
Information Dissemination in Highly Dynamic Graphs ∗

Regina O’Dell
odell@tik.ee.ethz.ch

Roger Wattenhofer
wattenhofer@tik.ee.ethz.ch

Computer Engineering and Networks Lab
ETH Zurich, Switzerland

ABSTRACT
We investigate to what extent flooding and routing is possi-
ble if the graph is allowed to change unpredictably at each
time step. We study what minimal requirements are neces-
sary so that a node may correctly flood or route a message in
a network whose links may change arbitrarily at any given
point, subject to the condition that the underlying graph is
connected. We look at algorithmic constraints such as lim-
ited storage, no knowledge of an upper bound on the number
of nodes, and no usage of identifiers. We look at flooding
as well as routing to some existing specified destination and
give algorithms.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems

General Terms
Algorithms, Theory

Keywords
flooding, routing, mobile network, dynamic graphs

1. INTRODUCTION

1.1 Motivation
For mobile ad hoc networks, there are possibly as many

routing protocols as there are mobility models. Virtually
every newly introduced mobile routing algorithm is first de-
scribed in terms of the ideas leading to its design and then
tested in simulation for some form of assumed mobility. Or

∗The work presented in this paper was supported (in part)
by the National Competence Center in Research on Mobile
Information and Communication Systems (NCCR-MICS), a
center supported by the Swiss National Science Foundation
under grant number 5005-67322.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DIALM-POMC’05,September 2, 2005, Cologne, Germany.
Copyright 2005 ACM 1-59593-092-2/05/0009 ...$5.00.

the mobility under consideration is coarsely grained : When
routing is in progress, the network is relatively stable to al-
low for the search and usage of a path between the source
and the destination. Unfortunately, this process will lead
only slowly to insights into the fundamental principles un-
derlying mobile computing. It is clear that dynamic net-
works pose challenges both to the engineering as well as
algorithmic community. We are interested to what extent
these challenges are inherent to the mobility and ad hoc na-
ture of a network and when they can be overcome. In par-
ticular, we are interested in the details of how high mobility
and algorithmic constraints affect what can be computed in
an ad hoc network.

Traditional distributed algorithms on static graphs focus
on the issue of locality which refers to the direct neighbor-
hood of a node. In that context, Naor and Stockmeyer [10]
ask: What can be computed locally? Put another way, given
a graph theoretic problem, how much can one limit the re-
sources and/or the number of communication rounds and
still be able to compute it? If a network is highly mobile,
then the view that a node has is also restricted to its local,
direct neighborhood because the graph might change too
quickly to gather any more information. In that case, we
have two other obstructions: (i) from the inside, we limit
the knowledge an algorithm can have a priori and (ii) from
the outside, the challenge posed by the mobility of the net-
work. Then we ask: What can be computed at all? That
is, in a first step, we are not so much interested in the time
and message complexity of the task, but its solvability.

We consider graphs that are highly mobile. Already Her-
aclitus of the ancient Greeks proclaimed the philosophy of
panta rhei, everything flows. In that spirit, we allow the
graph to change at every single step, that is, after each mes-
sage transmission. We make no assumptions about how long
it takes for a message to transfer or how long a path remains
stable, only that the graph locally cannot change faster than
it takes for a single message to be delivered. We could term
this fine-grained mobility. We only impose that the graph
be connected at all times so that an algorithm has a reason-
able chance of success. Put another way, we let the mobility
of the nodes be fast enough such that there is no guarantee
for a node to send a query to its neighbor and wait for an
answer, and slow enough such that when a new neighbor
arrives, it will be able to receive a message from its new
neighborhood.

A node must thus be able to detect when its neighborhood
changes. In practice, one can imagine that a moving node
will change the ambient temperature of the other nodes, or it

will leave a visible dust trail, or any number of other physical
indications. Alternatively, one can design a node which is
able to detect its own motion and can notify its neighbors
by a special beacon that it is moving and the neighborhood
might change. There are numerous ways one can conceive of
which avoid the periodic beaconing of keep-alive messages.

On the other hand, we cannot expect algorithms designed
for large scale ad hoc and sensor networks to be omnipo-
tent. The very nature of these networks implies that the
nodes only have limited knowledge about the network, such
as its size. If one considers a network deployed over an ex-
tended period of time, such as in habitat monitoring, then
the number of nodes can fluctuate greatly over the years as
old ones die and new ones are installed. Some sensor net-
works need to employ tiny nodes with limited capabilities, in
which case the storage overhead of the algorithms becomes
another critical issue.

In this paper, we focus on flooding and routing in highly
mobile ad hoc wireless networks. Routing is a basic problem
of any network where information needs to be transported
from one place to another. In sensor networks, this is typ-
ically the reading from some sensor node which needs to
be relayed to a sink who then catalogues the data. As the
network changes, any routing information can become stale,
and flooding is a fundamental ingredient of any routing al-
gorithm to find a valid path to the destination. Flooding
(or broadcast) is also of independent interest when a node
wishes to distribute some vital information to the entire net-
work. Clearly, this can be achieved if every node simply
broadcasts the message, once received, to its neighbors at
all times. However, if we consider the limited resources at
the nodes’ disposal, this means a tremendous energy con-
sumption. Therefore, termination – in the very least – of
any algorithm must be guaranteed.

1.2 Related Work
When it comes to routing in mobile ad hoc networks, a

vast multitude of protocols have been proposed in the liter-
ature, see [9] for an overview. These algorithms may base
their decisions only on the available topology of the graph
or also on the (relative) coordinates of the nodes. For these
latter geometric routing algorithms, it is known that greedy
(i.e., local) forwarding strategies may lead into dead-ends,
while optimal guaranteed delivery has only been shown for
the static case [8] because it involves a preprocessing stage.
Some steps in the direction of mobile (geometric) routing
are taken in [6]. If we consider topology-based routing al-
gorithms, only reactive protocols such as DSR [7] or AODV
[12] make sense in a highly mobile environment. FRESH [2]
also takes mobility into account, but not in the worst-case
sense. Its refreshing perspective is that it sees mobility as
a resource rather than a handicap. There also exist hybrid
protocols, most notably ZRP [5] and its successor IZR [13].
Yet, to the best of our knowledge, none of these protocols
take into account mobility at every single moment and from
a worst-case perspective. For link-reversal type algorithms,
it has been shown already in [4] that the routing will stabi-
lize eventually if the graph itself remains stable for a finite
amount of time. If the network continually changes, then a
packet might roam around the network indefinitely.

In a highly dynamic scenario, the only thing that nodes
can know with certainty about the graph is their direct
neighborhood at each time step. Thus, highly mobile graph

algorithms are related to local graph algorithms as discussed
above. For instance, Peleg [11] discusses the complexity of
broadcast in a network with limited message sizes and lim-
ited knowledge of the nodes. If nodes do not know their
neighborhoods, then any broadcast algorithm needs mes-
sages in the order of the number of edges in the graph
(counting one message per edge). This is also the case where
nodes do know their direct neighborhood, but message size
is restricted to O(log n). Many such other lower bounds are
given in [3]. However, this applies only to static graphs. In
dynamic graphs, the first question that begs itself is one of
feasibility; complexity is of secondary importance.

1.3 Outline
We will first introduce and discuss our network model for-

mally in Section 2.1. Next, we specify in Section 2.2 what
the capabilities of an ad hoc mobile algorithm should be.
We list four basic requirements along with their motivations
which a scalable and adaptable algorithm must fulfill. In
order to gain an understanding of the problem, we will first
give algorithms that meet three out of the four conditions
in Section 3. Generally, the techniques developed there will
pave the way for the remaining flooding and routing algo-
rithms. Then, in Section 4, we will see what happens to the
flooding problem if we require the algorithm to satisfy all
four restrictions.

Finally, in Section 5, we give a routing algorithm for the
case when flooding seems to be impossible which is when the
usage of identifiers is not allowed. One might counter that
the routing problem needs a destination identifier. But, we
can think of cases where in a sensor network, there is only
one destination which is designated by a unique identifier,
such as 0, that no other node will take on. Or, we might
consider routing to a node with a specific service, such as
relaying the message to a node with Internet access.

2. MODEL AND NOTATION

2.1 Network and Mobility Model
The graph G = (V, E) is allowed to be mobile in the

following sense. At all times t, Vt = V (G) remains the same
but Et ⊆

(

V

2

)

is arbitrary subject to the condition that Gt is
connected. If the connectivity of G is not guaranteed, then
a node might have to hold a message indefinitely if we do
not know when G will become connected again. Formally,
we can consider the dynamic graph G as a sequence of edge
changes E = Et0 , Et1 , Et2 , . . .

Message transmissions are asynchronous and we assume
that local processing time is negligible. All messages are
sent as broadcasts to the neighborhood as motivated by
the shared medium of wireless networks. The speed at
which messages travel limits the frequency of graph changes.
Let Ntv

0
(v), Ntv

1
(v), . . . be the sequence of neighborhoods for

node v with Ntv

i+1
(v) 6= Ntv

i
(v) for all i ≥ 0 and Nt̃(v) = Ntv

i

when tv
i ≤ t̃ < tv

i+1. Assume that the maximum time it takes
to transmit a message is T . Then we require that

T ≤ min
i
{tv

i+1 − tv
i } ∀v ∈ V (1)

that is, the graph locally cannot change faster than it takes
for a message to transmit. The idea of this model of mo-
bility is that we need the following: If a node w enters the
neighborhood of node v upon which v immediately sends a

message, then w is guaranteed to receive it. Note that the
formalization in Eq. (1) is actually more restrictive than the
informal description just given.

Other than the receipt of a message, nodes need to know
about a local topology change as an event since we do not
insist on an algorithm to operate in synchronous rounds.
We assume that every node v is able to detect a change in
its neighborhood N(v), that is, when ∆N(v) 6= ∅. Observe
that we do not require the nodes to be able to learn their
actual neighbors at all times, merely a local change in the
graph.

Note that we allow the events ∆N(v) 6= ∅ and “message
receipt” to occur simultaneously. This implies that a node
can receive a message, and then immediately its neighbor-
hood changes before it broadcasts the message. Further note
that this model also allows for messages to become “lost.”
This may happen if the graph around a node v has been
stationary for an extended period of time (i.e., longer than
T). When v transmits a message, nodes may move out of
its neighborhood before the message has arrived at any of
them, and new ones may have arrived without hearing the
message as well. However, when the neighborhood changes
trigger an event at v, all those nodes will receive the subse-
quent transmission.

Lemma 1. If a node v transmits a message at time t and
also whenever ∆N(v) 6= ∅, then at least one node will receive
v’s message before time t + 2T .

To simplify notation, we will consider the neighborhood
of a set of nodes as

N(X) =
⋃

x∈X

N(x) for X ⊆ V.

Furthermore, we often consider a subset of the nodes with
a certain property over time, such as Nt(v) is the set N(v)
of neighbors of v at time t. If the time is irrelevant or clear
from the context, then we drop the subscript.

2.2 Algorithmic Goals
For any routing or information-disseminating algorithm,

we impose the following

Requirements. Any dynamic graph algorithm should
achieve

1. Correctness,
2. Termination.

Correctness depends on the task of the algorithm. If we
look at routing, then the destination must be reached (as-
suming it exists). If we look at flooding, then all nodes must
be reached. The termination condition means that eventu-
ally no node will transmit any more messages.

Conditions. A dynamic graph algorithm may have to

operate under the following conditions:

1. O(log n) bits storage and message overhead,

2. Uniform network.

We assume that nodes have unique identifiers with size
polynomial in n, implying that they can be represented in
O(log n) bits. In other words, Condition 1 about storage
space allows a node to remember only a constant number

of other nodes’ IDs. We will examine what happens if we
do not have such a manageable identifier space in Sections
4 and 5. The storage-space condition is another reason why
we let an algorithm only detect whether the neighborhood
changes and not store the entire neighborhood list which
might be in the order of n entries.

The uniformity restriction is perhaps the strictest or at
least the most questionable of the above. Specifically, an
algorithm knows neither the exact number of nodes n nor
an upper bound on n. The first two requirements are nat-
ural, the storage condition is reasonable, especially when
dealing with sensor nodes on an increasingly smaller scale
and greater coverage. Uniformity is more uncommon which
is why we will first investigate how straightforward flood-
ing is without it in Section 3. However, we argue that this
restriction is not unreasonable or unrealistic. For example,
once a sensor network to monitor wildlife is in place, per-
haps after a while the population of the animals and with
it the number of deployed sensors grows drastically beyond
expectation, then any previous assumption on n will become
invalid. Or, if sensor nodes will be deployed in space, then
the room for growth there is inexhaustible for all intents and
purposes. In other words, not knowing a bound on n allows
for indefinite growth of the network.

As we are interested in gauging the realm of possibility for
mobile algorithms, formulating these conditions separately
will allow us to determine which requirements are essential
and which are merely “decoration.”

3. “THREE OUT OF FOUR” FLOODING
Observe that instead of simultaneously satisfying all of the

above requirements and conditions, we can consider drop-
ping each one separately to see if the problem is easily solv-
able in that case. If we drop either of the Requirements 1
or 2, then the task of flooding becomes trivial. If we do not
want correctness, then simply do not send a message (or just
send it once). If we do not want termination, then simply
retransmit the message infinitely many times. Dropping ei-
ther of the conditions will make us do a little more work and
is the content of this section.

If we do not impose Condition 2, we have the following.
CounterFlooding is described in Algorithm 1.

Algorithm 1 CounterFlooding.

Input: n
Events: receipt of message, ∆N 6= ∅
1: receive msg
2: broadcast msg
3: k← 0
4: if (k < 2n) ∧ (∆N 6= ∅) then

5: broadcast msg
6: k ← k + 1
7: end if

Lemma 2 (Dropping Cond. 2). If a polynomial upper
bound on the number of nodes n ≥ |V | is known, then the
algorithm CounterFlooding achieves Requirements 1 and
2 under Condition 1.

Proof. Denote by It ⊂ V the set of idle nodes which
have not seen the message on or before time t ≥ 0. Since
|I0| < n (setting t = 0 when the node s starts the flooding),

At1

Bt1

Ft1

It1

At1
at t2

Figure 1: See the proof of Lemma 2.

we need to show that the total time to reach all nodes is less
than 2Tn, T as in Eq. (1), which implies that there are less
than 2n neighborhood changes per node. Thus, kt(v) < 2n
for all v ∈ V while there are idle nodes.

We claim that

|It+2T | < |It| 6= 0 (2)

for It 6= ∅ where T is the maximum time it takes to transmit
a message. Let At be those idle nodes bordering the non-idle
ones, specifically,

At = {v ∈ It | Nt(v) \ It 6= ∅}.

Analogously, let Bt be the non-idle nodes bordering the idle
ones:

Bt = {v ∈ Ft | Nt(v) ∩ It 6= ∅}

denoting by Ft = V \It the set of flooding, or non-idle, nodes.
Observe that Bt 6= ∅ for all times t as Gt is connected.

Fix a time t ≥ 0 and take nodes v ∈ At and w ∈ Bt

such that v ∈ Nt(w). Now consider the latest time t1 ≤ t
such that v ∈ Nt1(w) but v /∈ Nt̂(w) for t̂ < t1. Note that
possibly t1 = 0, meaning that v and w have been neighbors
from time 0 until t. Let t2 ≤ t be the time when w received
the message for the first time.

If t1 > t2, then the arrival of v into w’s neighborhood trig-
gered a ∆Nt1(w) 6= ∅ event and w will forward the message
to v by Lines 4 and 5, arriving at some time t′ ≤ t1 + T ≤
t + T , thus v ∈ It but v /∈ It+2T .

If t1 ≤ t2, then w will broadcast the message by Line
2. The only way for v not to receive the message is if v /∈
Nt3(w) at some time t2 ≤ t3 < t2 + T . By our definition
of t1, we have v ∈ Nt′(w) for all t1 ≤ t′ ≤ t. This implies
that t3 > t as t2 ≥ t1, in which case t < t2 + T . This can
happen to all the nodes in At, such that Nt3(At) \ It3 = ∅.
(If it does not, then the remaining nodes in At will receive
the message on or before time t2 + T ≤ t + T and we are
done.) Then also It \At 6= ∅.

As Gt3 is connected, there is an idle node u ∈ It \ At

such that u ∈ At3 with a neighbor x ∈ Bt3 . This means
that u will trigger a ∆Nt3(x) 6= ∅ event, because u was not
neighboring x at time t but subsequently at time t3 > t.
Then u /∈ It+2T as it will receive x’s message on or before
t3 + T < t2 + 2T ≤ t + 2T .

We then immediately have the following.

Corollary 3. Algorithm CounterFlooding achieves
correctness after time at most 2Tn where T is the maximum
message transmission time. In fact, the input parameter n
guarantees that at least n nodes (if that many exist) will hear
the message sent from a starting node s.

CounterFlooding is a key ingredient to the remainder
of the paper. The idea is that if the nodes do not have
exact knowledge of n, then a common trick of the subsequent
algorithms is to estimate |V | by some other means and then
execute CounterFlooding. The crucial point is that the
nodes need to ensure that their estimate of |V | will keep
increasing, so that eventually it will be greater than |V | or
all the nodes already heard the message anyway.

Then what if we only leave out Condition 1 and allow
for unlimited storage and message overhead? To that end,
consider the following algorithm: Each node v maintains
a list lv of nodes which it knows to have heard the mes-
sage. Initially, lv ← {v}. Every time node v broadcasts the
message, v includes its list lv in the header. Every time v
receives a message from some node w, it merges the lists
lv ← lv∪ lw before proceeding. The length of the list defines
the estimate of the number of nodes that there are, that is,
n̂v = |lv|. Node v restarts Algorithm 1 with n = n̂v + 1
each time lv increases. The algorithm is started by s, thus
s ∈ lv for all flooding v. Pseudo code for ListFlooding
is given in Algorithm 2. Observe that when calling Coun-
terFlooding as a subroutine, we drop Line 1 and have a
modified message as additional input.

Algorithm 2 ListFlooding at node v

Input: none
Events: receipt of message, ∆N 6= ∅
1: l← {v}, n̂← |l|
2: receive (msg,lw)
3: l← l ∪ lw
4: if |l| > n̂ then

5: n̂← |l|
6: CounterFlooding (n̂ + 1), append l to msg
7: end if

Lemma 4 (Dropping Cond. 1). If we allow for stor-
age and header size in O(n log n), then algorithm ListFlood-
ing achieves Requirements 1 and 2 under Condition 2.

Proof. We will argue that the list of flooding nodes F
will continue to increase after a finite amount of time. Cor-
rectness is then guaranteed because either the maximum list
of reached nodes continues to grow until it contains all the
flooding nodes and then finally spreads to the idle nodes or
else an idle node is reached before that.

Now we will prove the claim that F will increase after a
finite amount of time until it encompasses the entire set of
nodes. Consider the time t when a list in G is increased to
lmax at node vmax, the maximum sized list of the flooding
nodes Ft. Initially, this happens at t = 0 when s = vmax

starts the flooding and ls = {s}. With the arrival of the
next message at t̃ ≤ t + 2T (Lemma 1), three things can
happen:

(i) |Ft̃| > |Ft|, in which case we are done;

(ii) |lmax,t̃| > |lmax,t|, then set t = t̃ and restart the argu-
ment; or

(iii) neither of the above.

For case (iii), observe that all receivers of vmax’s transmis-
sion will have an equal estimate n̂ = |lmax|. Thus, at time
t, we are starting Algorithm 1 with n = n̂+1. After time at
most 2Tn, by Cor. 3, we have reached n̂ + 1 nodes and by
the pigeonhole principle, there is at least one of those, call
it u, such that u /∈ lmax. Therefore, lmax,t′ ⊇ lmax,t ∪ {u}
for t′ ≤ t + 2T (n̂ + 1).

It may be that there are several nodes at time t with a
maximum list. If their lists are the same, then the case above
with lv = lmax, ∀v ∈ lmax, will happen even sooner. If they
are different, then we can consider their flooding separately
and by the above argument the individual list clusters will
still grow.

To ensure termination, observe that lmax ⊆ V which
means after time O(Tn2), lmax cannot grow anymore and
therefore, no counters will be reset.

Interestingly enough, dropping the space condition leaves
us with a much slower algorithm than when we drop the
uniformity condition.

Corollary 5. Algorithm ListFlooding achieves cor-
rectness after time O(Tn2) where T is the maximum mes-
sage transmission time.

Theorem 6. We can devise an asynchronous flooding al-
gorithm fulfilling any three out of Req. 1, Req. 2, Cond. 1,
or Cond. 2.

4. FLOODING
Now that we understand flooding in the context of highly

dynamic networks a little better, we will ask about the ex-
istence of a flooding algorithm which fulfills all the require-
ments. First we look at it from the original model where
nodes have small and unique IDs. We could alternatively
imagine the use of a random ID generator with sufficiently
small collision probability, in which case the algorithm given
below will be correct with high probability. Next, we ques-
tion that assumption and look at flooding without the use
of IDs.

4.1 Using Identifiers
The trick from the flooding algorithm before was to keep a

list of nodes which have received the message which in turn
allows the algorithm to progressively learn about the number
of nodes in G. If we have identifiers available from 1 to nd for
some constant d, then the highest ID will be an upper bound
on n. In other words, we can try to find the maximum ID
in the network, and then use CounterFlooding to ensure
that all nodes are reached. The only difficulty lies in the
starting node s reaching the highest ID node. The reasoning
from ListFlooding gives us the necessary insight to see
that this is possible.

Theorem 7. Algorithm IDFlooding fulfills all Require-
ments 1 and 2 under Conditions 1 and 2.

Proof. The reasoning is the same as in the proof of
Lemma 4, except that now the maximum node ID gives
us the estimate of n. We give the main inductive argument.

Algorithm 3 IDFlooding at node v

Input: none
Events: receipt of message, ∆N 6= ∅
1: n̂← 0
2: receive (msg,w)
3: w← max (v, w) {needed for first message}
4: if w > n̂ then

5: n̂← w
6: CounterFlooding (n̂ + 1), append n̂ to msg
7: end if

Consider the so-far highest node ID x of the flooding nodes.
By Lemma 2, we will reach x+1 nodes after x starts. There-
fore, at least one of those will have a higher ID than x and
we make progress either on the highest circulating ID or
on the number of informed nodes. Once the node with the
highest ID receives the message, its call of CounterFlood-
ing will reach all the nodes. Termination is guaranteed by
the existence of a node with the highest ID. Small storage
is ensured by the polynomial-sized identifier space.

Corollary 8. Algorithm IDFlooding achieves correct-
ness after time O(Tn2) where T is the maximum message
transmission time.

4.2 Without Identifiers
Some might argue that the existence of such identifiers

is questionable. For instance, consider a sensor network in
some remote place over a long period of time. Then nodes
may fail after a while and need to be replaced by new ones.
If there is no central administration of the network, then the
IDs might be increased with each new sensor node or older
ones might be reused several times. So what if we restrict
our reasoning to algorithms which do not store or use node
IDs?

We conjecture that this is the point where flooding be-
comes impossible.

Conjecture 9. If node IDs cannot be stored nor passed
along in the message, then no (asynchronous) flooding al-
gorithm exists which obeys all Requirements 1 and 2 under
Conditions 1 and 2.

5. ROUTING WITHOUT IDENTIFIERS
Since flooding without identifiers appears impossible, one

can imagine that a related problem, that of routing, is solv-
able within our constraints. That is, as long as one is sure
that the destination exists, otherwise the problem degener-
ates to flooding. We will use the destination ID synony-
mously with a node being able to check locally whether it is
the destination or not.

In this section, we will take a closer look at the routing
problem of delivering a message from a source node s to a
designated destination t. The idea for the algorithm is to es-
timate some finite upper bound n̂ ≥ n and then use the ideas
from CounterFlooding to guarantee correctness and ter-
mination. As we have seen, the difficulty lies in estimating
the number of nodes without the use of IDs. In the routing
case, this hurdle is overcome by the fact that the destination
node t can acknowledge the receipt of the message and ini-
tiate a termination phase which will make use of the upper
bound of the message counter.

Algorithm 4 Mobile Routing Algorithm at node v

Input: none
Events: receipt of message, ∆N 6= ∅

mode = init

1: receive msg with n′

2: n̂← n′ + 1
3: if (msg = flood ∧ v = dest) ∨ (msg = term) then

4: mode ← term
5: else

6: broadcast flood (message, n̂)
7: mode ← flood
8: end if

mode = flood

1: if ∆N 6= ∅ then

2: n̂ ← n̂ + 1
3: broadcast flood (message, n̂)
4: end if

5: receive msg with n′

6: if msg = flood ∧ n′ > n̂ then

7: n̂← n′

8: broadcast flood (message, n̂)
9: else if msg = term then

10: n̂← max (n̂, n′)
11: mode ← term
12: end if

mode = term

1: process/delete message locally
2: CounterFlooding (n̂), msg = term (n̂)
3: receive msg with n′

4: if n′ > n̂ then

5: n̂← n′

6: CounterFlooding (n̂), msg = term (n̂)
7: end if

The algorithm works as follows. Every node v stores a
counter n̂. Initially, every node is in init mode, that is,
idle. Once a node has seen the message, it can be in one of
two states: Either it assumes that the destination has not
been reached and the message needs to be propagated at
every opportunity, or else it knows that the destination has
been reached and it needs to be careful about letting the
other nodes know that they can stop soon as well so as to
not endanger the termination requirement. The counter n̂
is incremented in the first state and then used as an upper
bound on |V | = n in the second state. Once n̂ ≥ n, we
know that the CounterFlooding algorithm will guarantee
us termination and correctness.

The details are given in Algorithm 4. The source s starts
the algorithm by broadcasting flood (message, 1).

Lemma 10. Algorithm 4 is correct.

Proof. Correctness is easily seen from the algorithm as
nodes will continue sending (Line 6 in init and Lines 1-
3 in flood mode) until the destination has received the
message (Line 3 in init) and will announce this with the
acknowledgement term (Line 2 in term).

Corollary 11. Algorithm 4 achieves correctness after
time at most 2Tn where T is the maximum message trans-
mission time.

Lemma 12. If G keeps changing such that ∆N(F) 6= ∅
for the set of nodes F ⊂ V with mode(v) = flood ∀v ∈ F ,
then any x ∈ F will eventually enter term mode.

Proof. Consider the terminated and flooding nodes, Tt =
{v ∈ V |modet(v) = term} and Ft = {v ∈ V |modet(v) =
flood}, respectively, depending on the time t. Initially, T0

will contain the destination node (set t = 0 when the mes-
sage has reached its destination).

If ∆N(v) 6= ∅ for a node v ∈ Ft, this will increment n̂(v).
If n̂(v) > n̂(w) for w ∈ N(v), then n̂(w) ← n̂(v) after time
2T . Thus, the highest estimate n̂ will propagate throughout
a connected component of flooding nodes.

Now assume there is a time t where all nodes x ∈ Tt have
stopped sending upon ∆N(x) 6= ∅ (i.e., the call to Coun-
terFlooding in Line 2/6 has finished) and Ft+2T 6= ∅.
Then maxx∈Tt

n̂(x) < n, otherwise the call to Counter-
Flooding in Line 6 would spread to all nodes in V . The
eventual graph changes will now continually cause an in-
crease of n̂(v) at some v ∈ Ft. At some time t̃ > t, if not
Ft̃ = ∅, there will be n̂t̃(v) ≥ n = |V | at some v ∈ Ft̃. It will
take at most |Ft̃| < n hops for the message to reach a node
x ∈ Tt̃ at time less than t̃ + 2Tn. Then n′ = n̂t̃(v) > n̂(x)
which initiates the call to CounterFlooding with param-
eter at least n. Therefore, at some time t̂ ≤ t̃ + 4Tn, all
nodes will have received a term message.

Lemma 13. Algorithm 4 terminates.

Proof. By the definition of termination, we only have to
prove that if the graph changes, the algorithm will stop send-
ing messages eventually. Therefore, assume subsequently
that G keeps changing. If the edge changes only involve the
neighborhoods of nodes which have already term-inated,
then Algorithm 4 will eventually stop sending messages be-
cause of a finite maximum n̂ among the terminated nodes.
Otherwise, by Lemma 12, we know that every node which
has entered the flood mode must eventually receive a term
message. At that point, the highest estimate N̂ is fixed since
only flood-ing nodes cause an increment of the counter (see

Line 2 of flood mode). Then N̂ will be some finite value

and all other nodes will update their n̂← N̂ and the term
messages will be propagated at most that many times to
already terminated nodes (if the graph continues to be mo-
bile). In other words, once all the nodes are term-inated,
then they execute the CounterFlooding algorithm which
we know will end for a finite N̂ .

Lemma 14. Algorithm 4 needs only O(log n) bits of stor-
age and header size.

Proof. In order to ensure small local storage and header
size, we need to bound the largest estimate n̂ by a polyno-
mial in n. To that end, we examine the counter values of the
above termination argument in more detail. We will keep
track of the largest counter n̂ in N .

Since the destination is reached after at most 2Tn time
units, N ≤ 2n when the destination enters the term mode.

Thereafter, we have seen in Lemma 12 that once any node
has an estimate n̂ = n due to continual increases in its neigh-
borhood, the rest of the algorithm will take its course to
ensure that the nodes terminate. In the worst case, this in-
formation needs to travel less than n hops to a term node, so
N < 4n in the meantime. Once the call to CounterFlood-
ing in Line 6 (term mode) is issued, it takes less than 2Tn

time for all nodes to term-inate, which implies less than 2n
more neighborhood changes. In the end, N < 4n + 2n = 6n
and n̂ will not be incremented anymore.

Theorem 15. The asynchronous, dynamic routing algo-
rithm in Algorithm 4 fulfills all appropriate Requirements 1
and 2 under Conditions 1 and 2.

Observe that while correctness is achieved in time O(Tn),
it might take a long time before the algorithm actually ter-
minates at all nodes. Note that this makes this routing al-
gorithms faster in reaching the designated destination than
the other given algorithms except CounterFlooding.

6. OPEN QUESTIONS
Altogether, the spirit of the paper is that finding funda-

mental limits and possibilities of mobile ad hoc networks is
a goal well within reach. As this is only a first step, there
remain numerous open questions.

Obviously, proving our conjecture about flooding in mo-
bile networks is the foremost part of our future work. An-
other interesting aspect is that of allowing the use of iden-
tifiers which are small but not unique.

What about explicit termination? In other words, a node
should know when all other nodes in the network have re-
ceived the message. With the current (asynchronous) al-
gorithms, this is not given if the graph does not change
anymore at some point. In fact, this seems a costly require-
ment, and we suspect that it might not be possible in an
asynchronous environment without further strong assump-
tions.

Also, we need to look at nodes joining and leaving during
execution, that is, dynamic nodes as well as dynamic links.

7. REFERENCES
[1] Baruch Awerbuch. Reducing complexities of

distributed magimum flow and breadth-first search
algorithms by means of network synchronization.
Networks, 15:425–437, 1985.

[2] Henri Dubois-Ferriere, Matthias Grossglauser, and
Martin Vetterli. Age Matters: Efficient Route
Discovery in Mobile Ad Hoc Networks Using
Encounter Ages. In Proceedings of the 4th ACM
International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc), 2004.

[3] Faith Fich and Eric Ruppert. Hundreds of
impossibility results for distributed computing.
Distributed Computing, 16(2-3), 2003.

[4] Eli Gafni and Dimitri Bertsekas. Distributed
algorithms for generating loop-free routes in networks
with frequently changing topology. IEEE Transactions
on Communications, 29(1), January 1981.

[5] Zygmunt J. Haas, Marc R. Pearlman, and Prince
Samar. ZRP: A Hybrid Framework for Routing in Ad
Hoc Networks. In Ad Hoc Networking.
Addison-Wesley, 2001.

[6] Marc Heissenbüttel. Networking in Ad-hoc Networks.
PhD thesis, University of Bern, CH-3012 Bern,
Switzerland, June 2005.

[7] David B. Johnson, David A. Maltz, and Josh Broch.
DSR: The Dynamic Source Routing Protocol for
Multi-Hop Wireless Ad Hoc Networks. In Ad Hoc
Networking. Addison-Wesley, 2001.

[8] Fabian Kuhn, Roger Wattenhofer, Yan Zhang, and
Aaron Zollinger. Geometric ad-hoc routing: Of theory
and practice. In Proceedings of the 22nd ACM
Symposium on Principles of Distributed Computing
(PODC), 2003.

[9] Daniel Lang. A comprehensive overview about
selected ad hoc networking routing protocols.
Technical report, Technische Universität München,
Department of Computer Science, March 2003.

[10] Moni Naor and Larry Stockmeyer. What can be
computed locally? In Proceedings of the 25th Annual
ACM Symposium on Theory of Computing (STOC),
1993.

[11] David Peleg. Distributed Computing: A
Locality-Sensitive Approach. Society for Industrial and
Applied Mathematics (SIAM), 2000.

[12] Charles E. Perkins and Elizabeth M. Royer. Ad hoc
On-Demand Distance Vector Routing. In Proceedings
of the 2nd IEEE Workshop on Mobile Computing
Systems and Applications (WMCSA), 1999.

[13] Prince Samar, Marc R. Pearlman, and Zygmunt J.
Haas. Independent Zone Routing: An Adaptive
Hybrid Routing Framework for Ad Hoc Wireless
Networks. IEEE/ACM Transactions on Networking
(TON), 12(4), 2004.

