.

[31] F. A. Tobagi and L. Kleinrock. Packet Switching in Radio
Channels: Part II - The Hidden Terminal Problem in
Carrier Sense Multiple Access and the Busy Tone Solution.
COM-23(12):1417–1433, 1975.

[32] P. Wan, K. Alzoubi, and O. Frieder. Distributed
construction of connected dominating set in wireless ad hoc
networks. In Proceedings of INFOCOM, 2002.

[33] Y. Wang and X.-Y. Li. Geometric Spanners for Wireless
Ad Hoc Networks. In Proc. of the 22nd Int. Conf. on
Distributed Computing Systems (ICDCS), 2002.

[34] A. Woo and D.-E. Culler. A transmission control scheme
for media access in sensor networks. In Proc. 7 th Int.
Conf. on Mobile Computing and Networking
(MOBICOM), pages 221–235. ACM Press, 2001.

[35] J. Wu and H. Li. On Calculating Connected Dominating
Set for Efficient Routing in Ad Hoc Wireless Networks. In
Proc. of the 3 rd Int. Workshop on Discrete Algorithms
and Methods for Mobile Computing and Communications
(DIALM), pages 7–14, 1999.

[36] W. Ye, J. Heidemann, and D. Estrin. An Energy-Efficient
MAC protocol for Wireless Sensor Networks. In
Proceedings of IEEE INFOCOM, pages 1567–1576, New
York, NY, USA, June 2002.

