
Approximating Small Balanced Vertex
Separators in Almost Linear Time

Sebastian Brandt� and Roger Wattenhofer

ETH Zürich, Switzerland,
brandts@ethz.ch,

wattenhofer@ethz.ch

Abstract. For a graph G with n vertices and m edges, we give a ran-
domized Las Vegas algorithm that approximates a small balanced vertex
separator of G in almost linear time. More precisely, we show the fol-
lowing, for any 2

3
≤ α < 1 and any 0 < ε < 1 − α: If G contains an

α-separator of size K, then our algorithm finds an (α + ε)-separator of
size O(ε−1K2 log1+o(1) n) in time O(ε−1K3m log2+o(1) n) w.h.p. In par-
ticular, if K ∈ O(polylogn), then we obtain an (α + ε)-separator of
size O(ε−1 polylogn) in time O(ε−1mpolylogn) w.h.p. The presented
algorithm does not require knowledge of K.

1 Introduction

1.1 Motivation

In order to solve a large computational problem, the problem is typically divided
into smaller parts, and each part is solved on a single processor, in parallel. Some
problems can be chopped into pieces in a straightforward way, e.g., using MapRe-
duce or Spark. Other computational problems cannot be partitioned easily. Such
difficult problems can frequently be represented as graphs: Each vertex repre-
sents some piece of work whereas an edge between two vertices denotes a relation
between the two pieces, i.e., change at one vertex will directly affect the other
(and possibly vice versa). There are dozens of software packages for distributed
graph processing, e.g., Google’s Pregel or PowerGraph.

In order to use multiple processors, the input graph has to be partitioned
into multiple components, ideally of similar size. Then the vertices of a com-
ponent are simulated on a single processor whereas edges between two vertices
in different components are handled by the two processors responsible for the
two components by exchanging messages. A natural objective of designing such
a partition is to reduce the inter-processor communication as it is the expensive
part in terms of runtime.

We argue that an input graph should be partitioned by means of a balanced
vertex separator (and not a balanced edge cut), since vertex separators are often
more efficient. For a simple example, consider a star graph, a tree where one
single root is connected to all leaves. We want to partition the star for two
processors. A star graph does not feature a small balanced edge cut, whereas

the root is a perfectly good vertex separator. The root is simply replicated on
both processors, and communication is reduced to the exchange between the
two copies of the root vertex. In general, the computation and communication
overhead of a vertex separator is asymptotically never worse than that of a
balanced edge cut, whereas in some cases (such as the star graph) it can be a
factor of n better, where n is the number of vertices in the graph.

In the last decades, algorithms research has made a lot of progress regarding
balanced vertex separators, cf. [2, 6–9, 14]. To a large extent, these works focus
on the fundamental case of dividing the input graph into two parts. For the
remainder of this paper, we will also exclusively consider vertex separators that
cut the input graph into two similar-sized pieces.

Even though the algorithms given in the works cited above only need poly-
nomial time, this is often too slow for practical purposes, as partitioning the
input graph is the only non-parallel part of the whole process. What is needed
is a “quick and dirty” way to compute a balanced vertex separator, i.e., an algo-
rithm that (apart from a polylogarithmic factor) only reads the input once. So
far, to the best of our knowledge, it is not known how to compute a balanced
vertex separator for general graphs quickly.

Our goal is to find a reasonably small balanced vertex separator if there
exists a small balanced vertex separator, e.g., of polylogarithmic size, and we
want to achieve this in almost linear time. For a graph with n vertices and
m edges, we show the following, for any 2

3 ≤ α < 1 and any 0 < ε < 1 −
α: If the graph contains an α-balanced vertex separator of size K, then our
randomized Las Vegas algorithm finds an (α + ε)-balanced vertex separator of

size O(ε−1K2 log1+o(1) n) in time O(ε−1K3m log2+o(1) n) w.h.p. Of course, this
result can also be used for other practical applications related to balanced vertex
separators, e.g., for determining quickly if a network has serious bottlenecks and
locating them in the affirmative case. If no fixed K is considered, by successive
doubling we can quickly reach a size K for which an α-separator exists, yielding
only an additional small constant factor for the time complexity. In particular,
using this technique, our algorithm does not require knowledge of K.

If, on the other hand, the input graph does not contain a small separator, our
algorithm will report the lack of such a separator. Note that input graphs without
small vertex separators may not be amenable to distributed graph processing in
the first place, and one may wonder whether parallelism can speed up processing
such input graphs at all.

1.2 Related Work

As discussed above, finding a balanced edge separator does not yield a balanced
vertex separator with a similar approximation guarantee in general. Since there
is an abundance of results regarding edge separators, we will only mention them
if they are also related to vertex separators.

Let G = (V,E) be a graph with n vertices and m edges. An α-separator of
G is a triple (A,S,B) of disjoint subsets of V such that V = A ∪ S ∪ B, there
are no edges between A and B, and max{|A|, |B|} ≤ α|V |. Its size is |S|.

The problem of finding an α-separator of minimum size is NP-hard, as shown
by Bui and Jones [4]. Therefore, one main focus of research in the context
of balanced vertex separators has been to find approximation algorithms, cf.,
e.g., [2, 6, 7]. In their seminal paper [14], Leighton and Rao gave an O(log n)-
approximation for balanced edge separator, incurring only an arbitrarily small
loss in the balance. As they showed, their result extends to the case of directed
edge separators and thereby to vertex separators. Feige, Hajiaghayi and Lee [8]

proved that a 3
4 -separator of size K log

1
2 K can be found in polynomial time if

the input graph contains a 2
3 -separator of size K. Subsequently, Feige and Mah-

dian [9] showed, for any 2
3 ≤ α < 1, how to find an α-separator of size K if such

a separator exists, except when there is an (α + ε)-separator of smaller size in
which case they find the latter. Their runtime is polynomial if K ∈ O(log n), for
fixed ε.

As shown by Marx [17], the problem of finding an α-separator of minimum
size is even W [1]-hard. In their work [9] mentioned above, Feige and Mahdian
solve this issue by showing that the problem becomes fixed parameter tractable
if the balance requirement is relaxed, obtaining a runtime of nO(1)2O(K) which
is polynomial for K ∈ O(log n). In our work, we show that if we relax both the
balance requirement and the requirement on the size of the separator, then we
can achieve an almost linear runtime.

The techniques used in the works listed above, e.g., linear or semidefinite
programming, focus on achieving as good approximation ratios as possible while
having polynomial time complexity. By applying their primal-dual approach for
semidefinite programs [3] to the problem of approximating minimum balanced

separators, Arora and Kale achieved a runtime of Õ(m
3
2 +n2+ε) (resp. Õ(m

3
2)),

for obtaining an approximation ratio of O(log
1
2 n) (resp. O(log n)). Note that

the runtimes and approximation ratios given in their work apply directly to
our problem of undirected vertex separators although they are achieved in the
context of directed edge separators.

A different line of research consists in searching for primarily fast algorithms
that yield separators of not necessarily near-optimal size. For graph classes with
certain restrictions, there are a number of results obtaining good runtimes, of-
ten at the expense of the separator size depending polynomially on n. Gilbert,
Hutchinson and Tarjan [10] gave a linear-time algorithm for finding a 2

3 -separator

of size O((gn)1/2) where g is the genus of the given graph, thereby extending the
famous planar separator theorem by Lipton and Tarjan [15]. The same linear
runtime was achieved independently by Djidjev [5].

A further extension to graphs excluding certain minors was given by Alon,
Seymour and Thomas [1]. They showed how to find, for a graph containing no

minor Kj for some fixed integer j, a 2
3 -separator of size O(n

1
2) in time O(n

3
2).

Reed and Wood [19] gave an algorithm which solves the same problem in linear

time except that the separators are of somewhat larger size O(n
2
3). Further-

more, they showed how to trade runtime for separator size in a parametrized
way, bounded by those two results. Kawarabayashi and Reed [13] improved the

runtime for finding a separator of size O(n
1
2) to O(n1+ε), for any ε > 0, ad-

ditionally improving the dependency of the separator size on the number j of
vertices of the excluded minor. Unfortunately, the runtime depends heavily on
j, making the algorithm infeasible in practice. Wulff-Nilsen [20] gave an algo-
rithm which depends only polynomially on j, at a slight expense of runtime and
separator size. Moreover, he showed how to find, for constant c < 1 and fixed
j, a separator of size O(nc) in linear time. We are not aware of any results for
general graphs (regarding balanced vertex separators) that focus on achieving a
near-linear time complexity.

As mentioned earlier, recently various software packages to handle large
graphs have been introduced, e.g., Pregel [16] or PowerGraph [11]. Some of
them include simple heuristics to partition the input graph into pieces. Power-
Graph, for instance, merely removes vertices with large degrees until the graph
falls into small enough pieces. In practice, this seems to work well on power-law
graphs, which include many interesting application areas such as, e.g., social
networks. We believe that our work will help to find a theoretical foundation for
this practical problem while also providing an implementable solution.

1.3 Our Approach

In the following, we give a descriptive explanation of our approach without
providing formal accuracy. Exact definitions will follow in the next section. The
approach we take is based on maximum s-t-flows. By the very nature of flows,
it is likely that such an approach can only find a near-optimally sized balanced
vertex separator quickly if the considered graph actually contains a reasonably
small balanced vertex separator. As explained before, this restricted problem is
still very important in practice, thus we deem the presented approach to be a
worthwile endeavour while having the advantage of (conceptual) simplicity.

Assume we are given a graph G containing a small vertex separator and we
have vertices s and t “on different sides” of the separator. Then, by Menger’s
Theorem (cf. [18]), the maximum number of pairwise vertex-disjoint s-t-paths is
also small.

We start by computing a set of maximum cardinality of pairwise vertex-
disjoint s-t-paths. By using the Ford-Fulkerson algorithm (cf. [12]), this can be
done in almost linear time as such a path collection corresponds to a maximum
s-t-flow in an unweighted directed graph obtained from G by a simple transfor-
mation. From this collection of k paths we extract s-t-vertex cuts of the same
cardinality k by taking one vertex from each path. These vertices have to be
chosen carefully in order to actually separate s and t, but the existence of the
s-t-vertex cuts is ensured, again, by Menger’s Theorem.

Using binary search, we determine two of the “best-balanced” of all these
s-t-cuts, one closer to s and one closer to t. If one of these two cuts is sufficiently
balanced, then we have found the desired small balanced vertex separator. Other-
wise, consider the connected components cut off by the two s-t-cuts. We contract
the connected component containing s into a new vertex s′ and the component
containing t into the vertex t′.

All s′-t′-vertex cuts in the newly obtained graph are also s-t-cuts in G and
additionally better-balanced than the above two s-t-cuts. We will prove that the
maximum number of pairwise vertex-disjoint s′-t′-paths is larger than k (and
therefore the same is true for the cardinality of any s′-t′-cut corresponding to
such a path collection). We iterate the above process of finding vertex-disjoint
paths, extracting some of the best-balanced s-t-cuts and contracting vertex sets,
until we obtain s-t-cuts whose cardinality is equal to some predetermined value
K (or observe that no such cut of cardinality K exists).

Consider an α-separator of size at most K which separates s and t, for some
2
3 ≤ α < 1. If the iterative process described above does not yield cuts whose
(combined) balance is at least as good as α, then, as we will prove, at least
one vertex of the α-separator must have been involved in one of the performed
contractions. Thus, by iterating the whole (iterative) process at most K times
(with newly chosen s, t in each iteration), we obtain a balanced vertex separator
(by collecting all the relevant cuts obtained in the process). We will show that if
G contains a small balanced vertex separator, then the obtained balanced vertex
separator is also small.

Up to now, we assumed that we can find vertices s and t “on different sides”
of a balanced separator. But because of the balance of the separator, this is
actually the case with a large enough probability. By choosing s and t uniformly
at random, applying the iterative process described above and then iterating
the whole procedure always on the largest obtained connected component, we
obtain an almost linear runtime for finding a reasonably small balanced vertex
separator, provided the given graph contains a small balanced vertex separator.

2 Conventions and Basic Definitions

In this work, we always assume that a considered graph is simple, undirected,
connected and contains no self-loops, if not specified otherwise.1 Let G = (V,E)
be a graph. When we consider a graph denoted differently, say by H, we denote
the vertex set correspondingly by V (H) and the edge set by E(H). We denote
the number of vertices of G by n and the number of edges of G by m. Since G
is connected, we have n ∈ O(m).

We call a triple (A,S,B) of pairwise disjoint subsets of V a vertex separator
of G if V = A ∪ S ∪ B and there is no {u, v} ∈ E such that u ∈ A, v ∈ B. We
call |S| the size of (A,S,B). Let 0 < α < 1. If max{|A|, |B|} ≤ α|V |, then we
call (A,S,B) α-balanced or, equivalently, an α-separator. Let s, t ∈ V such that
s ∈ A, t ∈ B. Then we call (A,S,B) an s-t-vertex separator.

Let G be an undirected or directed graph and v0, ..., vj ∈ V, j ∈ N. Then we
call the tuple q = (v0, ..., vj) a path from v0 to vj (or, equivalently, a v0-vj-path)
if we have {vi, vi+1} ∈ E (resp. (vi, vi+1) ∈ E) for all 0 ≤ i ≤ j − 1 and vi 6= vi′

for all 0 ≤ i < i′ ≤ j. We call j the length of q. For all pairs (i, i′) satisfying

1 Note that the main result holds also for graphs that are not simple as we study
vertex separators which, by their nature, do not care if there are multiple edges
between two vertices.

0 ≤ i < i′ ≤ j, we call vi a predecessor of vi′ in q and vi′ a successor of vi in q.
If i′ = i+ 1, then we call vi′ the direct successor of vi in q. Furthermore, for all
0 ≤ i ≤ i′ ≤ j, we call q′ = (vi, vi+1, ..., vi′) a subpath of q.

Let s, t ∈ V, s 6= t and let {f1, ..., fk}, k ∈ N>0 be a set of s-t-paths in G.
Then we say that f1, ..., fk are pairwise vertex-disjoint if there are no vertices
except s and t that appear in more than one of these paths. Moreover, in the
case of a directed graph, we say that f1, ..., fk are pairwise edge-disjoint if there
are no two vertices x, y ∈ V such that y is the direct successor of x in at least
two of these paths.

Let H be a subgraph of a not necessarily connected graph G. Then we call H
an induced subgraph of G if each edge of G between vertices of H is also an edge of
H. We call an induced subgraph H a connected component of G if there is a path
from v to w in H for all pairs of vertices v, w ∈ V (H) and there is no path in G
from any vertex in V (H) to any vertex in V \V (H). If a connected component of
G contains at least as many vertices as any other connected component of G, we
call it a largest connected component. Furthermore, for all subsets X ⊆ V (G),
we denote the induced subgraph of G whose vertex set is X by G[X].

It will occur quite frequently that we consider two special vertices s, t. For the
remainder of this work, we will assume that s and t are different, non-adjacent
vertices if not specified otherwise. Furthermore, for convenience, we will be not
too technical regarding the distinction between sets and tuples. Thus, e.g., we
may consider a tuple as a subset of some set, forgetting the order of the elements
in the tuple, or we may consider a set as a tuple when the intended order of the
elements of the set is clear.

In 1927, Karl Menger [18] stated a famous theorem which we will use at
various points in this work. It can be formulated as follows:

Theorem 1. The maximum number of pairwise vertex-disjoint s-t-paths in a
graph G is equal to the minimum number of vertices v, s 6= v 6= t, which have to
be removed from G in order that there is no s-t-path in the resulting graph.

Consider a set of maximum cardinality of pairwise vertex-disjoint s-t-paths. By
Menger’s Theorem, we can disconnect s from t by removing one vertex from
each of those paths. Of course, if we choose these vertices arbitrarily (but still
one per path), then it is not ensured that there is no s-t-path left. We call such
a set of arbitrarily chosen vertices a slice whereas we call it a cut if its removal
results in a disconnection of s from t. In more formal terms:

Definition 2. Let G be a graph and s, t ∈ V . Let {f1, ..., fk} be a set of pairwise
vertex-disjoint s-t-paths in G. Then we call a tuple (w1, ..., wk) a slice (with
respect to (f1, ..., fk)) if wi ∈ fi, s 6= wi 6= t for all 1 ≤ i ≤ k. Let X be an
arbitrary subset of V such that s, t /∈ X. If there is no s-t-path in G[V \X], then
we say that X separates s and t. We call a slice that separates s and t a cut.2

2 For ease of presentation, we refrain from calling it an s-t-cut which would be the
technically precise term.

u1

u2

u3

u4

w1

w2

w3

w4

st

v

f1
f2

f3
f4

x

y1

y2
z

Fig. 1. U := (u1, ..., u4) and W := (w1, ..., w4) are slices with respect to (f1, ..., f4).
W is a cut whereas U does not separate s and t. We have U ≺ W , since U is strictly
closer to s than W . Furthermore, we have Vs(W) = {s, y1, y2, u1, u2, u3, u4, v} and
Vt(W) = {t, x, z}. Vr(W) contains exactly the unnamed vertices.

Note that the existence of a cut with respect to a set of pairwise vertex-disjoint
s-t-paths (f1, ..., fk) implies that (f1, ..., fk) is of maximum cardinality, i.e., there
is no set of cardinality larger than k of pairwise vertex-disjoint s-t-paths. This
is the case since a set that separates s and t (which includes cuts) must contain
at least one vertex of each s-t-path.

Thus, in the following, by considering a cut we specify implicitly that the
respective set of pairwise vertex-disjoint s-t-paths is of maximum cardinality.
Moreover, whenever we consider a set {f1, ..., fk} of s-t-paths, we assume that
they are pairwise vertex-disjoint if not specified otherwise.

Following Marx [17], the set of slices (with respect to some fixed set of s-t-
paths) can be partially ordered by their relative “closeness” to s. The following
definition adapts the definition of the “dominance relation” given in [17] to our
setting.

Definition 3. Let {f1, ..., fk} be a set of pairwise vertex-disjoint s-t-paths in
G. Let U = (u1, ...uk) and W = (w1, ..., wk) be slices with respect to (f1, ..., fk)
such that, for all 1 ≤ i ≤ k, ui is a predecessor of wi in fi or ui = wi. Then
we say that U is closer to s than W and write U � W . If we have additionally
ui 6= wi for some 1 ≤ i ≤ k, then we say that U is strictly closer to s than W
and write U ≺ W . Analogously, we say that W is (strictly) closer to t than U .
For convenience, we define the above analogously for the tuples (s, s, ..., s) and
(t, t, ..., t). Thus we can, e.g., say that (s, s, ..., s) is closer to s than any slice.
Note that “�” does not define a total order in general.

The removal of a cut decomposes G into at least two connected components
as s and t are not connected anymore. The component containing s and the
component containing t are of special interest to us since we will develop a
method to make them larger (by choosing “better” cuts) which, in turn, aids in
finding cuts (or, more precisely, s-t-vertex separators) of “better balance”.

Definition 4. Let U be an arbitrary cut. We define Vs(U) as the vertex set
of the connected component of G[V \U] containing s, Vt(U) as the vertex set
of the connected component of G[V \U] containing t and Vr(U) as the union of
the vertex sets of the remaining connected components of G[V \U], i.e., those
containing neither s nor t (so Vr(U) may be empty).

An s-t-vertex separator differs from a cut in that it specifies (in addition to
the “cut vertices”) how the connected components, that we obtain by removing
these cut vertices from G, are divided into two groups (which then constitute
the two “sides” of the separator). As it is often more convenient not to specify
such a fixed division, we will frequently work with cuts instead of using vertex
separators. For an illustration of the definitions given above, consider Fig. 1.

Furthermore, for the remainder of this paper, let {f1, ..., fk} be a set of
maximum cardinality of pairwise vertex-disjoint s-t-paths.

3 Slices and Cuts

In this section, we collect a number of lemmas which we require for the analyses
of the algorithms provided in Section 4. We start with a short examination of
the properties of cuts. Then we proceed by introducing the notion of a “closest
cut” for a given slice and prove a number of results regarding such closest cuts.
In particular, we show that we can compute these cuts in time O(m).

3.1 Properties of Cuts

We observe that it follows directly from the definitions of Vs(U) and Vt(U), in
which of the two sets Vs(U) and Vt(U) the predecessors and successors of a vertex
in a cut U lie.

Observation 5. Let U = (u1, ..., uk) be a cut with respect to (f1, ..., fk). Then,
for all 1 ≤ i ≤ k, all predecessors of ui in fi are elements of Vs(U) and all
successors of ui in fi are elements of Vt(U).

Whenever two cuts are comparable with respect to “�”, we obtain a number
of useful set inclusions regarding the images of those cuts under Vs(), Vt() and
Vr().

Lemma 6. Let U = (u1, ..., uk) and W = (w1, ..., wk) be cuts such that U �W .
Then we have Vs(U) ⊆ Vs(W) and Vr(W)∪Vt(W) ⊆ Vr(U)∪Vt(U). Furthermore,
we have Vt(W) ⊆ Vt(U) and Vr(U) ∪ Vs(U) ⊆ Vr(W) ∪ Vs(W).

Proof. Let x ∈ Vs(U). Then, by the definition of Vs(U), there is a path q =
(v0, ..., vj) in G[V \U] where v0 = s and vj = x.

Suppose that the path q contains a vertex which is also an element of W ,
i.e., there are some 0 ≤ h ≤ j and 1 ≤ i ≤ k such that vh = wi. Since we have
U � W , no successor of wi in fi is an element of U . Thus, there is a wi-t-path
in G[V \U]. Now vh = wi ensures that there is an s-wi-path in G[V \U] yielding
the existence of an s-t-path in G[V \U]. But since U separates s and t, this is a
contradiction. Therefore, q contains no element of W which implies that there
is an s-x-path in G[V \W]. Thus, by the definition of Vs(W), x ∈ Vs(W) and we
obtain Vs(U) ⊆ Vs(W).

Now, consider some ul ∈ U . By Observation 5, all predecessors of wl in fl are
elements of Vs(W). Since U �W , we obtain that either ul ∈W or ul ∈ Vs(W).
Combined with Vs(U) ⊆ Vs(W) (as shown above), we get Vs(U)∪U ⊆ Vs(W)∪W
which implies Vr(W) ∪ Vt(W) ⊆ Vr(U) ∪ Vt(U). The remaining inclusions given
in the lemma follow analogously.

3.2 U+ and U−

Consider a slice U . Among all cuts that are closer to t (resp. s) than U , we
would like to single the “closest one” out. Our partial order “�” provides a
very intuitive way to do so, but before we can actually define the “closest cut”
accordingly, we have to show the uniqueness of such a cut. Similar results have
been shown in the literature, but for completeness sake we give a full proof in
our setting.

For that, we need to define another intuitive concept. If two cuts are not
comparable with respect to “�”, there is a slice which is closer to s than both
of the aforementioned cuts, but still as close to them as possible under this
constraint. We formalize this with the following definition (for arbitrary pairs of
cuts) and show in the subsequent lemma that the defined slice separates s and
t, i.e., it is a cut.

Definition 7. Let U = (u1, ..., uk) and W = (w1, ..., wk) be cuts with respect to
(f1, ..., fk). Then, for all 1 ≤ i ≤ k, we define

ψs(ui, wi) :=

¨
ui if ui is a predecessor of wi in fi or ui = wi

wi if wi is a predecessor of ui in fi

and

ψt(ui, wi) :=

¨
ui if ui is a successor of wi in fi or ui = wi

wi if wi is a successor of ui in fi

We set lims(U,W) := (ψs(u1, w1), ..., ψs(uk, wk)) and analogously limt(U,W) :=
(ψt(u1, w1), ..., ψt(uk, wk)).

Consider, e.g., the cuts X := (y1, u2, v, w4) and Y := (w1, w2, v, u4) from Fig.
1. We obtain lims(X,Y) = (y1, u2, v, u4) and limt(X,Y) = (w1, w2, v, w4). Both
of these tuples are again cuts. As the following lemma shows, this is the case in
general.

Lemma 8. Both lims(U,W) and limt(U,W) are cuts.

Proof. Suppose there is an s-t-path q in G[V \ lims(U,W)]. Let v be the first
vertex in q such that there is a 1 ≤ i ≤ k such that v ∈ fi and ψs(ui, wi) is a
predecessor of v in fi.

3 Consider the respective i. There are two cases:
First suppose that ui is a predecessor of wi in fi or ui = wi. Then the subpath

of q from s to v contains no element of U , by the definition of v. Furthermore,
the subpath of fi from v to t also contains no element of U since ui = ψs(ui, wi)
is a predecessor of v in fi. Thus, we obtain a path from s to t which contains no
element of U contradicting the fact that U separates s and t.

Now consider the complementary case, i.e., that wi is a predecessor of ui in fi.
With an argumentation analogous to the first case we obtain a contradiction to
the fact that W separates s and t. Thus, there is no s-t-path in G[V \ lims(U,W)]
and lims(U,W) is a cut. The statement for limt(U,W) follows by an analogous
proof.

The definitions of lims(U,W) and limt(U,W) enable us to prove the following
lemma. It states that if there is a cut which is closer to t than a given slice, then
there is a unique “closest” cut which is closer to t than the given slice.

Lemma 9. Let U be a slice with respect to (f1, ..., fk). If there is a cut which is
closer to t than U , then there is exactly one such cut X with the property that
there is no cut X ′ satisfying U � X ′ ≺ X.

Proof. If there is a cut which is closer to t than U , then there is at least one
cut with the property described in the lemma since “�” defines a partial order.
Thus, it is enough to show that there are not two such cuts.

Let W and X be two cuts with this property. Consider lims(W,X). The def-
inition of lims(W,X) ensures that U � lims(W,X) �W and U � lims(W,X) �
X. Since W and X satisfy the aforementioned property and since, by Lemma
8, lims(W,X) is a cut, we have lims(W,X) ⊀ W and lims(W,X) ⊀ X which
implies W = lims(W,X) = X. Therefore, there is exactly one cut with the
property described in the lemma.

Of course, there is also an analogous statement for “closest cuts” that are closer
to s than the given slice. It can be proved analogously.

Lemma 10. Let U be a slice with respect to (f1, ..., fk). If there is a cut which
is closer to s than U , then there is exactly one such cut X with the property that
there is no cut X ′ satisfying X ≺ X ′ � U .

Justified by Lemma 9 and Lemma 10, we define in the following the notion of a
“closest cut” for a given slice.

Definition 11. Let U be a slice with respect to (f1, ..., fk). Let X be a cut such
that U � X and there is no cut X ′ satisfying U � X ′ ≺ X. Then we define
U+ := X. If there exists no X as described above, then set U+ := (t, t, ..., t).

3 Such a v must exist since for v = t an i as described above exists.

Algorithm 1 Compute U+

Initialization: Given the maximum number of pairwise vertex-disjoint s-t-paths
f1, ..., fk and a slice U = (u1, ..., uk) with respect to (f1, ..., fk), set X := {} and
wi := ui, for all 1 ≤ i ≤ k.

1: for i = 1 to k do
2: add all predecessors of wi in fi to X // X collects vertices of Vs(U+)
3: end for
4: Y := V \(X ∪U) // Y contains all vertices which possibly are not in Vs(U+)∪U+

5: while there is some edge {x, y} ∈ E with x ∈ X, y ∈ Y do
6: if y = t then
7: return (t, t, ..., t)
8: else if y is an element of fi for some 1 ≤ i ≤ k then
9: add to X all predecessors of y in fi that are also successors of wi in fi

10: delete these predecessors from Y
11: add vertex wi to X // wi must be in Vs(U+)
12: delete vertex y from Y // y must be in Vs(U+) ∪ U+

13: wi := y
14: else
15: add vertex y to X and delete it from Y // y must be in Vs(U+)
16: end if
17: end while
18: return (w1, ..., wk)

Analogously, let Y be a cut such that Y � U and there is no cut Y ′ satisfying
Y ≺ Y ′ � U . Then we define U− := Y . If there exists no Y as described above,
then set U− := (s, s, ..., s).

For all slices U , we obtain U− � U � U+. Note that if U is a cut, then we
have U− = U = U+. Consider once again Fig. 1. We have W 6= U+ since
there are cuts which are closer to t than U and strictly closer to s than W , e.g.,
Y := (w1, w2, v, u4). Indeed, we have U+ = Y . For the slice Z := (w1, x, w3, w4)
we obtain Z+ = (t, t, ..., t) since there is no cut which is closer to t than Z.

3.3 Computing U+ and U−

Lemma 12. For any slice U with respect to (f1, ..., fk), we can compute U+

and U− in time O(m).

Proof. For reasons of symmetry, it is enough to show that we can compute U+

in time O(m). In the following we show that Algorithm 1 returns U+ and runs
in time O(m), thus proving the lemma. For convenience, set W := (w1, ..., wk).
Furthermore, since Vs(U

+) is not defined if U+ = (t, t, ..., t), set Vs(U
+) :=

V \{t} in this case.4

4 This applies not only for the remainder of the proof, but also for the comments in
Algorithm 1.

The basic idea of Algorithm 1 is to add to the set X more and more vertices of
Vs(U

+). For this, we observe that if a vertex in some fi is in Vs(U
+)∪U+, then all

predecessors of this vertex in fi are in Vs(U
+), by Observation 5. Furthermore, if

there is an edge {v, w} ∈ E with v ∈ Vs(U+), then we have w ∈ Vs(U+)∪U+ (by
the definition of Vs(U

+)) and if, additionally, none of the s-t-paths fi contains
w, then it cannot be an element of U+ which implies w ∈ Vs(U+). Therefore, the
vertices added to X in the while loop of Algorithm 1 are in Vs(U

+) since at the
start of the first iteration of the while loop we have X ⊆ Vs(U+), by Observation
5 (and since, by induction, we have X ⊆ Vs(U+) at the start of each iteration).

The algorithm terminates when it looks at an edge in G from some vertex
in X to t or when there is no edge from X to Y . In the first case, recalling the
above considerations we see that t ∈ Vs(U+)∪U+ which implies U+ = (t, t, ..., t)
and Algorithm 1 returns U+. In the second case, t is contained in Y , thus W
separates s and t and we obtain U+ = W . Note that since each predecessor of
some wi in fi is contained in Vs(U

+) (as shown above), there cannot be a cut Z
such that U � Z ≺W .

Now consider the runtime of Algorithm 1. For checking if there is some edge
{x, y} ∈ E with x ∈ X, y ∈ Y , we run through all vertices in X and check for
each vertex for all incident edges if the other endpoint is in Y . After we have
checked all incident edges of a vertex, we do not have to consider this vertex again
as it is (and stays) contained in X and none of its neighbors is contained in Y
(anymore) or will be contained in Y at a later stage during the algorithm. Thus,
across all the iterations of the while loop each edge is checked at most twice, so
the checking can be done in time O(m). Moreover, each vertex is moved at most
twice between the sets in the algorithm, since vertices are moved only from Y
to W , from W to X or from Y to X. Therefore, this part of the algorithm can
be done in time O(n), thus also in time O(m). The rest of the algorithm can be
done in time O(m) as well, so the overall runtime is O(m).

3.4 Properties of U+ and U−

The following lemma shows that the partial order given by “�” is preserved
under ()+ and ()−.

Lemma 13. Let U and W be slices with respect to (f1, ..., fk) such that U �W .
Then U+ �W+ and U− �W−.

Proof. If W+ = (t, t, ..., t), then U+ � W+. If W+ 6= (t, t, ..., t), then W+ is a
cut and U � W � W+ implies that there is a cut X satisfying U � X � W+

such that there is no cut X ′ satisfying U � X ′ ≺ X, by Lemma 9. By definition,
we have U+ = X which implies U+ � W+. By an analogous proof, we obtain
U− �W−.

Note that if U ≺W , then it does not necessarily follow that U+ ≺W+ since we
could have U+ = W+. Analogously, U ≺W does not imply U− ≺W−.

Later in this work, we will contract subsets of V in order to obtain a smaller
graph. These subsets will contain either s or t and we will call the vertex result-
ing from a contraction also s, resp. t. In order to keep track of the number of
contracted vertices, we will assign weights g(s) and g(t) to s and t which count
the number of vertices which are “added” to s, resp. t, in a contraction. The
initial weights will be g(s) = g(t) = 1. Keeping this in mind, we can proceed to
the following lemma. It is constructed specifically for the design and the analysis
of the first algorithm given in the next section (Algorithm 2).

Lemma 14. Let g(s), g(t) be positive integers. Let U = (u1, ..., uk) and W =
(u1, ..., ui−1, u

+
i , ui+1, ..., uk) be slices where 1 ≤ i ≤ k and u+i denotes the direct

successor of ui in fi. Then the following holds:

If U+ = (t, t, ..., t) or |Vs(U+)| + g(s) > |Vr(U+) ∪ Vt(U+)| + g(t), then
W+ = (t, t, ..., t) or |Vs(W+)|+ g(s) > |Vr(W+) ∪ Vt(W+)|+ g(t).

Proof. We observe that U � W . By Lemma 13, if U+ = (t, t, ..., t), then W+ =
(t, t, ..., t). Now suppose that U+ 6= (t, t, ..., t) and |Vs(U+)|+ g(s) > |Vr(U+) ∪
Vt(U

+)|+ g(t). Again by Lemma 13, we obtain U+ �W+ which implies W+ =
(t, t, ..., t) or Vs(U

+) ⊆ Vs(W
+) and Vr(W

+) ∪ Vt(W+) ⊆ Vr(U
+) ∪ Vt(U+),

by Lemma 6. In the latter case, it follows that |Vs(W+)| + g(s) > |Vr(W+) ∪
Vt(W

+)|+ g(t).

An analogous version of the lemma regarding U−, W−, etc. holds as well.

4 An Algorithm for Finding Good Cuts of Bounded Size

Consider a graph G which contains an s-t-vertex separator of size at most K, for
some fixed s, t. The goal of this section is to find a good cut of size at most K.
Intuitively, a cut U is “good” if the connected components obtained by removing
U from G can be divided into two groups in a balanced way. Unfortunately, it is
not easy to find such a cut quickly. Thus, we relax our notion of “good” slightly
and say that a cut U , that does not admit a balanced partition of the connected
components, is still good if it satisfies the following property: For any s-t-vertex
separator (A∗, S∗, B∗) of size at most K with a better balance than U , S∗ is
not contained in any of the connected components obtained by removing U . The
idea is to iterate the process of finding a good cut on the largest component
obtained by removing the (previous) good cut and to benefit from the fact that
the size of (A∗, S∗, B∗) restricted to this component decreases by at least 1 in
each iteration. The details of this idea will be discussed in Section 5.

We begin this section by gathering the tools (lemmas and algorithms) we
need for the design and the analysis of an algorithm that finds a good cut. Then
we formulate the algorithm (Algorithm 4) itself, analyze its runtime and show
that it indeed finds a good cut (or, more precisely, a pair of tuples which contains
a good cut).

Algorithm 2 Find Innermost s-sided Cut of Minimum Size

Initialization: Given weights g(s), g(t) ∈ N>0 and the maximum number of pairwise
vertex-disjoint s-t-paths f1, ..., fk, let vij , 0 ≤ j ≤ `i, be the jth vertex of the path
fi where `i is the length of fi and s is considered to be the 0th vertex of every fi.
Set wi := vi1 for all 1 ≤ i ≤ k and valid := false.

1: for i = 1 to k do
2: c := 0 // indexes the start of path fi
3: d := `i // indexes the end of path fi
4: while d 6= c+ 1 do
5: e := d c+d

2
e // binary search on fi

6: W := (w1, ..., wi−1, vie, wi+1, ..., wk) // obtain new slice by moving vertex on
fi

7: if W+ 6= (t, t, ..., t) and |Vs(W+)|+ g(s) ≤ |Vr(W+) ∪ Vt(W
+)|+ g(t) then

8: c := e // W is suitable, continue binary search in direction towards t
9: valid := true // suitable cut found

10: else
11: d := e // W is not suitable, continue binary search in direction towards s
12: end if
13: end while
14: wi := vic // fix best vertex found on fi, continue with next path
15: end for
16: if valid then
17: return (w1, ..., wk)
18: else
19: return (s, s, ..., s)
20: end if

4.1 Cuts of Minimum Size

The first step in order to design such an algorithm is to develop a method for
finding a cut U (if it exists) such that |Vs(U)| ≤ |Vr(U) ∪ Vt(U)| and all cuts
which are strictly closer to t than U violate that property. Since the space of
slices is possibly quite large, simply checking, for all slices W , if W is a cut
and then potentially computing the sizes of Vs(W) and Vr(W)∪ Vt(W) will not
achieve this goal quickly. Instead, we solve the problem by searching the space
of slices in a more efficient way using binary search, as given by Algorithm 2.
Essentially, this algorithm moves a vertex of some initial slice closer to t along
an s-t-path, thereby obtaining a new slice, and checks if the cut closest to this
slice in direction towards t still satisfies the aforementioned inequality. In the
affirmative case, it iterates starting from this new slice, otherwise it goes back
and tries another vertex. Taking into account that, later on, we will have to deal
with graphs which are the result of a series of contractions on an initially given
graph, we design Algorithm 2 in a rather general way where we have weights
assigned to s and t.

Lemma 15. Let g(s), g(t) be positive integers. If there is a cut X such that
|Vs(X)|+ g(s) ≤ |Vr(X)∪ Vt(X)|+ g(t), then Algorithm 2 returns such a cut X
with the additional property that |Vs(X ′)| + g(s) > |Vr(X ′) ∪ Vt(X ′)| + g(t) for
all cuts X ′ satisfying X ≺ X ′. If there is no such cut, then the algorithm returns
the tuple (s, s, ..., s). In both cases Algorithm 2 terminates in time O(km log n).

Proof. First, we prove the statements regarding the output of Algorithm 2. If
there is no cut as described in the lemma, then our boolean variable valid remains
false throughout the whole algorithm and the tuple (s, s, ..., s) is returned. Now
consider the case that there is such a cut. In order to avoid confusion, denote
the output of Algorithm 2 by X = (x1, ..., xk).

Applying Lemma 14, we see that the while loop finds the largest c (if such an c
exists) such that U+ 6= (t, t, ..., t) and |Vs(U+)|+g(s) ≤ |Vr(U+)∪Vt(U+)|+g(t)
where U := (w1, ..., wi−1, vic, wi+1, ..., wk). Thus, if at the start of the ith itera-
tion of the for loop (at which point we have wi = vi1) the slice W ′ := (w1, ..., wk)
satisfies W ′+ 6= (t, t, ..., t) and |Vs(W ′+)| + g(s) ≤ |Vr(W ′+) ∪ Vt(W ′+)| + g(t),
then at the end of the ith iteration this is also the case. Since each slice is closer
to t than the slice (v11, ..., vi1), we know, by Lemma 13 and Lemma 6, that at
the start of the algorithm we have W ′+ 6= (t, t, ..., t) and |Vs(W ′+)| + g(s) ≤
|Vr(W ′+) ∪ Vt(W ′+)| + g(t). Thus, by induction, this is also the case at the
end of the algorithm, i.e., we have X+ 6= (t, t, ..., t) and |Vs(X+)| + g(s) ≤
|Vr(X+) ∪ Vt(X+)|+ g(t).

Suppose there is a cut Y = (y1, ..., yk) such that X ≺ Y and |Vs(Y)| +
g(s) ≤ |Vr(Y) ∪ Vt(Y)| + g(t). Let i′ be the smallest index such that yi′ 6= xi′

(which implies that xi′ is a predecessor of yi′ in fi′). Consider the slice Z =
(x1, ..., xi′−1, yi′ , v(i′+1)1, ..., vk1). Since Z � Y and Y = Y + (since Y is a cut), we
have Z+ � Y , by Lemma 13. We obtain Vs(Z

+) ⊆ Vs(Y) and Vr(Y) ∪ Vt(Y) ⊆
Vr(Z

+) ∪ Vt(Z+), by Lemma 6. It follows that |Vs(Z+)| + g(s) ≤ |Vr(Z+) ∪
Vt(Z

+)| + g(t). Recalling the description of what the while loop accomplishes,
we obtain that, at the end of the i′th iteration of the for loop, wi′ is a vertex
which is a successor of xi′ . Since wi′ remains unchanged throughout the rest of
the algorithm, this yields a contradiction.

Therefore, we have X ⊀ X+ (as otherwise X+ would constitute a Y as
described above whose existence we just disproved) which implies X = X+.
Thus, X is a cut and combining this fact with the above considerations, we can
conclude that the output of Algorithm 2 is indeed as described in the lemma.

The runtime given in the lemma follows from `i ≤ n for all 1 ≤ i ≤ k (so
there are at most dlog ne iterations of the while loop in each iteration of the for
loop), the fact that computing Vr(W

+), Vs(W
+) and Vt(W

+) in the while loop
takes time O(m) and by Lemma 12.

For reasons of symmetry, Algorithm 2 and Lemma 15 also work if s and t are
reversed. The respective versions are given in the following.

Algorithm 3 Find Innermost t-sided Cut of Minimum Size

Initialization: Given weights g(s), g(t) ∈ N>0 and the maximum number of pairwise
vertex-disjoint s-t-paths f1, ..., fk, let vij , 0 ≤ j ≤ `i, be the jth vertex of the path
fi where `i is the length of fi and s is considered to be the 0th vertex of every fi.
Set wi := vi(`i−1) for all 1 ≤ i ≤ k and valid := false.

1: for i = 1 to k do
2: c := 0 // indexes the start of path fi
3: d := `i // indexes the end of path fi
4: while d 6= c+ 1 do
5: e := b c+d

2
c // binary search on fi

6: W := (w1, ..., wi−1, vie, wi+1, ..., wk) // obtain new slice by moving vertex on
fi

7: if W− 6= (s, s, ..., s) and |Vt(W
−)|+ g(t) ≤ |Vr(W−) ∪ Vs(W−)|+ g(s) then

8: d := e // W is suitable, continue binary search in direction towards s
9: valid := true // suitable cut found

10: else
11: c := e // W is not suitable, continue binary search in direction towards t
12: end if
13: end while
14: wi := vid // fix best vertex found on fi, continue with next path
15: end for
16: if valid then
17: return (w1, ..., wk)
18: else
19: return (t, t, ..., t)
20: end if

Lemma 16. Let g(s), g(t) be positive integers. If there is a cut X such that
|Vt(X)|+ g(t) ≤ |Vr(X)∪ Vs(X)|+ g(s), then Algorithm 3 returns such a cut X
with the additional property that |Vt(X ′)| + g(t) > |Vr(X ′) ∪ Vs(X ′)| + g(s) for
all cuts X ′ satisfying X ′ ≺ X. If there is no such cut, then the algorithm returns
the tuple (t, t, ..., t). In both cases Algorithm 3 terminates in time O(km log n).

Proof. The result follows by a proof analogous to the proof for Lemma 15.

4.2 Replacing Vertices by Edges

In 1956, Ford and Fulkerson [12] devised their famous maximum flow algorithm
which can also be used to compute k pairwise edge-disjoint s-t-paths in time
O(km). In order to use it for computing pairwise vertex-disjoint s-t-paths, we
present a transformation of a graph into a directed graph where pairwise vertex-
disjoint s-t-paths are transformed into pairwise edge-disjoint paths all starting
and ending in the same vertices. The basic idea is to transform each vertex v
into a directed edge (cv, dv) and each edge {v, w} into two directed edges (dv, cw)
and (dw, cv). More formally, we define:

Definition 17. Let G = (V,E) be a graph. We define the directed graph G =
(V ,E) as follows:

V := {cv|v ∈ V }∪ {dv|v ∈ V } E := {(cv, dv)|v ∈ V }∪ {(dv, cw)|{v, w} ∈ E}

Note that, as the edges in E are undirected, the set {(dw, cv)|{v, w} ∈ E} is a
subset of E.
Let s, t be two vertices of G and f = (s, v1, v2, ..., vj , t) an s-t-path in G. We
define

f := (ds, cv1 , dv1 , cv2 , dv2 , ..., cvj , dvj , ct) .

Lemma 18. Let s, t be two vertices of G and let F be the set of all s-t-paths in
G. Define F := {f |f ∈ F}. Then F is the set of all ds-ct-paths in G. Moreover,
the s-t-paths contained in some subset F ′ ⊆ F are pairwise vertex-disjoint if and
only if the ds-ct-paths contained in F ′ := {f ′|f ′ ∈ F ′} are pairwise edge-disjoint.

Proof. Consider an arbitrary ds-ct-path in G. The definition of E ensures that
this path is of the form (ds, cv1 , dv1 , cv2 , dv2 , ..., cvj , dvj , ct) where vi and vi+1 are
adjacent in G for all 1 ≤ i ≤ j − 1, as well as s and v1, and vj and t. Thus, it is
an element of F .

Vice versa, consider some arbitrary f ∈ F . Then f must be of the form
(ds, cv1 , dv1 , cv2 , dv2 , ..., cvj , dvj , ct) and between each two consecutive vertices in

this tuple there is a directed edge in E. Thus, f is an ds-ct-path.
For the second part of the lemma, it is enough to show that any two s-t-paths

f and f ′ in G are vertex-disjoint if and only if f and f ′ are edge-disjoint. If f
and f ′ are not vertex-disjoint, then there is some vertex v ∈ V, s 6= v 6= t which
is contained in both f and f ′. It follows that cv and dv are consecutive vertices
in both f and f ′ and therefore f and f ′ are not edge-disjoint.

Vice versa, suppose f and f ′ are not edge-disjoint. Then there is some vertex
cv or some vertex dv (as a closer look shows, actually both) which is contained
in both f and f ′.5 It follows that v is contained in both f and f ′ and therefore
f and f ′ are not vertex-disjoint.

4.3 Cuts of Bounded Size

With the tools gathered above, we are now able to design and analyze an algo-
rithm (Algorithm 4) which finds a pair of tuples that contains a good cut.6 As
we will perform contractions on a given graph G in the process, we give a short
overview of the technical details and the used terminology. The contraction of
a subset U of V transforms G into a graph H where V (H) := (V \U) ∪ {u}
and E(H) contains an edge {u,w} for each edge {v, w} ∈ E satisfying v ∈ U ,
w ∈ V \U while all edges in G between vertices in V \U remain edges in H. Note
that, according to this definition, an edge in G between vertices in U does not
produce a self-loop in H. We call vertex u the contraction of subset U .

5 Note that ds and ct are not adjacent in G since s and t are not adjacent in G.
6 Note that after the above digression, we now consider again undirected graphs.

For an illustration of how Algorithm 4 (and, implicitly, Algorithm 2 and Al-
gorithm 3) proceeds, consider Fig. 2–4. Essentially, Algorithm 4 uses Algorithm
2 and Algorithm 3 as subroutines in order to find two cuts that cut a prefer-
ably large part containing s, resp. t, off. Then it contracts these two parts into
new nodes s and t and iterates on the obtained graph. We show in the follow-
ing that the number of pairwise vertex-disjoint s-t-paths grows in each iteration
and that the performed contractions ensure that s and t remain non-adjacent.
Subsequently, we examine the runtime of the algorithm.

Algorithm 4 Find Innermost Cut of Bounded Size

Initialization: Given a positive integer K and two vertices s, t ∈ V , set g(s) := g(t) :=
1, k := 0, H := G and S := T := {}.

1: while the maximum number of pairwise vertex-disjoint s-t-paths in H is at most
K do

2: find maximum number of pairwise vertex-disjoint s-t-paths f1, ..., fk inH, update
k

3: execute Algorithm 2, denote output by U // U cuts “large” part containing s
off

4: execute Algorithm 3, denote output by W // W cuts “large” part containing t
off

5: if U 6= (s, s, ..., s) then
6: Ms := Vs(U) ∪ U // collect vertex set which is to be contracted
7: S := U // U is best “s-sided” cut we found so far
8: else
9: Ms := {s} // no s-sided cut found, so nothing to contract

10: end if
11: if W 6= (t, t, ..., t) then
12: Mt := Vt(W) ∪W // collect vertex set which is to be contracted
13: T := W // W is best “t-sided” cut we found so far
14: else
15: Mt := {t} // no t-sided cut found, so nothing to contract
16: end if
17: if Ms ∩Mt 6= ∅ or there is an edge from Ms to Mt in H then
18: break // contracting Ms and Mt impossible or problematic for later

iterations
19: else
20: contract Ms and denote the contraction by s (and update H accordingly)
21: contract Mt and denote the contraction by t (and update H accordingly)
22: replace parallel edges of H by a single edge
23: g(s) := g(s) + |Ms| − 1 // update total number of vertices contracted into s
24: g(t) := g(t) + |Mt| − 1 // update total number of vertices contracted into t
25: end if
26: end while
27: return the pair (S, T)

st

u1u2

u3

u4
u5u6

u7

v1v2

v3

v4

v5v6

Fig. 2. Assume that the given K is 4. In the first iteration of the while loop, Algorithm
4 determines that the maximum number of pairwise vertex-disjoint s-t-paths is 2 and
finds two pairwise vertex-disjoint s-t-paths, say the two paths given by the named ver-
tices. Then executing Algorithm 2 yields output (u2, v2) whereas executing Algorithm
3 yields output (t, t). The contractions and the replacement of parallel edges by single
edges at the end of the first iteration of the while loop produce the graph given in Fig.
3. Furthermore, we obtain g(s) = 6 and g(t) = 1.

u3

u4
u5u6

u7

v3

v4

v5v6

st w1

w2

w3w4

Fig. 3. In the second iteration of the while loop, Algorithm 4 determines that the
maximum number of pairwise vertex-disjoint s-t-paths is 3 and finds three pairwise
vertex-disjoint s-t-paths, say the three paths given by the named vertices. The subse-
quent execution of Algorithm 2 yields output (u3, v3, w1) whereas executing Algorithm
3 yields output (u5, v5, w3). The contractions and edge replacements at the end of
the second iteration of the while loop produce the graph given in Fig. 4. We obtain
g(s) = 12 and g(t) = 10.

st

u4

w2

v4

x1

Fig. 4. In the third iteration of the while loop, Algorithm 4 finally finds four pairwise
vertex-disjoint s-t-paths. Algorithm 2 and Algorithm 3 both return the same cut X =
(u4, v4, w2, x1). Note that this is the case for Algorithm 2 because there are those two
vertices at the top that ensure that |Vs(X)|+ g(s) ≤ |Vr(X) ∪ Vt(X)|+ g(t) (or, to be
more precise, |Vs(X)|+g(s) = |Vr(X)∪Vt(X)|+g(t)) by being contained in Vr(X). We
obtain Ms ∩Mt 6= ∅, so this was the last iteration of the while loop. Thus, Algorithm
4 returns the pair (X,X).

Lemma 19. Consider an iteration of the while loop in Algorithm 4 where (not
necessarily non-trivial) contractions are performed. Then, at the end of the it-
eration, there is no edge {s, t} ∈ E(H) and there are (at least) k + 1 pairwise
vertex-disjoint s-t-paths in H.

Proof. For ease of presentation, we will denote s, t and H by s0, t0 and H0 at the
beginning of the iteration and by s1, t1 and H1 at the end of the iteration. Since
contractions are performed in the considered iteration, we have Ms ∩Mt = ∅
which implies s1 6= t1 (and ensures that nothing problematic happens contrac-
tionwise), and we know that there is no edge from Ms to Mt in H0 which implies
that there is no edge {s1, t1} ∈ E(H1).

Now suppose that there is no set of k + 1 pairwise vertex-disjoint s1-t1-
paths in H1. Since there is no edge {s1, t1} ∈ E(H1), this implies, by Menger’s
Theorem, that there is a set X = {x1, ..., xk}, s1 6= xi 6= t1, of pairwise different
vertices of H1 such that there is no s1-t1-path in H1[V (H1)\X]. Considering the
xi as vertices of H0, the construction of H1 ensures that there is no s0-t0-path in
H0[V (H0)\X]. As each of the fi must contain an element of X, we can assume
that xi ∈ fi. So X is a cut with respect to (f1, ..., fk). Furthermore, we have
U ≺ X and X ≺W , again by the construction of H1.

By a simple calculation, we see that |Vs0(X)|+g(s0) ≤ |Vr(X)∪Vt0(X)|+g(t0)
or |Vt0(X)|+ g(t0) ≤ |Vr(X)∪Vs0(X)|+ g(s0) must be satisfied. In the first case
we can apply Lemma 15 and obtain |Vs0(Y)|+ g(s0) > |Vr(Y) ∪ Vt0(Y)|+ g(t0)
for all cuts Y satisfying U ≺ Y . Since we have U ≺ X, we get |Vs0(X)|+g(s0) >
|Vr(X) ∪ Vt0(X)| + g(t0) which yields a contradiction to |Vs0(X)| + g(s0) ≤
|Vr(X)∪Vt0(X)|+g(t0). In the second case we obtain a contradiction analogously
by using Lemma 16.

Lemma 20. Let K be some positive integer and let s, t be two vertices of G.
Then Algorithm 4 terminates in time O(K2m log n).

Proof. By Lemma 18, we can find a set of some cardinality of pairwise vertex-
disjoint s-t-paths in some graph G by finding a set of the same cardinality of
pairwise edge-disjoint ds-ct-paths inG. By the definition ofG, we have |V | = 2|V |
and |E| = |V |+ 2|E|. Using the Ford-Fulkerson algorithm mentioned earlier, we
can check in time O(K|E|) = O(Km) whether there are K + 1 pairwise edge-
disjoint ds-ct-paths in H and, if this is not the case, find the maximum number
of pairwise edge-disjoint ds-ct-paths f1, ..., fk, also in time O(Km).7 Therefore,
the part of the while loop before executing Algorithm 2 can be done in time
O(Km).

Executing Algorithm 2 and Algorithm 3 can be done in time O(Km log n),
by Lemma 15 and Lemma 16, while the computation of Vs(U) and Vt(W) can
be done in time O(m). The remaining tasks in an iteration of the while loop can
be done as fast.

By Lemma 19, in each iteration of the while loop where contractions are
performed, k is increased by at least 1. Thus there are at most K iterations of
the while loop which results in a runtime of O(K2m log n).

4.4 A Property of the Returned Pair

What is left to show is that the returned pair contains indeed a good cut. The-
orem 23 will take care of that. In order to prove Theorem 23, we need two
lemmas.

Lemma 21. Consider an iteration of the while loop of Algorithm 4 where con-
tractions are performed. Then, for the sets Ms and Mt which are contracted in
this iteration, H[Ms] and H[Mt] are connected graphs.

Proof. For reasons of symmetry, it is enough to show the statement for H[Ms].
If Algorithm 2 returns (s, s, ..., s), there is nothing to show. If it does not return
(s, s, ..., s), then it returns a cut U , by Lemma 15. By definition, Vs(U) is a
connected component of H[V (H)\U]. Now if there is a vertex u ∈ U which
is not the neighbor of some vertex in Vs(U), then Vs(U) is also a connected
component of H[V (H)\(U\{u})] which implies that U\{u} separates s and t.
But then, by Menger’s Theorem, there can be at most |U | − 1 pairwise vertex-
disjoint s-t-paths in H which is a contradiction to U being a cut. Thus H[Ms]
is connected.

Lemma 22. Let K be some positive integer and let s, t be two vertices of G. Let
(S, T) be the pair returned by Algorithm 4 and suppose that there is an s-t-vertex
separator (A∗, S∗, B∗) of G of size K ′ ≤ K. Then one of S and T is a cut while
the other is either a cut or empty.

7 Note that we have |V (H)| ≤ |V |, |E(H)| ≤ |E| and k ≤ K at every time during the
algorithm.

Proof. In the first iteration of the while loop of Algorithm 4 the maximum num-
ber of pairwise vertex-disjoint s-t-paths is not larger than K since S∗ separates
s and t which implies, by Menger’s Theorem, that there can only be K ′ pairwise
vertex-disjoint s-t-paths. Suppose that, in this first iteration of the while loop of
Algorithm 4, Algorithm 2 returns (s, s, ..., s) and Algorithm 3 returns (t, t, ..., t).
Then Ms ∩Mt = ∅ and there is no edge from Ms to Mt in H since s and t
are non-adjacent in G. The performed contractions are trivial (i.e., they do not
change H) and at the beginning of the subsequent iteration we have exactly the
same situation as at the beginning of the first iteration.

This implies that there is no upper bound on the runtime of Algorithm 4
which yields a contradiction to the already established runtime given in Lemma
20. Therefore, in the first iteration we obtain U 6= (s, s, ..., s) or W 6= (t, t, ..., t)
which implies that at the end of Algorithm 4 we have S 6= () or T 6= (). Further-
more, by Lemma 15, Algorithm 2 returns a cut if it does not return (s, s, ..., s)
(and Algorithm 3 analogously). Thus, by the design of Algorithm 4 and Lemma
21 (which ensures that a cut found in some iteration separates the initially given
s and t), one of S and T is a cut while the other is either a cut or empty.

For ease of presentation, define, for any subset U of V ,

LU := max{|V (C)| | C is a connected component of G[V \U]} .

Theorem 23. Let K be some positive integer and let s, t be two vertices of G.
Let (S, T) be the pair returned by Algorithm 4 and suppose that there is an s-t-
vertex separator (A∗, S∗, B∗) of G of size K ′ ≤ K. Now if there is a connected
component C of G[V \(S ∪ T)] such that S∗ ⊆ V (C), then one of the following
holds:

(i) LS ≤ LS∗ (ii) LT ≤ LS∗ (iii) LS ≤ 1
2 |V | (iv) LT ≤ 1

2 |V |

Proof. Let s, t, H, g(s) and g(t) be as they are at the end of Algorithm 4.
Furthermore, denote by s0 and t0 the vertices s and t as they are at the start
of Algorithm 4. By Lemma 22, Vs0(S), Vt0(S), Vs0(T) and Vt0(T) are defined
if S and T are not empty. For the remainder of this proof, set Vs0(S) := {}
and Vt0(S) := V if S = () and Vt0(T) := {} and Vs0(T) := V if T = () (since,
as shown in Lemma 22, at most one of S and T can be empty, this is well-
defined). Let C be a connected component of G[V \(S∪T)] such that S∗ ⊆ V (C).
Then we have V (C) ⊆ Vs0(S) or V (C) ⊆ Vt0(S), as well as V (C) ⊆ Vs0(T) or
V (C) ⊆ Vt0(T).

Suppose that V (C) ⊆ Vt0(S) and V (C) ⊆ Vs0(T). Thus, S∗ ⊆ Vt0(S) and
S∗ ⊆ Vs0(T). By design, Algorithm 4 contracts only sets which consist of vertices
in Vs0(S) ∪ S and vertices which are a contraction of vertices in Vs0(S) ∪ S and
sets which consist of vertices in Vt0(T) ∪ T and vertices which are a contraction
of vertices in Vt0(T) ∪ T . Therefore, as S∗ ⊆ Vt0(S) and S∗ ⊆ Vs0(T), no vertex
contained in S∗ is ever in a vertex set that is contracted. Since S∗ separates s0
and t0, this implies, by Lemma 21, that each set that is contracted is “contained”
in A∗ or B∗.

Let A and B be the subsets of V (H) that “remain” from A∗, resp. B∗ after
applying the series of contractions performed in Algorithm 4. The above con-
siderations ensure that (A,S∗, B) is an s-t-vertex separator of H. Furthermore,
since g(s) and g(t) indicate the total number of vertices of G which have been
contracted into s, resp. t, we have |A∗| ≤ |B∗| if and only if |A|+g(s) ≤ |B|+g(t),
and |A∗| ≥ |B∗| if and only if |A|+ g(s) ≥ |B|+ g(t). Suppose that |A∗| ≤ |B∗|.
Then |A|+g(s) ≤ |B|+g(t) and we obtain |Vs(S∗)|+g(s) ≤ |Vr(S∗)∪Vt(S∗)|+g(t)
(since, by the definition of Vs(), Vt() and Vr(), we have |Vs(S∗)| ≤ |A| and
|B| ≤ |Vr(S∗) ∪ Vt(S∗)|). Let U denote the output of Algorithm 2 in the last
iteration of the while loop of Algorithm 4. Since S∗ ⊆ Vt0(S) and by Lemma 21,
we have U ≺ S∗ 8 which combined with |Vs(S∗)|+g(s) ≤ |Vr(S∗)∪Vt(S∗)|+g(t)
yields a contradiction because in the last iteration of the while loop Algorithm
2 could not have returned U , by Lemma 15.

Analogously to the case |A∗| ≤ |B∗|, Lemma 16 yields a contradiction for
the case |A∗| ≥ |B∗|. It follows that we cannot have both V (C) ⊆ Vt0(S) and
V (C) ⊆ Vs0(T). Thus, we have V (C) ⊆ Vs0(S) or V (C) ⊆ Vt0(T).

Suppose that V (C) ⊆ Vs0(S).9 If S 6= (), then there is a last iteration of
the while loop in which Algorithm 2 returns some U 6= (s, s, ..., s). We obtain
S = U . Furthermore, Lemma 15 and the fact that the updating of the weights
at the end of the while loop corresponds to adding the respective numbers of
contracted vertices (excluding s, resp. t, itself) ensure that |Vs0(S)| ≤ |Vt0(S) ∪
Vr(S)|. If S = (), we also have |Vs0(S)| ≤ |Vt0(S) ∪ Vr(S)|. Thus, if LS >

1
2 |V |,

then there is a connected component CS of G[V \S] with |CS | = LS such that
V (CS)∩Vs0(S) = ∅. Since S∗ ⊆ V (C) ⊆ Vs0(S), it follows that V (CS)∩S∗ = ∅.
Therefore, CS is a subgraph of a connected component of G[V \S∗] which implies
LS ≤ LS∗ .

If V (C) ⊆ Vt0(T) then it follows analogously that LT ≤ 1
2 |V | or LT ≤ LS∗ .

5 Approximating Small Balanced Vertex Separators
Quickly

In this section, we finally design an algorithm that uses Algorithm 4 as a sub-
routine in order to find a small and balanced vertex separator. We show that
it does so in almost linear time w.h.p. and conclude the section by stating and
proving our main result.

8 Note that in this last iteration the found number of pairwise vertex-disjoint s-t-paths
must be K′ since there cannot be more such paths than K′ (because S∗ separates s
and t and consists of K′ vertices) and if the found number would be strictly smaller
than K′, then there would be at least one further iteration (since S∗ separates s0
and t0, the last if condition must remain true throughout the whole Algorithm 4 if
S∗ ⊆ Vt0(S) ∩ Vs0(T)).

9 From this point on, deviating from the earlier convention, let s and t be as they are
in the respective considered iteration (and not as they are at the end of Algorithm
4).

5.1 The Algorithm

The idea of Algorithm 5 is based on Algorithm 4 in conjunction with Theorem
23. Let 2

3 ≤ α < 1, and assume that there is a small α-separator (A∗, S∗, B∗) of
G. By removing vertices of the given graph G, we obtain different connected com-
ponents of which we then choose the largest one and iterate on this component.
The goal is to reduce thereby the size of the largest component to approximately
α|V | at most while removing only a small number of vertices in the process.

In more detail, Algorithm 5 chooses two vertices s, t in each iteration and then
uses Algorithm 4 to find a small number of vertices which it will then remove.
There is a “large enough” probability that the chosen vertices are on different
sides of the vertex separator whose existence we assumed above since this sepa-
rator is α-balanced. If the chosen vertices are on different sides, then Theorem
23 ensures that the size of the largest connected component after the vertex
removal is at most α|V | or that the aforementioned separator contains strictly
fewer vertices in the “separating set” S∗ when restricted to this component. By
iterating, we can reduce the number of vertices in this “separating set” to 0 (if
the latter case occurs repeatedly) and then the balance of the aforementioned
separator ensures that the largest component is of size at most α|V |.

Since the balance of the separator may decrease radically by restricting it
to the largest obtained component, so does the probability of s and t being on
different sides of the separator. Thus, in order to obtain a good runtime, we stop
when we achieve a certain balance close to α (which is realized in Algorithm 5
by the condition |V (H)| > (α+ ε)|V | of the while loop).

In the analysis of Algorithm 5, we differentiate between iterations where s, t
are “on the same side” of some fixed vertex separator and those where this is
not the case.

Definition 24. Let (A∗, S∗, B∗) be a vertex separator. Then we call an iteration
of the while loop of Algorithm 5 unsuccessful (with respect to (A∗, S∗, B∗)) if, for
the vertices s, t chosen in that iteration, we have s, t ∈ A∗ or s, t ∈ B∗. If this is
not the case, then we call the iteration successful (with respect to (A∗, S∗, B∗)).

The following lemma formalizes some of the above considerations, thus enabling
us to prove the subsequent corollary which gives an upper bound for the number
of successful iterations.

Lemma 25. Let 2
3 ≤ α < 1 and let (A∗, S∗, B∗) be an α-separator of G of size

at most K. Consider a successful iteration of the while loop of Algorithm 5 with
respect to (A∗, S∗, B∗). Let H0 and H1 denote the graph H at the beginning, resp.
the end, of this iteration. Then |V (H1) ∩ S∗| ≤ |V (H0) ∩ S∗| − 1 or |V (H1)| ≤
α|V |.

Proof. We observe that V (H1) ∩ S∗ ⊆ V (H0) ∩ S∗. If s ∈ S∗ or t ∈ S∗, then
V (H1) ∩ S∗ is a proper subset of V (H0) ∩ S∗ as the former does not contain
s, resp. t, while the latter does. Thus, |V (H1) ∩ S∗| ≤ |V (H0) ∩ S∗| − 1 and
we are finished. Consider the remaining cases for a successful iteration, i.e.,

Algorithm 5 Find Small Balanced Vertex Separator

Initialization: Given a graph G, a positive integer K, some 2
3
≤ α < 1 and some

0 < ε < 1− α, set H := G and S′ := {}.

1: while |V (H)| > (α+ ε)|V | do
2: choose two vertices s, t in H uniformly at random // possibly identical or

adjacent
3: if s = t or s and t are adjacent then
4: compute a largest connected component C of H[V (H)\({s} ∪ {t})] //

remove s, t
5: H := C // continue on the resulting largest connected component
6: S′ := S′ ∪ {s} ∪ {t} // remember the removed vertices
7: else
8: execute Algorithm 4 (with input H, K, s, t) and denote the output by (S, T)
9: compute a largest connected component C of H[V (H)\(S ∪ T ∪ {s} ∪ {t})]

10: H := C // continue on the resulting largest connected component
11: S′ := S′ ∪ S ∪ T ∪ {s} ∪ {t} // remember the removed vertices
12: end if
13: end while
14: order the connected components C1, C2, ... of G[V \S′] such that |V (C1)| ≥
|V (C2)| ≥ ...

15: A := V (C1) // start collecting (vertex sets of) components
16: add the vertex sets V (C2), V (C3), ... successively to A as long as the resulting A

satisfies |A| ≤ α|V | // note that V (C1) could already contain (α+ ε)|V | vertices
17: B := V (G)\(A ∪ S′) // collect the “other side” of the vertex separator
18: return (A,S′, B)

s ∈ A∗, t ∈ B∗ and t ∈ A∗, s ∈ B∗. For reasons of symmetry, we can assume
w.l.o.g. that s ∈ A∗, t ∈ B∗. Note that, since (A∗, S∗, B∗) is a vertex separator,
s ∈ A∗, t ∈ B∗ implies that the if-condition in Algorithm 5 is not satisfied.

Consider the s-t-vertex separator (V (H0) ∩ A∗, V (H0) ∩ S∗, V (H0) ∩B∗) of
H0 which is of size at most K since |S∗| ≤ K. By Theorem 23, we have

V (H0) ∩ S∗ * V (H1)

or

|V (H1)| ≤ max{|V (H0) ∩A∗|, |V (H0) ∩B∗|, 1

2
|V |} .

In the first case, we obtain V (H0)∩S∗ * V (H1)∩S∗ which implies |V (H1)∩S∗| ≤
|V (H0)∩S∗|− 1, since V (H1)∩S∗ ⊆ V (H0)∩S∗. For the second case, we recall
that max{|A∗|, |B∗|} ≤ α|V | and obtain |V (H1)| ≤ α|V |.

Corollary 26. Let 2
3 ≤ α < 1 and let (A∗, S∗, B∗) be an α-separator of G of size

at most K. Then the number of successful iterations with respect to (A∗, S∗, B∗)
is at most K in any execution of Algorithm 5.

Proof. Suppose there is an execution of Algorithm 5 where at least K + 1 suc-
cessful iterations take place. Consider one of the first K successful iterations. By
Lemma 25, we know that the number of vertices contained in the largest con-
nected component after this iteration is at most α|V | or this iteration decreases
the number of vertices in S∗ contained in the largest connected component by
at least 1. If the former of these two possibilities occurs, then the algorithm
terminates after this iteration since we have |V (H)| ≤ (α+ ε)|V |. But since we
assumed that there are at least K + 1 successful iterations, this cannot be the
case.

Thus, each of the first K iterations decreases the number of vertices in S∗

contained in the largest connected component by at least 1 which implies that
after those K iterations, the resulting connected component H contains no ver-
tex in S∗. Since (A∗, S∗, B∗) is a vertex separator, it follows that V (H) ⊆ A∗

or V (H) ⊆ B∗. Thus |V (H)| ≤ (α + ε)|V | and the algorithm terminates be-
fore executing K + 1 successful iterations. This yields a contradiction to our
assumption.

5.2 The Runtime

In order to prove an upper bound for the runtime of Algorithm 5 we need the
following lemma.

Lemma 27. For all 0 < ε ≤ 1, we have (1− ε)dε−1e ≤ 1
2 .

Proof. Using Bernoulli’s Inequality, we obtain, for all 0 < ε ≤ 1,

(1− ε)dε
−1e

=

�
(1− ε)(1 + ε)

(1 + ε)

�dε−1e
≤ 1

(1 + ε)
dε−1e ≤

1

1 + εdε−1e
≤ 1

2
.

Using the already established bound for the number of successful iterations, we
prove an upper bound for the runtime of Algorithm 5 in terms of the number of
iterations.

Lemma 28. Let 2
3 ≤ α < 1. If there exists an α-separator of size at most K,

then Algorithm 5 terminates after O(ε−1K log1+o(1) n) iterations w.h.p.

Proof. Let (A∗, S∗, B∗) be an α-separator of size at most K. Consider an arbi-
trary iteration in an execution of Algorithm 5. Let psucc be the probability that
this iteration is successful (given only the partial execution up to this point). In
the following, we give a lower bound for psucc.

Let H be as it is at the start of this iteration. Since we have |V (H) ∩A∗| ≤
|A∗| ≤ α|V | and |V (H)∩B∗| ≤ |B∗| ≤ α|V |, there exist disjoint subsets X,Y ⊆
V (H) such that X∪Y = V (H), |X| ≤ |Y | ≤ α|V | and neither X nor Y contains
vertices from both V (H) ∩A∗ and V (H) ∩B∗.10

10 We can obtain such X,Y by successively adding the vertices of V (H) ∩ S∗ to the
smaller one of V (H) ∩A∗ and V (H) ∩B∗.

Let pX be the probability that a vertex chosen uniformly at random from
V (H) is in X. Since |X| ≤ |Y |, we have 1 − pX ≥ 1

2 . If the s, t chosen in our
iteration satisfy s ∈ X, t ∈ Y or s ∈ Y, t ∈ X, then the iteration is successful, by
definition. We obtain psucc ≥ pX(1 − pX) + (1 − pX)pX ≥ pX . Since |V (H)| >
(α+ ε)|V |, |Y | ≤ α|V | and 0 < ε < 1− α, we have

psucc ≥ pX =
|X|
|V (H)|

=
|V (H)| − |Y |
|V (H)|

≥ 1− α

α+ ε
=

ε

α+ ε
≥ ε .

Thus, the probability that an iteration is successful is always at least ε and the
probability that an iteration is unsuccessful is always at most 1− ε.

Let p be the probability that an execution of Algorithm 5 has more than
2Kdε−1edlog1+δ ne iterations where δ is an arbitrary positive real number. By
Corollary 26 and the above considerations, p is at most as large as the probability
that, in a sequence of 2Kdε−1edlog1+δ ne tosses of a coin which shows heads with
probability ε, we throw heads less than K times.11

Consider dε−1e successive tosses of such a coin. Applying Lemma 27, we see
that the probability that all of these coin tosses result in tails is at most 1

2 . In the
following, we consider blocks of dε−1e successive coin tosses. As we can group
our 2Kdε−1edlog1+δ ne coin tosses in 2Kdlog1+δ ne non-overlapping blocks, p is
at most as large as the probability that less than K of these blocks contain a coin
toss which results in heads. Since we can see each block as the toss of a “big”
coin (which results in tails if and only if all coin tosses in the block result in tails)
and we already bounded the probability of tails for these big coins, we know that
p is at most as large as the probability that, in a sequence of 2Kdlog1+δ ne tosses
of a fair coin, we throw heads less than K times.

For reasons of symmetry, the probability that, in a sequence of 2K tosses of
a fair coin, we throw heads less than K times is less than 1

2 . Thus, by dividing

our above sequence in dlog1+δ ne subsequences of 2K coin tosses, we obtain

p ≤
�

1

2

�dlog1+δ ne
≤ 1

2logn logδ n
=

1

nlog
δ n

.

By choosing δ := 1
log log logn ∈ o(1), we obtain

logδ n =
(
2log logn

) 1
log log logn = 2

log logn
log log logn ∈ ω(1)

which implies

p ∈ 1

nω(1)
.

Thus, Algorithm 5 terminates after O(ε−1K log1+o(1) n) iterations w.h.p.

11 The reason we switch to coins instead of iterations is simply that we do not stop
throwing coins when we have reached a certain number of heads whereas Algorithm
5 terminates after at most K successful iterations which complicates the analysis.

5.3 The Main Result

By combining the results obtained in this section, we are able to state and prove
our main result.

Theorem 29. Let 2
3 ≤ α < 1 and 0 < ε < 1− α. If G contains an α-separator

that has size at most K, then Algorithm 5 finds an (α + ε)-separator of size

O(ε−1K2 log1+o(1) n) in time O(ε−1K3m log2+o(1) n) w.h.p.

Proof. By Lemma 28, Algorithm 5 terminates after O(ε−1K log1+o(1) n) itera-
tions w.h.p. Consider the steps performed in an iteration. Computing the largest
connected component of a subgraph of G can be done in time O(m) whereas
executing Algorithm 4 takes time O(K2m log n), by Lemma 20. Since comput-
ing and ordering the Cj and adding the V (Cj) can also be done in time O(m),

Algorithm 5 terminates in time O(ε−1K3m log2+o(1) n) w.h.p.
By the design of Algorithm 4, the entries of the pair that Algorithm 4 returns

are cuts or empty tuples. If an entry is a cut, the input parameter K (and the
design of Algorithm 4) ensures that the cardinality of the cut is at most K. Thus,
the cardinality of S′ increases by at most 2K+2 in each iteration of the while loop
in Algorithm 5. Combining this with the bound on the number of iterations given
in Lemma 28, we obtain that the cardinality of S′ is in O(ε−1K2 log1+o(1) n)
when Algorithm 5 terminates.

What is left to show is that the output of Algorithm 5 is an (α+ε)-separator.
By design, when Algorithm 5 terminates, the number of vertices in the largest
connected component is at most (α+ε)|V |. Thus, |V (C1)| ≤ (α+ε)|V |. The set A
contained in the output satisfies |A| = |V (C1)|+ ...+ |V (Cj′)| for some j′ ≥ 1. If
|B| > α|V |, then |A| ≤ (1−α)|V | ≤ 1

3 |V | which implies |V (Cj′+1)| ≤ |V (C1)| ≤
1
3 |V | and V (Cj′+1) would have been added to A in Algorithm 5 (since we would
then still have |A| ≤ α|V |). Thus, |B| ≤ α|V | and since |A| ≤ (α+ ε)|V |, we can
conclude that (A,S′, B) is an (α+ ε)-separator.

By Theorem 29, we can find a reasonably small (α+ε)-separator in almost linear
time, provided that G contains a small α-separator. In particular, we obtain the
following:

– If K ∈ O(polylog n), then Algorithm 5 finds an (α + ε)-separator of size
O(ε−1 polylog n) in time O(ε−1m polylog n) w.h.p.

– If K ∈ O(log n), then Algorithm 5 finds an (α + ε)-separator that has size

O(ε−1 log3+o(1) n) in time O(ε−1m log5+o(1) n) w.h.p.

Throughout this work, we supposed that we have a fixed K which gives us an
upper bound for the size of the α-separator whose existence we assume. If we do
not want to consider some specific K, but rather find some (ideally small) K for
which Algorithm 5 returns a vertex separator as specified in Theorem 29, we can
achieve this by successively doubling K, each time executing Algorithm 5. The
obtained total runtime is asymptotically the same as the runtime of Algorithm
5.

We consider our approach to be a first step in a new direction. We are con-
fident that future work building on this approach can improve the presented
theoretical bounds significantly. One reason (of many) for this is the following:
One factor of K in the runtime is due to the possibility that, in each of K
successful iterations, the number of vertices in S∗ contained in the largest con-
nected component potentially decreases by only 1 (see the proof of Corollary
26). We expect that graphs exhibiting such an incremental decrease must have
very specific structures that can be exploited. Moreover, from a practical (and
entirely informal) standpoint, we note that the hidden constants are fairly small
and that all three factors of K in the runtime should be significantly lower than
K on average.

References

1. Noga Alon, Paul D. Seymour, and Robin Thomas. A separator theorem for graphs
with an excluded minor and its applications. In Proceedings of the 22nd Annual
ACM Symposium on Theory of Computing, May 13-17, 1990, Baltimore, Mary-
land, USA, pages 293–299, 1990.

2. Eyal Amir, Robert Krauthgamer, and Satish Rao. Constant factor approximation
of vertex-cuts in planar graphs. In Proceedings of the 35th Annual ACM Symposium
on Theory of Computing, June 9-11, 2003, San Diego, CA, USA, pages 90–99,
2003.

3. Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to semidef-
inite programs. In Proceedings of the 39th Annual ACM Symposium on Theory of
Computing, San Diego, California, USA, June 11-13, 2007, pages 227–236, 2007.

4. Thang Nguyen Bui and Curt Jones. Finding good approximate vertex and edge
partitions is NP-hard. Information Processing Letters, 42(3):153–159, 1992.

5. H. N. Djidjev. A linear algorithm for partitioning graphs of fixed genus. Serdica,
11(4):369–387, 1985.

6. Guy Even, Joseph Naor, Satish Rao, and Baruch Schieber. Divide-and-conquer ap-
proximation algorithms via spreading metrics. In 36th Annual Symposium on Foun-
dations of Computer Science, Milwaukee, Wisconsin, 23-25 October 1995, pages
62–71, 1995.

7. Guy Even, Joseph Naor, Satish Rao, and Baruch Schieber. Fast approximate
graph partitioning algorithms. In Proceedings of the Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, 5-7 January 1997, New Orleans, Louisiana.,
pages 639–648, 1997.

8. Uriel Feige, Mohammad Taghi Hajiaghayi, and James R. Lee. Improved approx-
imation algorithms for minimum-weight vertex separators. In Proceedings of the
37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA,
May 22-24, 2005, pages 563–572, 2005.

9. Uriel Feige and Mohammad Mahdian. Finding small balanced separators. In
Proceedings of the 38th Annual ACM Symposium on Theory of Computing, Seattle,
WA, USA, May 21-23, 2006, pages 375–384, 2006.

10. John R. Gilbert, Joan P. Hutchinson, and Robert Endre Tarjan. A separator
theorem for graphs of bounded genus. Journal of Algorithms, 5(3):391–407, 1984.

11. Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
Powergraph: Distributed graph-parallel computation on natural graphs. In 10th

USENIX Symposium on Operating Systems Design and Implementation, OSDI
2012, Hollywood, CA, USA, October 8-10, 2012, pages 17–30, 2012.

12. L. R. Ford Jr. and D. R. Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, 8:399–404, 1956.

13. Ken-ichi Kawarabayashi and Bruce A. Reed. A separator theorem in minor-closed
classes. In 51st Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 153–162, 2010.

14. Frank Thomson Leighton and Satish Rao. Multicommodity max-flow min-cut
theorems and their use in designing approximation algorithms. Journal of the
ACM, 46(6):787–832, 1999.

15. Richard J. Lipton and Robert E. Tarjan. A separator theorem for planar graphs.
SIAM Journal on Applied Mathematics, 36(2):177–189, 1979.

16. Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale
graph processing. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10,
2010, pages 135–146, 2010.

17. Dániel Marx. Parameterized graph separation problems. Theoretical Computer
Science, 351(3):394–406, 2006.

18. Karl Menger. Zur allgemeinen Kurventheorie. Fundamenta Mathematicae,
10(1):96–115, 1927.

19. Bruce A. Reed and David R. Wood. A linear-time algorithm to find a separator
in a graph excluding a minor. ACM Transactions on Algorithms, 5(4), 2009.

20. Christian Wulff-Nilsen. Separator theorems for minor-free and shallow minor-free
graphs with applications. In IEEE 52nd Annual Symposium on Foundations of
Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011,
pages 37–46, 2011.

	Approximating Small Balanced Vertex Separators in Almost Linear Time

