
Control Message Aggregation in Group
Communication Protocols

Sanjeev Khanna1, Joseph (Seffi) Naor2, and Dan Raz2

1 Dept. of Computer & Information Science, University of Pennsylvania,
Philadelphia, PA 19104
sanjeev@cis.upenn.edu,

2 Computer Science Dept., Technion, Haifa 32000, Israel
{naor,danny}@cs.technion.ac.il

Abstract. Reliable data transmission protocols between a sender and a
receiver often use feedback from receiver to sender to acknowledge cor-
rect data delivery. Such feedback is typically sent as control messages by
receiver nodes. Since sending of control messages involves communica-
tion overhead, many protocols rely on aggregating a number of control
messages and sending them together as a single packet over the network.
On the other hand, the delays in the transmission of control messages
may reduce the rate of data transmission from the sender. Thus, there
is a basic tradeoff between the communication cost of control messages
and the effect of delaying them.
We develop a rigorous framework to study the aggregation of control
packets for multicast and other hierarchical network protocols. We define
the multicast aggregation problem and design efficient online algorithms
for it, both centralized and distributed.

1 Introduction

Reliable transmission of data across an unreliable packet network (such as IP)
requires end to end protocols (such as TCP) that use feedback. Such protocols
use control messages to set up connections, to acknowledge the correct recep-
tion of (part of) the data, and possibly to control the transmission rate. This
introduces a communication overhead, that may result in decreasing the overall
effective throughput of the network. Since control messages are typically small,
one can aggregate several control messages into a single packet in order to re-
duce the communication overhead. However, such an approach introduces extra
delay since a control message may need to wait at the aggregation points for
additional control messages. In many cases (e.g. TCP) delayed control messages
may result in a reduction of the overall transmission protocol throughput. Thus,
there is a tradeoff between the amount of reduction in the communication cost
one can get from aggregating control messages, and the affect of the possible
delay caused by it. This paper studies this tradeoff in the context of multicast
and hierarchical protocols.

We use the term multicast protocols to describe a transmission protocol that
delivers data from a single sender to a (possibly large) set of receivers. Reliable

P. Widmayer et al. (Eds.): ICALP 2002, LNCS 2380, pp. 135–146, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

136 S. Khanna, J.(S.) Naor, and D. Raz

multicast protocols provide a mechanism to ensure that every receiver receives
all the data. Since the underlying network (IP) is unreliable (i.e. packets may
be lost), such protocols must detect errors (i.e. lost packets) in order to request
their retransmission. One approach is to have the sender detect that an error
has occurred, this is done by making each receiver acknowledge receiving each
packet. A common practice is to send a special control packet called ACK (pos-
itive acknowledgment) for each received packet. However, this may result in an
implosion of control packets being sent to the sender. An alternative is to make
each receiver independently responsible for detecting its errors, e.g., a gap in the
sequence numbers may signal a lost packet. In such a case the common practice is
to send a NAK (negative acknowledgment). In this case, an implosion of control
packets may occur as well when the same packet is lost for many receivers.

Several reliable multicast protocols were developed (see for example [7])
which use different techniques to overcome the ACK/NAK implosion problem.
One commonly used technique is to use control message aggregation where sev-
eral control messages to the root are aggregated into a single control message,
thus saving on the communication cost at the expense of delaying individual
messages to achieve aggregation. Most protocols use ad hoc methods based on
user-defined timers to perform such an aggregation. Consider, for example, the
Local Group based Multicast Protocol (LGMP) [4]. This protocol uses the local
group concept (LGC) in order to overcome the ACK-implosion problem. Local
groups are organized in an hierarchical structure. Each receiver sends control
message to its local group controller, which aggregates the data, tries to recover
locally, and when needed reports to its local group controller (which belongs to a
higher level in the hierarchy tree). LGMP uses timer timeout in order to decide
when to send a control message up the tree (see Section 2.4 of [4]).

Using hierarchical structures is not restricted to multicast algorithms. Many
network protocols use hierarchical structures to address the scalability problem.
Examples include the PNNI [8] routing algorithm in ATM and the RSVP [9]
protocols. In many of these protocols there is a need to report status to the
higher level in the hierarchy. This leads to exactly the same tradeoff between the
amount of control information and the delay in the reported information.

A very recent example is the Gathercast mechanism proposed by Badrinath
and Sudame [1]. Gathercast proposes to aggregate small control packets, such as
TCP acknowledge messages, sent to the same host (or to hosts in the same (sub)-
network). The authors show that such an aggregation significantly improves
performances under certain conditions. In the proposed scheme there is a time
bound on the amount of delay a packet can suffer at the gathering point, and
once this timer has expired the packet is sent.

1.1 Our Model and Results

This paper offers a theoretical framework to study the aggregation of control
messages in such situations. Specifically, we investigate the global optimization
problem of data aggregation in multicast trees. We are given a multicast tree
with a communication cost associated with each link. When a packet arrives at

Control Message Aggregation in Group Communication Protocols 137

a receiver node (leaf or internal node), a control message (typically an ACK
control message) has to be sent to the root. Nodes can delay control messages
in order to aggregate them, and save on the communication cost. The cost paid
by a control message to traverse a tree link is independent of the number of
aggregated control messages that it represents. Also, note that control messages
that originate at the same receiver node as well as the ones originating at different
nodes are allowed to be aggregated. However, the delay of each original control
message contributes to a delay cost. The total delay cost is defined to be the
sum of the delays of all the messages. Thus, our optimization problem can be
stated as follows: Given a multicast tree and a sequence of packet arrivals at the
receiver nodes, determine a schedule of minimum cost (communication cost plus
the delay cost) to send back the control messages to the root. We refer to this
problem as the multicast aggregation problem. This is an online optimization
problem in which decisions must be made based upon current state without
knowing future events.

We present both centralized and distributed online algorithms for the mul-
ticast aggregation problem. Our centralized online algorithm assumes a global
information model, where a central entity determines how control messages are
sent. However, future arrivals of messages are not known to the algorithm. Our
distributed online algorithm is a “local” algorithm that makes decisions in the
nodes of the tree based on the packets waiting there. Clearly, in practice, multi-
cast aggregation algorithms are distributed, thus making the centralized model
to be largely of theoretical interest. However, we believe that studying the cen-
tralized online model provides important insight into the combinatorial structure
of the problem. Indeed, it turns out that the multicast aggregation problem is
highly non-trivial even in the centralized model. Both of our algorithms are
based on a natural strategy that tries to balance the communication costs and
the delay costs incurred by the control messages.

For the centralized online case, we give an O(logα)-competitive algorithm,
where α is the total communication cost associated with the multicast tree. We
also show that our analysis of the competitive factor of the algorithm is tight.
For the distributed online case, we give an O(h · logα)-competitive algorithm,
where h is the height of the multicast tree. We show a lower bound of Ω(

√
h)

on the competitive ratio of any distributed online algorithm which is oblivious,
i.e., uses only local information. This notion will be defined more precisely later.

In order to study the performance of our distributed algorithms in practice,
we conducted a performance study using simulations. We compared our algo-
rithm to two commonly used methods: one that reports all events immediately,
and another that works with timers. It turns out that in most scenarios our
distributed online algorithm outperforms the other heuristics, and in some rele-
vant cases it performs significantly (up to 40%) better. One of the most notable
characteristics of our online algorithm is its robustness, i.e., it performs well
across a broad spectrum of scenarios. It follows from our simulations that in a
sense, our online algorithm works like a self adjusting timer, since on one hand
it aggregates messages, but on the other hand it does not wait too long before

138 S. Khanna, J.(S.) Naor, and D. Raz

sending them. Due to lack of space the detailed description of the simulation
results are omitted from this version of the paper.

1.2 Related Work

Dooly, Goldman and Scott [3] study the problem of aggregating TCP ACK
packets over a single link. They observed that the off-line case of the single link
version can be optimally solved by using dynamic programming. For the online
case of this problem they designed a 2-competitive algorithm in the spirit of
rent-to-buy algorithms. Bortnikov and Cohen [2] give several online heuristics
for a local scheduling problem for the more general hierarchical case.

A model similar to ours was introduced by Papadimitriou and Servan-
Schreiber [6] in the context of organization theory (see also [5]). They model
an organization as a tree where the messages arrive at the leaves and must be
sent to the root as soon as possible. Messages model pieces of information about
the “world” outside the organization, and the “boss” needs to have an up-to-date
view of the world as soon as possible. These messages are allowed to be aggre-
gated and the objective function is the sum of the communication cost and the
delay cost. However, their work is primarily focused on the case where message
arrivals are modeled by a Poisson process.

2 The Model

In this section we formally define our model and assumptions. We are given a
rooted tree T that we refer to as the multicast tree. This tree may be a real
multicast tree, or a tree describing a hierarchical structure of a protocol, where
each link actually represents a path in the real network. We view the tree T as
being directed from the leaves towards the root r so that each arc is uniquely
defined by its tail. Thus, for each node v ∈ T (except for the root) we denote by
e(v) the arc leaving it. Each arc (a tree edge) has a communication cost (or just
cost) denoted by c(·). We assume that the communication cost of each arc is at
least 1.

Packets arrive at the tree nodes over time which is slotted. An arrival of
a packet at a tree node generates a control message (ACK) that needs to be
delivered to the root. Our goal is to minimize communication cost of control
messages by aggregating them as they make their way up the tree. We denote
by τ the time at which the last packet arrives. In general, packets can arrive
at any node, internal node or leaf. However, we can assume without loss of
generality that packets arrive only at leaves.

For a given packet p, let ta(p) denote the time at which it arrives at a leaf
node v. As mentioned before, for each packet we need to send a control message
to the root. Control messages waiting at a node accumulate delay and the delay
accumulated until time t by the control message for a packet p is denoted by
dt(p). We assume that each control message must wait at least one unit of time
at a leaf before being sent out. Thus, the delay accumulated by a control message

Control Message Aggregation in Group Communication Protocols 139

is at least 1. From here on, we will identify each packet with its control message,
and simply use the word packet and control messages interchangeably. Our delay
metric is the sum of the delays of the packets, where the delay of each packet is
linear in the time it waits at a node, i.e. dt(p) = β(t − ta(p)) for some constant
β.

In general, nodes can aggregate as many packets as needed and send them up
the tree to their parent. We make the simplifying assumption of no propagation
delay along the links (this avoids having to deal with synchronization issues).
In the distributed model, we assume that at each time step t, each node v may
aggregate awaiting packets and send the aggregated packet to its parent. The
cost of sending the message is c(e(v)), which is independent of the number of
aggregated packets. In the centralized model we assume that at each time step
t, an online algorithm broadcasts a subtree Tt (possibly empty) that collects all
packets present at the leaves of Tt and sends them to the root. These packets
are aggregated together in a bottom-up manner so that each link of the tree
Tt is traversed exactly once during this process. We refer to such an action as
broadcasting the subtree Tt, and the cost of this broadcast is given by cost(Tt) =∑

v∈Tt
c(e(v)).

To summarize, our total cost is the sum of the delay costs of all the packets
(total delay cost) together with the total communication cost. In the centralized
model, the total communication cost is the sum of the costs of the subtrees that
are broadcast. In the distributed model, the communication cost is the sum of
the costs of the tree edges that are used by the (aggregated) messages.

3 The Centralized Online Algorithm

In this section we present log-competitive centralized online algorithms for our
problem. We assume a global information model, where a central entity deter-
mines how control messages are sent. However, future arrivals of messages are
not known to the algorithm. Our online algorithm is based on the following nat-
ural strategy: at any time t, we broadcast a maximal subtree (wrt containment)
such that the cost of the subtree is roughly equal to the accumulated delay of
the packets at its leaves.

Let dt(p) denote the delay accumulated by a packet p until time t. Our
algorithm broadcasts at each time t, a maximal subtree T ′ ⊆ T that satisfies∑

p∈T ′
dt(p) ≥ cost(T ′),

where p ∈ T ′ ranges over all packets waiting at any leaf node in T ′. It is easily
seen that at each broadcast of a tree T ′ by the online algorithm, we must also
have

∑
p∈T ′ dt(p) ≤ 2 · cost(T ′).

Fix an optimal solution opt and let T ∗ = {T1, ..., Tτ} denote the trees (possi-
bly empty) broadcast by opt. Let P denote the set of all packets received during
the algorithm’s execution. For any packet p ∈ P, let delay(p) and delay∗(p) de-
note the delay incurred by a packet p in the online solution and the optimal
solution, respectively. Clearly, the cost C∗ incurred by opt is given by

140 S. Khanna, J.(S.) Naor, and D. Raz

C∗ =
∑

Ti∈T ∗
cost(Ti) +

∑
p∈P

delay∗(p).

Define L = {p | delay(p) > delay∗(p)} to be the set of packets that the online
algorithm broadcasts later than opt (late packets), and let E = {p | delay(p) ≤
delay∗(p)} be the set of packets that are broadcast no later than opt (early
packets). The key fact that we will use in our analysis is the following lemma
that relates the delay incurred by the late packets in the online algorithm to one
in the optimal solution.

Lemma 1.

∑
p∈L

delay(p) ≤
∑
p∈L

delay∗(p) + 4

(∑
Tt∈T ∗

cost(Tt)

)
· logα

Proof. Consider the set Lt ⊆ L of packets that opt sends at time t in a tree
Tt ∈ T ∗. Let Lt denote this subset of packets and let � = |Lt|. Define ti =
t+ (1/β) · 2i(cost(Tt)/|Lt|). We claim that the number of packets in Lt that are
still alive at time ti is at most |Lt|/2i. Suppose not, then the total accumulated
delay of these packets exceeds cost(Tt). Since they have not yet been broadcast,
this contradicts the online broadcasting rule. Thus at time t1+�log(cost(Tt))�, no
packets from the set Lt remain. The total delay incurred by packets in Lt in the
online algorithm is thus bounded as below:

∑
p∈Lt

delay(p) ≤
∑
p∈Lt

delay∗(p) +
1+�log(cost(Tt))�∑

i=1

β ·
(|Lt|
2i−1

)(
1
β

)(
2icost(Tt)

|Lt|
)

=
∑
p∈Lt

delay∗(p) + 2 log (cost(Tt)) · cost(Tt) + 4cost(Tt)

≤
∑
p∈Lt

delay∗(p) + 4 log (cost(Tt)) · cost(Tt)

Since cost(Tt) ≤ α, the lemma now follows by summing over all sets L1, ..., Lτ .

Recall that in the centralized algorithm, a subtree T ′ ⊆ T is broadcast if
it satisfies

∑
p∈T ′ dt(p) ≥ cost(T ′). Therefore, the communication cost of the

algorithm is no more than the delay cost, and the cost C incurred by the online
centralized algorithm is given by:

C ≤ 2
∑
p∈P

delay(p) ≤ 2

∑

p∈E

delay∗(p) +
∑
p∈L

delay(p)

≤ 2

∑

p∈E

delay∗(p) +
∑
p∈L

delay∗(p)

 + 2

(
4

(∑
Ti∈T ∗

cost(Ti)

)
· logα

)

Control Message Aggregation in Group Communication Protocols 141

= 2

∑

p∈P

delay∗(p) + 4

(∑
Ti∈T ∗

cost(Ti)

)
logα

 ≤ 8C∗ · logα

We note that we are not trying to optimize constants. Thus we have the following
result.

Theorem 1. There is an O(logα)-competitive centralized algorithm for the mul-
ticast aggregation problem.

3.1 A Lower Bound

We now show that our analysis above is essentially tight. Consider a two-level
tree T as shown in Figure 1. Assume β = 1 for clarity of exposition. The tree T
has a single edge coming into root r from u with a cost of k2k+1 for some integer
k. The node u has k children v0, ..., vk where the cost of each edge (vi, u) is k2k.
The total cost α of the tree T is thus 2kk+1. We will now describe a packet
arrival sequence such that our online algorithm pays O(logα/ log logα) times
the optimal cost on this sequence. The arrival sequence consists of a sequence
of blocks. The jth block comprises of arrival of packets at each leaf at time
tj = (2j)k2k+1 where j ≥ 0. The leaf node vi receives k2(k−i) packets in each
block. It is easily seen that the optimal solution is to immediately broadcast the
entire tree at time tj + 1.

v

u

r

v vk

k2k+1

k2k k2kk2k

01

Fig. 1. A lower bound for our online algorithm

We now analyze the behavior of our online algorithm on this sequence. Let
Ti denote the subtree of T that only contains the nodes r, u and vi. First observe
that all requests that arrive in any block j are broadcast before the arrival of
the requests in the next block; this follows from the fact that the starting time
of two consecutive blocks are at least α time units apart. So it suffices to analyze
the cost paid by the online algorithm in each block. In each block j, the first

142 S. Khanna, J.(S.) Naor, and D. Raz

subtree is broadcast at time tj + (k + 1); node v0 accumulates a delay that is
equal to cost(T0) and we broadcast tree T0. Observe that by our choice of edge
weights, no other leaf vi is able to connect to this subtree at this time. The next
subtree is now broadcast at time tj + (k3 + k2) and is simply the subtree T1. In
general, at time tj + (k2i+1 + k2i) we broadcast subtree Ti. Thus the total cost
paid by our algorithm in each block is O(k · k2k+1) which is O(logα/ log logα)
times the cost paid by the optimal solution.

4 The Distributed Online Model

We now present a distributed version of the centralized online algorithm. Con-
sider node v at time t, and denote by P (v, t) the set of packets that are waiting
at v at time t. The set P (v, t) is aggregated into a single message, m(v, t),
waiting to be sent from v. We denote by delay(m(v, t)) the delay associated
with m(v, t). At each unit of time, delay(m(v, t)) is increased by β|P (v, t)|, i.e.,
each message in the set P (v, t) contributes towards the delay accumulated by
m(v, t). We note that if node v receives a message m′ at time t′, then it aggre-
gates m′ with m(v, t′), and the delay associated with the aggregated message is
delay(m′)+delay(m(v, t′)). We assume here that each message must wait at least
one unit of time at a node before being sent out. Thus, the delay accumulated
by a message is at least β times the length of the path from the leaf (where it
originated) to the root.

The algorithm sends message m(v, t) at time t if delay(m(v, t)) ≥ c(e(v)).
Suppose node u is the head of arc e(v). Then, the delay associated with message
m(v, t) upon arrival at u is delay(m(v, t)) − c(e(v)), i.e., message m(v, t) has
“paid” for crossing e(v). Note that if message m(v, t) is sent at time t, then
delay(m(v, t)) ≤ 2c(e(v)).

We now analyze the competitive factor of the distributed online algorithm.
Fix an optimal solution opt and let T ∗ = {T1, ..., Tτ} denote the trees (possibly
empty) broadcast by opt. Let P denote the set of all packets received during the
algorithm’s execution. For any packet p ∈ P, let delay(p) and delay∗(p) denote
the delay incurred by a packet p in the online solution and the optimal solution,
respectively. Clearly, the cost C∗ incurred by opt is given by

C∗ =
∑

Ti∈T ∗
cost(Ti) +

∑
p∈P

delay∗(p).

As in the previous section, define L = {p | delay(p) > delay∗(p)} to be the
set of packets that reached the root in the online algorithm later than the time
they reached the root in opt, and let E = {p | delay(p) ≤ delay∗(p)} be the set
of packets that reached the root in the online algorithm no later than the time
they reached the root in opt. The key fact that we will use in our analysis is
the following lemma that relates the delay incurred by the late packets in the
online algorithm to one in the optimal solution.

Control Message Aggregation in Group Communication Protocols 143

Lemma 2.

∑
p∈L

delay(p) ≤
∑
p∈L

delay∗(p) +

8 ∑

Tt∈T ∗
cost(Tt) + 4

∑
p∈P

delay∗(p)

 · h · logα

Proof. Consider a Tt ∈ T ∗. Denote by W the set of late packets that are broad-
cast in tree Tt. Define the following sequences, {ti} and {Wi}, where Wi ⊆ W
denotes the packets that have not reached the root by time ti. Define t0 = t and
W0 =W ; ti (i ≥ 1) is defined to be the first time since ti−1 by which the packets
belonging to Wi have accumulated delay of at least 2 · cost(Tt). Since ti is the
earliest time at which this event occurs, the accumulated delay cannot exceed
2 · cost(Tt) +

∑
p∈Tt

delay∗(p). (Since the packets in opt also had to wait one
unit of time.)

We now claim that for all i ≥ 1, |Wi| ≤ |Wi−1|/2. Suppose that this is not
the case. Then, the delay accumulated by the packets that are alive at time ti
is: ∑

v∈Tt

∑
p∈v

delay(p) > cost(Tt)

Also,
cost(Tt) =

∑
v∈Tt

cost(e(v))

Hence, there exists a node v such that the delay accumulated by the packets
alive at v at time ti is strictly greater than cost(e(v)). This is a contradiction,
since according to the algorithm node v should have sent its packets before time
ti.

We now define the potential at time ti, Φi, to be the sum of the distances of
the packets belonging to Wi from the root of the tree T . The distance of a node
v from the root is defined to be the number of links in the path from v to the
root. Clearly, Φi ≤ |Wi|h, and since |Wi| ≤ |Wi−1|/2, we get

Φi ≤ Φi−1 − |Wi−1|
2

≤ Φi−1 ·
(
1− 1

2h

)

Hence, by time tf , where f = 4h log(h|W |), we get that Φf = 0. The total delay
incurred by packets in W in the distributed online algorithm is thus bounded as
below:

∑
p∈W

delay(p) ≤
∑
p∈W

delay∗(p) +

8cost(Tt) + 4

∑
p∈W

delay∗(p)

h log(h|W |)

We now claim that |W | can be bounded by |Tt| · α. To see this, observe that
any node that contains more than α packets will never be part of the late set.
Thus, |W | ≤ |Tt| · α, and log(h|W |) is O(logα), since we assume that the cost
of each tree arc is at least 1.

The lemma now follows by summing over all sets of late packets in the trees
{T1, ..., Tτ}.

144 S. Khanna, J.(S.) Naor, and D. Raz

Recall that in the distributed algorithm, if message m(v, t) is sent at time
t, then delay(m(v, t)) ≥ c(e(v)). Therefore, the communication cost of the al-
gorithm is no more than the delay cost, and the cost C incurred by the online
distributed algorithm is given by:

C ≤ 2
∑
p∈P

delay(p)

≤ 2

∑

p∈E

delay∗(p) +
∑
p∈L

delay(p)

≤ 2

∑

p∈E

delay∗(p) +
∑
p∈L

delay∗(p)

+2

8 ∑

Ti∈ T ∗
cost(Ti) + 4

∑
p∈P

delay∗(p)

 · h · logα

= 2
∑
p∈P

delay∗(p)

+2

8 ∑

Ti∈T ∗
cost(Ti) + 4

∑
p∈P

delay∗(p)

 · h · logα

≤ 16C∗ · h · logα

Thus we have the following result.

Theorem 2. There is an O(h · logα)-competitive distributed algorithm for the
multicast aggregation problem.

4.1 A Lower Bound

We now provide evidence that it is inherently difficult to obtain significantly
better bounds on the competitive ratio.

A distributed online algorithm is called oblivious if decisions at each node are
based solely upon the static local information available at the node. In particu-
lar, in such algorithms the wait time of a packet is independent of the location
of the node in the tree. We note that all the distributed algorithms considered
in this paper are oblivious. In general, being oblivious is a desirable property of
distributed algorithms, since non-oblivious algorithms require a dynamic updat-
ing mechanism at each node that informs it about changes in the hierarchical
structure. Such a mechanism can be both expensive and complicated to imple-
ment.

Consider a path of length h, as shown in Figure 2, where the vertices on
the path are r = v1, . . . , vh+1 = z, such that r is the root and z is the (only)

Control Message Aggregation in Group Communication Protocols 145

receiver. The cost of each link in the path is h. We assume that β = 1. We will
now describe a packet arrival sequence such that any oblivious online algorithm
pays O(

√
h) times the optimal cost on this sequence.

h hh

r=v
1

z=vh+1v2

Fig. 2. A lower bound for oblivious online algorithms

Denote by alg the online algorithm. The packets arrive one-by-one. At time
0, packet p1 arrives at z; for i ≥ 2, packet pi arrives at z when packet pi−1
leaves node z. Denote by wait(h) the time a single packet waits in z before
being sent out towards r. Since the algorithm is oblivious, and since the local
static information at all the nodes is the same (one out-going link with a cost
of h), the same waiting time applies to all nodes on the way from z to r. Thus,
the total waiting time of each packet paid by the online algorithm is h ·wait(h)
and the communication cost of each packet is h2. Then, the cost of each packet
in the online algorithm is

cost(alg) = h · wait(h) + h2

We now derive an upper bound on the cost of opt, the optimal algorithm. We
partition the packets into blocks of size O(

√
h). The packets in each block will

be broadcast together to the root r. Clearly, the communication cost of each
block in opt is h2, and thus the communication cost per packet is h · √h. Next
we bound the average delay cost of a packet in opt. Since each block has

√
h

packets, a packet waits O(
√
h · wait(h)) at node z, and then one unit at each

node on its way to r. Adding the communication and the delay costs, we get
that the average total cost of a packet in opt is

O(
√
h · wait(h) + h+ h ·

√
h)

Now if h ≤ wait(h), then opt is O(
√
h · wait(h)) while the online algorithm

pays Ω(h · wait(h)), and if h > wait(h), then opt is O(
√
h · h) while the online

algorithm pays Ω(h2), yielding the desired lower bound. We conclude with the
following theorem.

Theorem 3. The competitive ratio of any oblivious distributed online algorithm
for the multicast aggregation problem is at least Ω(

√
h).

Notice that the lower bound that we proved for the centralized online algo-
rithm also applies to our distributed online algorithm, yielding a lower bound of
Ω(

√
h+ logα/ log logα).

146 S. Khanna, J.(S.) Naor, and D. Raz

5 Concluding Remarks

Many important questions remain open. One direction would be to study the
performance of non-oblivious algorithms. It would be very useful to understand
how much can be gained from the knowledge of the hierarchical tree structure.
Another research avenue is to find algorithms that work well for trees with special
properties. For example, many group communication protocols might have a very
flat tree, with a bounded height of, say, two or three levels. Can they use better
aggregation protocols? Another direction which is worth looking into is a model
where events in the input sequence are not independent. For example, consider
the case where the same tree is used for both multicasting and for collecting Acks
(NAKs). In this case, packet loss will trigger an event in all the leaves belonging
to its subtree. This requires a different model for the input sequence. Another
interesting problem is whether there exists a centralized online algorithm with a
constant competitive factor. In this model we are only able to show a constant
factor lower bound on the competitive ratio of any algorithm.

Acknowledgments. We thank Guy Even, Baruch Schieber, Bruce Shepherd,
and Francis Zane for many stimulating discussions. A special thanks to Yair
Bartal for his insightful comments on many aspects of this work.

References

1. B. R. Badrinath and P. Sudame. Gathercast: The design and implementation of a
programmable agregation mechanism for the internet. Submitted for publication,
1999.

2. E. Bortnikov and R. Cohen. Schemes for scheduling of control messages by hierar-
chical protocols. In IEEE INFOCOM’98, March 1998.

3. D. R. Dooly, S.A. Goldman, and S. D. Scott. On-line analysis of the TCP acknowl-
edgement delay problem. Journal of the ACM, 48:243–273, 2001.

4. M.Hofmann. A generic concept for large-scale multicast. In B. Plattner, editor,
International Zurich Seminar on Digital Communication, number 1044, pages 95 –
106. Springer Verlag, February 1996.

5. C. Papadimitriou. Computational aspects of organization theory. In ESA ’96, 1996.
6. C. Papadimitriou and E. Servan-Schreiber. The origins of the deadline: optimizing

communication in organization. Workshop on Complexity in Economic Games,
Aix-en-Provence, 1999. To appear, Handbook on the Economics of Information.

7. Reliable multicast protocols.
http://www.tascnets.com/newtascnets/Projects/Mist/Documents/
RelatedLinks.html.

8. The ATM Forum technical committee. Private network-network interface specifica-
tion version 1. 0 (PNNI). Technical report, March 1996. af-pnni-0055.000.

9. Lixia Zhang, Stephen Deering, Deborah Estrin, Scott Shenker, and Daniel Zappala.
RSVP: a new resource ReSerVation protocol. IEEE Network Magazine, 7(5):8 – 18,
September 1993.

	Introduction
	Our Model and Results
	Related Work

	The Model
	The Centralized Online Algorithm
	A Lower Bound

	The Distributed Online Model
	A Lower Bound

	Concluding Remarks

