
Simultaneous Optimization for Concave Costs: Single Sink

Aggregation or Single Source Buy-at-Bulk∗

Ashish Goel †

Stanford University
Deborah Estrin ‡

University of California, Los Angeles

Abstract

We consider the problem of finding efficient trees to send information from k sources to
a single sink in a network where information can be aggregated at intermediate nodes in the
tree. Specifically, we assume that if information from j sources is traveling over a link, the
total information that needs to be transmitted is f(j). One natural and important (though not
necessarily comprehensive) class of functions is those which are concave, non-decreasing, and
satisfy f(0) = 0. Our goal is to find a tree which is a good approximation simultaneously to
the optimum trees for all such functions. This problem is motivated by aggregation in sensor
networks, as well as by buy-at-bulk network design.

We present a randomized tree construction algorithm that guarantees E[maxf Cf/C∗(f)] ≤
1+log k, where Cf is a random variable denoting the cost of the tree for function f and C∗(f) is
the cost of the optimum tree for function f . To the best of our knowledge, this is the first result
regarding simultaneous optimization for concave costs. We also show how to derandomize this
result to obtain a deterministic algorithm that guarantees maxf Cf/C∗(f) = O(log k). Both
these results are much stronger than merely obtaining a guarantee on maxf E[Cf/C∗(f)]. A
guarantee on maxf E[Cf/C∗(f)] can be obtained using existing techniques, but this does not
capture simultaneous optimization since no one tree is guaranteed to be a good approximation
for all f simultaneously.

While our analysis is quite involved, the algorithm itself is very simple and may well find
practical use. We also hope that our techniques will prove useful for other problems where one
needs simultaneous optimization for concave costs.

1 Introduction

Consider the problem of constructing a tree to send information from several sources to a single
sink in a given graph. One setting in which this problem arises is a wireless sensor network [15, 9]
where several sensor nodes need to send sensed information to a centralized processing agent. In
this setting, information can typically be aggregated, i.e., if information from two different sensors,

∗A Preliminary version of this paper appeared in the proceedings of the fourteenth ACM-SIAM Symposium on
Discrete Algorithms, 2003.

†Department of Management Science and Engineering and (by courtesy) Computer Science, Stanford University,
Terman 311, Stanford CA 94305. Email: ashishg@stanford.edu. Research supported by NSF CAREER Award
0133968. This research was conducted when the author was at the University of Southern California.

‡Department of Computer Science and Laboratory for Embedded Collaborative Systems (LECS), University of
California, Los Angeles. This work was supported by DARPA under grant DABT63-99-1-0011 as part of the SCAADS
project. Email: destrin@cs.ucla.edu.

1

A and B, is routed through a third sensor, C, then C can aggregate the information from the
two sources to achieve reduction in the number of bits that need to be transmitted. Constructing
aggregation trees to minimize the total cost of transmitting information is a challenging problem,
and is receiving significant attention from the sensor networks community [15, 14]; this problem is
particularly important since the sensors have limited battery power, and wireless communication
is very power intensive.

We can model aggregation by stipulating that if information from j sources is routed over a
single link, the total information that needs to be transmitted is f(j). The function f is called the
“aggregation function”. We will assume that f is concave and non-decreasing, and that f(0) = 0.
The requirements f(0) = 0 and f being non-decreasing are natural; the requirement that f is
concave is also natural and corresponds to the information theoretic requirement that the total
information carried by j symmetric sources is a concave function of j. Functions which satisfy these
requirements are called canonical aggregation functions in this paper. While this is an important
class of functions, it is not necessarily comprehensive; some other interesting classes are mentioned
in section 5.

The single source buy-at-bulk problem arises in a completely different setting but is identical,
in abstraction, to the problem described above. In the single source buy-at-bulk problem, we need
to design a network for sending information from a single source to several sinks. If a link supports
k sinks then the cost of the link is proportional to f(k), where f is concave, f(0) = 0, and f is
non-decreasing. In the rest of this paper, we will use the terminology derived from the aggregation
problem.

If the function f is fixed and known in advance then the problem is well understood. Instead,
our goal is to construct a tree that is simultaneously good for all canonical aggregation functions f .
The existence of such a tree is not immediately obvious, and it is surprising that a simple algorithm,
which we present later, achieves a simultaneous logarithmic approximation for all canonical aggre-
gation functions. Simultaneous optimization is important for this problem since the aggregation
function is often not known in advance or is poorly understood; further there are settings where
we need to construct an aggregation tree which would be used to route different types of sensed
information, each with its own aggregation function.

Informally, our main result is a randomized algorithm that constructs an aggregation tree which
provides a logarithmic approximation simultaneously for all canonical aggregation functions. This
result can be derandomized using the method of conditional expectations. To the best of our
knowledge, ours is the first result which addresses simultaneous optimization for concave costs; this
is an exciting area in general and merits further consideration. Our results and related work are
described after we define the problem formally.

Problem Definition:

Formally, we assume that we are given an undirected graph G = (V,E) with n vertices and m
edges. We also assume that we are given a set of of k sources, and a single sink t. All the sources
and the sink must belong to V . Each edge e ∈ E has a non-negative cost c(e). An aggregation
tree is a tree which contains the sink and all the sources, and may contain additional vertices from
V . We will treat the sink as the root of the tree. Let e = (u, v) be an edge in an aggregation tree,
such that u is the parent of v in the tree. Then the demand routed through an edge is the number
of sources in the subtree rooted at v.

We define F to be the class of all real-valued functions f defined on non-negative real numbers

2

such that f is concave, f(0) = 0, and f is non-decreasing. We call such functions “canonical”
aggregation functions. If d(e) is the demand routed through an edge e, then we will assume that
the cost of using this edge is c(e)f(d(e)), where f is a canonical aggregation function. In general,
there is no reason to believe that the optimum set of paths to send information from the sources
to the sink must form a tree; however, it is easy to see that for canonical aggregation functions,
there exists an optimum set of paths that form a tree, and hence, we can focus our attention on
just finding the optimum tree.

As mentioned before, this problem has been well studied when f is known. In this paper we
will study the problem of approximating the optimum aggregation tree for a canonical aggregation
function f without knowing what f is. Given a deterministic algorithm D for constructing such a
tree, let CD(f) denote the cost of the resulting aggregation tree. Also, let C∗(f) denote the cost of
the optimum aggregation tree for function f . We can define the approximation ratio AD of D as
maxf∈F CD(f)/C∗(f). Our goal now is to find an algorithm D that guarantees a small value for
AD. We will refer to this deterministic problem as Det.

Given a randomized algorithm R for constructing an aggregation tree, let CR(f) be the random
variable which denotes the cost of this tree for function f . For randomized algorithms, there are
two natural ways of extending the deterministic problem Det:

Problem R1: Find a randomized algorithm that guarantees a small value for

max
f∈F

E[CR(f)/C∗(f)], or

Problem R2: Find a randomized algorithm that guarantees a small value for

E[max
f∈F
{CR(f)/C∗(f)}].

Problem R2 subsumes R1, is more interesting, and much harder: using Jensen’s inequality and
the convexity of max, it is easy to see that E[maxf CR(f)/C∗(f)] ≥ maxf E[CR(f)/C∗(f)] for any
randomized algorithm R. Problem R2 is an accurate abstraction of simultaneous optimization and
is the main subject of study in this paper. Our algorithm for problem R2 can be derandomized
using the method of conditional expectations to obtain a deterministic guarantee for problem Det.

Related Work:

When f is known in advance, a sequence of interesting papers [3, 7, 2, 11, 17] led to a constant
factor approximation for this problem by Guha, Meyerson, and Munagala [12] (the problem is
known to be NP-Hard and MAX-SNP-Hard since it contains the Steiner tree problem as a special
case). When f is known in advance, but can be different for different links, Meyerson, Munagala,
and Plotkin [17] gave a randomized O(log k) approximation algorithm which was derandomized by
Chekuri, Khanna, and Naor [8].

When f is not known, Awerbuch and Azar [3] demonstrated how the tree embeddings of Bar-
tal [6] can be used to solve problem R11. The tree-embedding step was subsequently improved
by Bartal [7] to O(log n log log n), and more recently, by Fakcheroenphol, Rao, and Talwar [10]
to O(log n), which is asymptotically optimal. As a consequence, the guarantee for problem R1

1They did not actually define problem R1; the result is implicit in their work.

3

also improves to O(log n). However, it is not clear how these techniques can be extended to give
similar results for the more interesting problem R2. In fact, it is conceivable a priori that none of
the trees produced by Bartal’s algorithm (or that of Fakcheroenphol, Rao, and Talwar) would be
simultaneously good for all canonical aggregation functions.

Two interesting special cases are

1. f(x) is constant for x ≥ 1, and

2. f(x) = x.

The first corresponds to finding good Steiner trees (multicast) and the second corresponds to finding
shortest path trees (unicast). Khuller, Raghavachari, and Young [16] outlined an algorithm that
(with minor modifications) results in an O(1) approximation simultaneously for these two special
functions. Awerbuch, Baratz, and Peleg independently obtained a slightly weaker guarantee for
this problem in an unpublished manuscript [5], building on an earlier work for weight-diameter
approximation [4]. Our results for problems R2 and Det can be viewed as a generalization of the
work of Khuller, Raghavachari, and Young, even though our techniques are quite unrelated.

Our Results:

We present a simple algorithm that achieves a guarantee of 1+log k for both problems R1 and R2.
The algorithm is outlined in section 2. The analysis is presented in section 3, which contains the
main technical contributions of this paper. It is worth noting that there are no hidden constants
in this result. The basic intuition is to first construct a solution with flows which are a power of
two, and then show that instead of analyzing the cost of the tree for each canonical function, it is
sufficient to compare the cost of the edges with flow 2i to the optimal cost just for the function
f(x) = min{x, 2i}. Invoking the probabilistic method [1], this immediately gives an existential
guarantee of 1 + log k (but not an algorithm) for problem Det.

We then use the method of conditional expectations combined with the constant factor ap-
proximation of Guha, Meyerson, and Munagala [12] (or a more recent one due to Talwar [20]) to
derandomize our algorithm. This results in a polynomial time algorithm which provides an O(log k)
guarantee for problem Det; the details are in section 4.

Our randomized algorithm is simple enough to be implemented in a realistic system if offline
computation is permissible. In terms of research directions for sensor networks, this is a strong
argument against trying to construct approximate models of the aggregation function f , since we
can come up with a single tree that is approximately good for all such functions.

We believe that the techniques we develop in this paper will find use in other settings where we
need to do simultaneous optimization for concave costs. We describe several future directions and
open problems in section 5.

2 The Hierarchical Matching Algorithm

The hierarchical matching algorithm outlined below is essentially a simplification of the techniques
presented by Meyerson, Munagala, and Plotkin [17] and Guha, Meyerson, and Munagala [12]; it
is surprising that this simple algorithm has the strong properties outlined in the introduction and
proved in section 3.

4

We will assume, without loss of generality, that the graph is complete and satisfies the triangle
inequality; if not we will complete the graph using its shortest path metric. Assume for now that
k is a power of two; this assumption can be easily removed as outlined in appendix A. Initially, set
T ←∅. When the algorithm terminates, T will be the set of edges in the final aggregation tree.

The hierarchical matching algorithm runs in log k phases. In each phase, we perform the
following two steps:

1. The Matching Step: Find a min-cost perfect matching in the subgraph induced by S. Let
(ui, vi) represent the i-th matched pair, where 1 ≤ i ≤ |S|/2.

2. The Random Selection Step: For all matched pairs (ui, vi), choose one out of ui and vi with
probability half, and remove it from S.

In each phase, the size of S gets halved. After log k phases, |S| = 1. The algorithm then outputs
the union of each of the log k matchings, and also outputs the edge connecting the single remaining
element in S to the sink t. The set of output edges is the aggregation tree produced by the
algorithm.

3 Analysis

In section 3.1, we will prove some useful lemmas and give a simple proof that the hierarchical
matching algorithm guarantees E[C(f)/C∗(f)] ≤ 1 + log k. This is a slight improvement over the
O(log n) guarantee that can be obtained using tree embeddings [3, 6, 7, 10] for problem R1, but is
not our main result.

Section 3.2 proves the main result of this paper, i.e., the hierarchical matching algorithm guar-
antees

E
[
max
f∈F

{
C(f)
C∗(f)

}]
≤ 1 + log k.

As pointed out in the introduction, this is a much stronger statement since it allows us to construct
a single aggregation tree that is simultaneously good for all canonical aggregation functions. There
is no previously known method for obtaining such results via probabilistic tree embeddings2.

3.1 Preliminaries

Let Si denote the set of source vertices which still belong to S at the end of the i-th phase; we
will use S0 to denote the original set of sources. Let Xi denote the set of edges in the matching
found in phase i of the algorithm, for 1 ≤ i ≤ log k. Also, let X1+log k denote the edge connecting
the vertex in the singleton set Slog k to the sink t. An edge in Xi carries aggregated data from 2i−1

sources. For any concave function f , define Mi to be the quantity
∑

e∈Xi
c(e). Mi(f) represents

the cost of the matching found in the i-th step. Clearly,
∑1+log k

i=1 Mi · f(2i−1) is the cost of the
tree T for aggregation function f . Further, let C∗

i (f) denote the cost of the optimum aggregation
problem where Si is the set of sources, and each source wants to transmit 2i units of data. Since
the set of vertices to be deleted is chosen at random in each phase, Mi(f) and C∗

i (f) are all random
variables.

2In hindsight, the techniques we develop in this paper can be used to prove that the tree embeddings of Fakcheroen-
phol, Rao, and Talwar [10] give a guarantee of O(log n log k) for problem R2. This is much weaker that the 1 + log k
guarantee that our hierarchical matching algorithm provides, and hence, the details are omitted.

5

Lemma 3.1 The sequence 〈C∗
0 (f), C∗

1 (f), C∗
2 (f), . . ., C∗

log k(f)〉 is a super-martingale, i.e.,

E[C∗
i (f)|C∗

i−1(f)] ≤ C∗
i−1(f).

Proof: For 0 ≤ j ≤ k/2i+1, let (ui,j , vi,j) represent the j-th pair in the matching constructed
in the i-th phase of the hierarchical matching algorithm. Rather than prove the lemma directly
for the sequence C∗

i (f), we will define and analyze a super-sequence Di,j . The super-sequence is
defined for 0 ≤ i ≤ log k. For a given i, the value of j varies from 0 to k/2i+1. The elements of the
super-sequence are arranged in increasing order of i; elements with the same value of i are arranged
in increasing order of j. Further:

1. Di,0 = C∗
i (f).

2. For 0 ≤ j ≤ k/2i+1, Di,j is the cost of the optimum solution for the residual problem after j
random selection steps during the i-th phase.

By definition, for 0 ≤ i < log k, we have Di,k/2i+1 = C∗
i+1(f) = Di+1,0. In order to prove that

the sequence Di,j , and hence its sub-sequence C∗
i (f), is a super-martingale, it suffices to show that

the sequence Di,j is a super-martingale for a fixed value of i. Let Ti,j denote the optimum tree for
the residual problem after j random selection steps during the i-th phase, where 0 ≤ j < k/2i+1.
For an edge e in the tree Ti,j , let d(e) denote the total demand routed through e. After the (j +1)-
th selection step, let d′(e) be the demand routed through this edge for the new residual problem,
assuming that we continue to use tree Ti,j ; note that the optimum tree for the new residual problem
might be quite different. There are now three cases:

1. The edge e lies on the paths from the sink to both ui,j+1 and vi,j+1 in Ti,j

2. The edge e lies on neither of the paths

3. The edge e lies on one of the paths but not on the other

In cases 1 and 2 above, d′(e) = d(e) regardless of which of the two vertices is chosen. In case 3,
d′(e) = d(e) + 2i with probability 1/2 and d′(e) = d(e) − 2i with probability 1/2. Hence, in all
cases, E[d′(e)] = d(e). We now apply Jensen’s inequality [18]:

For any concave function f and any random variable X, E[f(X)] ≤ f(E[X]).

Hence, E[f(d′(e)] ≤ f(d(e)). Summing over all edges in Ti,j , we can conclude that the expected
cost of the tree Ti,j for the residual problem after j + 1 selection steps is no more than the cost of
this tree for the residual problem after j selection steps. Using the fact that Ti,j is the optimal tree
for the residual problem after j selection steps, we obtain E[Di,j+1] ≤ Di,j , which completes the
proof of this lemma.

Lemma 3.2 Mi · f(2i−1) ≤ C∗
i−1(f).

Proof: Let Ti−1 denote the optimum tree for the residual problem after i − 1 phases. Let d(e)
represent the amount of demand routed through edge e in tree Ti−1. Each surviving source has a
demand of 2i−1, and hence d(e) ≥ 2i−1 for any edge e in this tree. Now, C∗

i−1 =
∑

e∈Ti−1
c(e)f(d(e)).

Since f is increasing, C∗
i−1 ≥ f(2i−1)

∑
e∈Ti−1

c(e). An Eulerian tour of the tree Ti−1 contains two
disjoint matchings of all the sources, and hence Mi ≤)

∑
e∈Ti−1

c(e). Multiplying both sides of this
inequality by f(2i−1) gives us the desired result.

6

Theorem 3.3 For any concave function f , E[C(f)/C∗(f)] ≤ 1 + log k.

Proof: For any concave function f ,

E[C(f)] = E

1+log k∑
i=1

Mi · f(2i−1)

=

1+log k∑
i=1

E[Mi · f(2i−1)] [linearity of expectations]

≤
1+log k∑

i=1

E[C∗
i−1(f)] [using lemma 3.2]

≤
1+log k∑

i=1

C∗
0 (f) [using lemma 3.1]

= C∗(f)(1 + log k)

3.2 Hierarchical matching and problem R2

For 0 ≤ i ≤ k, let Ai denote the following function from <+ to <+:

Ai(x) = min{x, 2i}.

We are going to call Ai the i-th “atomic” function. Clearly, Ai is a canonical aggregation function.
Figure 1 illustrates this function pictorially. The basic intuition behind the rest of this section
is that a good approximation of just the atomic functions results in a good approximation of all
canonical aggregation functions.

i

A (x)

2

x

i

Figure 1: The i-th atomic function Ai(x).

Let Γ denote the quantity
∑log k

i=1 Mi · 2i−1/C∗(Ai−1). Note that Γ is a random variable which
depends on the choices made during the hierarchical matching algorithm. The following series of
lemmas are the main technical lemmas of this paper. The first of these illustrates a connection
between atomic functions and arbitrary canonical functions.

Lemma 3.4 C∗(f) ≥ f(2i)C∗(Ai)/2i.

7

Proof: Let p(e) denote the number of sources that use edge e to communicate to the sink in
the optimum aggregation tree. Clearly, C∗(f) =

∑
e c(e)f(p(e)), We define p′(e) = min{p(e), 2i}.

Since f is increasing, C∗(f) ≥
∑

e c(e)f(p′(e)). Since 0 ≤ p′(e) ≤ 2i, we can think of p′(e) as the
convex combination of the numbers 0 and 2i. Specifically, p′(e) = 2i · (p′(e)/2i) + 0 · (1− p′(e)/2i).
Invoking the concavity of f , we obtain f(p′(e) ≥ (p′(e)/2i) · f(2i) + (1 − p′(e)/2i) · f(0). Using
the fact that f(0) = 0, we can conclude that f(p′(e)) ≥ (p′(e)/2i) · f(2i). Consequently, C∗(f) ≥∑

e(f(2i)c(e)p′(e))/2i, which can be simplified to C∗(f) ≥ (f(2i)/2i)
∑

e(c(e)p
′(e)). Observe that

p′(e) is in fact exactly Ai(p(e)). Since C∗(Ai) is the cost of the optimum tree for the function Ai,
we have

∑
e(c(e)p

′(e)) ≥ C∗(Ai), which completes the proof of the lemma.

Lemma 3.5 For any canonical aggregation function f , C(f)/C∗(f) ≤ Γ.

Proof: Recall that C(f) =
∑1+log k

i=1 Mi·f(2i−1). Therefore, C(f)/C∗(f) =
∑1+log k

i=1 Mi·f(2i−1)/C∗(f).
From lemma 3.4, we obtain f(2i−1)/C∗(f) ≤ 2i−1/C∗(Ai−1), which implies C(f)/C∗(f) ≤

∑1+log k
i=1 Mi·

2i−1/C∗(Ai−1) = Γ.
The next lemma places an upper bound on the expected value of the quantity Mi ·2i−1/C∗(Ai−1).

Lemma 3.6 E[Mi · 2i−1/C∗(Ai−1)] ≤ 1.

Proof: Recall that C∗
j (f) is the cost of the optimal solution to the residual problem after j iterations

of the hierarchical matching algorithm. In the residual problem, there are k/2j remaining sources,
and each source has a “demand” of 2j . We are going to consider the quantity C∗

i−1(Ai−1). From
lemma 3.2, Mi ·Ai−1(2i−1) ≤ C∗

i−1(Ai−1). From lemma 3.1, E[C∗
i−1(Ai−1)] ≤ C∗(Ai−1). Combining

both lemmas, we obtain E[Mi] · Ai−1(2i−1) ≤ C∗(Ai−1). Since Ai−1(2i−1) = 2i−1, we obtain the
desired result.
It is now straight-forward to obtain the main result of this paper:

Theorem 3.7 For the hierarchical matching algorithm, E[maxf∈F C(f)/C∗(f)] ≤ 1 + log k.

Proof: An equivalent statement of lemma 3.5 is that maxf∈F Cf/C∗(f) ≤ Γ, and hence,

E[max
f∈F

Cf/C∗(f)] ≤ E[Γ].

By definition of Γ,

E[Γ] =
log k∑
i=1

E[Mi] · 2i−1/C∗(Ai−1).

The theorem now follows by applying lemma 3.6.
Thus the hierarchical matching algorithm gives a guarantee of 1 + log k for problem R2.

4 Derandomization

The basic idea is to use the method of conditional expectations, combined with pessimistic esti-
mators [19, 18]. We will first find trees T0, T1, . . . , Tlog k such that Ti is an α-approximation to the
optimum tree for function Ai. Formally, CTi(Ai) ≤ αC∗(Ai), where CT (f) represents the cost of
tree T for aggregation function f . We can find such trees for α = O(1) using the constant factor
approximation algorithm of Guha, Meyerson, and Munagala [12] for the single commodity buy-
at-bulk problem with a fixed concave function, or a more recent approximation algorithm due to

8

Talwar [20]). Since the functions Ai have a linear-increase region followed by a constant region, we
can also use an approximation algorithm by Gupta et al. [13] for the multicommodity rent-or-buy
problem to obtain smaller constants (α = 12).

Suppose we could systematically derandomize the hierarchical matching algorithm to guarantee
that

1+log k∑
i=1

Mi2i−1/CTi−1(Ai−1) ≤ 1 + log k. (1)

Since CTi(Ai) ≤ αC∗(Ai), and α = O(1), condition 1 would guarantee that Γ = O(log k), proving
the result we need. Hence we will now focus on ensuring that condition 1 is satisfied. Informally,
the idea is to use the trees T0, T1, . . . , Tlog k as reference points for a pessimistic estimator.

Consider the j-th selection step of the i-th phase, where i goes from 1 to 1 + log k. Matchings
M1,M2, . . . ,Mi−1 have already been decided. Let Si,j denote the set of remaining sources, and let
di,j(x) denote the demand at a node x ∈ Si,j . Note that di,j(x) must be either 2i or 2i−1. Let ci,j(q)
denote the cost of tree Tq for satisfying demands di,j , assuming that the aggregation function is
Aq. We define an estimator Ei,j as follows:

Ei,j =
i−1∑
q=1

Mq2q−1/CTq−1(Aq−1) +
1+log k∑

q=i

ci,j(q − 1)/CTq−1(Aq−1).

Clearly, E1,0 =
∑1+log k

q=1 c1,0(q − 1)/CTq−1(Aq−1) =
∑1+log k

q=1 CTq−1(Aq−1)/CTq−1(Aq−1) = 1 +
log k. Also, the final value of the estimator is E1+log k,0 =

∑1+log k
i=1 Mi2i−1/CTi−1(Ai−1). If we could

present an algorithm that would ensure that the estimator never increases, we would have ensured
condition 1.

During the matching step, the same argument as in lemma 3.2 ensures that the estimator can
not increase. During a random selection step, the same argument as lemma 3.1 guarantees that the
expected new value of the estimator after the random selection is no larger than the value before the
selection. But there are just two choices during a random selection; we can try them both and pick
one which does not result in an increase in the value of the estimator. This is now a deterministic
selection step, and hence we have an O(log k) guarantee for problem Det.

Admittedly, the derandomization is only of technical interest. It lacks the clean simplicity of
the randomized algorithm and results in a much worse performance guarantee in terms of constant
factors. For practical applications we would recommend using the randomized algorithm, specially
since problem R2 already captures simultaneous optimization quite well.

5 Open Problems

We studied simultaneous optimization for concave costs in the context of constructing good aggre-
gation trees. It is our hope that the techniques and the framework developed in this paper will find
more widespread use. One obvious open problem is to find matching upper and lower bounds on
the best guarantee for problem R2. Our conjecture is that the best guarantee possible would be
super-constant. Some other directions are:

1. To study the problem when there can be multiple sources and multiple sinks, i.e., the mul-
ticommodity version of the problem studied here. Probabilistic tree embeddings [6, 7, 10]
can be used to obtain a somewhat unsatisfying O(log n log k) guarantee for problem R2 in

9

this setting; the details are similar to the proofs in this paper and are omitted. Obtaining a
logarithmic approximation for this problem remains an interesting open problem.

2. To study the problem where the amount of aggregation depends not just on the number of
sources, but also on the identity of the sources. Before solving this problem, we need to
develop computationally useful models of what constitutes a reasonable aggregation function
in this setting. Again, this is an interesting problem even when f is fixed.

3. To study the problem where information can be consumed along the tree if an intermediate
node realizes that the information is not useful. For example, a sensor in an orchard might
sense a pest infestation, and send detailed information about this infestation up the aggre-
gation tree. Another sensor might sense a slight increase in pesticides in the atmosphere,
and send information about air quality up the tree. An intermediate node might be able to
surmise that the slight increase in pesticide level is expected and desirable given the pest
problem, and refrain from sending the two pieces of information up the tree. In this scenario,
the aggregation function is not non-decreasing: f(1) = 1 but f(2) = 0. Again, adequate un-
derstanding and models of the problem are required before it can be tackled, and the problem
is interesting even when f is fixed.

4. Suppose each source could output different amounts of information. For simplicity, assume
that the output of each source is some integer, that the smallest output is 1 and the largest
output is ∆. Our results can be used in a black-box fashion to give a 1 + log k + log ∆
guarantee for this new problem R2. It would be interesting to devise an algorithm that does
not incur the additional log ∆ penalty.

References

[1] N. Alon and J. Spencer. The Probabilistic Method (2nd Ed.). Wiley, 2000.

[2] M. Andrews and L. Zhang. The access network design problem. Proceedings of 39th IEEE
Symposium on Foundations of Computer Science, 1998.

[3] B. Awerbuch and Y. Azar. Buy-at-bulk network design. Proceedings of the 38th IEEE Sym-
posium on Foundations of Computer Science, pages 542–47, 1997.

[4] B. Awerbuch, A. Baratz, and D. Peleg. Cost-sensitive analysis of communication protocols.
Proceedings of the Ninth Annual ACM Symposium on Principles of Distributed Computing,
pages 177–87, 1990.

[5] B. Awerbuch, A. Baratz, and D. Peleg. Efficient broadcast and light-weight spanners.
Manuscript, 1991.

[6] Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applications. 37th
IEEE symposium on Foundations of Computer Science, pages 184–193, 1996.

[7] Y. Bartal. On approximating arbitrary metrics by tree metrics. 30th ACM Symposium on
Theory of Computing, 1998.

10

[8] C. Chekuri, S. Khanna, and S. Naor. A deterministic algorithm for the cost-distance problem.
Proc. 12th Annual Symposium on Discrete Algorithms, 2001.

[9] D. Estrin, R. Govindan, and J. Heidemann (Editors). Embedding the internet. CACM special
issue on embedding the Internet, 43(5), May 2000.

[10] J. Fakcheroenphol, S. Rao, and K. talwar. A tight bound on approximating arbitrary metrics
by tree metrics. Proceedings of ACM Sympoisum on Theory of Computing, 2003.

[11] S. Guha, A. Meyerson, and K. Munagala. Hierarchical placement and network design problems.
Proceedings of 41st IEEE Symposium on Foundations of Computer Science, 2000.

[12] S. Guha, A. Meyerson, and K. Munagala. A constant factor approximation for the single sink
edge installation problem. Proceedings of 33rd ACM Symposium on Theory of Computing,
2001.

[13] A. Gupta, A. Kumar, M. Pal, and T. Roughgarden. Approximation via cost-sharing: A simple
approximation algorithm for the multicommodity rent-or-buy problem. Proceedings of 44th
IEEE Symposium on Foundations of Computer Science, pages 606–615, 2003.

[14] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann. Impact of network density on
data aggregation in wireless sensor networks. To appear in Proceedings of the 22nd Interna-
tional Conference on Distributed Computing Systems (ICDCS’02), 2002.

[15] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scalable and robust
communication paradigm for sensor networks. ACM MobiCom, 2000.

[16] S. Khuller, B. Raghavachari, and N. Young. Balancing minimum spanning and shortest path
trees. Algorithmica, 14(4):305–321, 1994.

[17] A. Meyerson, K. Munagala, and S. Plotkin. Cost-distance: Two metric network design. Proc
of 41st IEEE Symposium on Foundations of Computer Science, 2000.

[18] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

[19] P. Raghavan. Probabilistic construction of deterministic algorithms: Approximating packing
integer problems. Journal of Comp. Sys. Sci., 37:130–43, 1988.

[20] K. Talwar. Single sink buy-at-bulk lp has constant integrality gap. Integer Programming and
Combinatorial Optimization, 2002.

A Hierarchical matching when k is not a power of 2

If k is not a power of 2, add 2dlog ke − k copies of the sink t to the set of sources S; these are called
“fake” sources as distinct from the “original” sources. S now becomes a multiset. Clearly, the
optimum solution for any canonical function f is the same for the new problem and the original
problem, and a 1 + dlog ke guarantee is trivial to obtain. We can in fact do a little better. During
any random selection step,

11

1. If both nodes (u, v) in the matched pair are original sources, then follow the random selection
process outlined in section 2.

2. If both nodes (u, v) are fake sources, then pick one arbitrarily. The cost of matching two fake
sources is zero, so it does not matter which one gets chosen.

3. If one of the nodes is a fake source, and the other is an original source, then discard the
original source and choose the fake source as the leader. It is easy to see that this does not
violate the Martingale property of lemma 3.1.

After dlog ke steps, there is a single fake source remaining. This is in fact a copy of the sink t. The
extra step in the hierarchical matching algorithm to connect this to the sink is unnecessary, and
we obtain a guarantee of dlog ke for problem R2. Since dlog ke < 1 + log k, the 1 + log k guarantee
continues to hold.

12

	Introduction
	The Hierarchical Matching Algorithm
	Analysis
	Preliminaries
	Hierarchical matching and problem R2

	Derandomization
	Open Problems
	Hierarchical matching when k is not a power of 2

