
Universal Approximations for TSP, Steiner Tree, and Set
Cover �

Lujun Jia Guolong Lin Guevara Noubir Rajmohan Rajaraman Ravi Sundaram

ABSTRACT
We introduce a notion of universalityin the context of optimization
problems with partial information. Universality is a framework for
dealing with uncertainty by guaranteeing a certain quality of good-
ness for all possible completions of the partial information set. Uni-
versal variants of optimization problems can be defined that are
both natural and well-motivated. We consider universal versions of
three classical problems: TSP, Steiner Tree and Set Cover.

We present a polynomial-time algorithm to find a universal tour
on a given metric space over � vertices such that for any sub-
set of the vertices, the sub-tour induced by the subset is within
������ �� ��� ��� �� of an optimal tour for the subset. Similarly,
we show that given a metric space over � vertices and a root ver-
tex, we can find a universal spanning tree such that for any subset
of vertices containing the root, the sub-tree induced by the subset is
within ������ �� ��� ��� �� of an optimal Steiner tree for the sub-
set. Our algorithms rely on a new notion of sparse partitions, that
may be of independent interest. For the special case of doubling
metrics, which includes both constant-dimensional Euclidean and
growth-restricted metrics, our algorithms achieve an ����� �� up-
per bound. We complement our results for the universal Steiner
tree problem with a lower bound of ����� �� ��� ��� �� that holds
even for � vertices on the plane. We also show that a slight gen-
eralization of the universal Steiner Tree problem is coNP-hard and
present nearly tight upper and lower bounds for a universal version
of Set Cover.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms

General Terms
Algorithms, Theory

�College of Computer and Information Science,
Northeastern University, Boston MA 02115. Email:
�lujunjia,lingl,noubir,rraj,koods�@ccs.neu.edu.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’05,May 22-24, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-58113-960-8/05/0005 ...$5.00.

Keywords
Approximation Algorithms, TSP, Steiner Tree, Set Cover, Sparse
Partition, Universal Approximation

1. INTRODUCTION
Consider a courier who delivers packages to different houses and

businesses in a city every day. One challenge faced by the courier
is to determine a suitable route every day, given the packages to be
delivered that day. A natural question that the courier may ask is
the following: is there a universal tour of all locations, such that
for any subset, when the locations in that subset are visited in the
order of their appearance in the universal route, then the resulting
tour is close to optimal for that subset? Such a tour can be viewed
as a universalTSP tour.

Moving to a much larger scale, consider Walmart, which has
thousands of stores spread throughout the world. Headquarters in
Bentonville, Arkansas, may often have a need to teleconference
with various subsets of these stores. They may not wish to set up a
new multicast network for each possible subset; instead they may
wish to come up with one universaltree such that for any subset
they simply restrict this tree to that subset to create the desired mul-
ticast network. And, they may wish to ensure that for every subset
it is the case that the network so generated is not much more expen-
sive than the optimal network (for the subset under consideration).

A universal solution to the Steiner tree problem described above
is also useful for sensor networks where nodes have limited mem-
ory. Low cost trees are required for data aggregation and informa-
tion dissemination for subsets of the sensor nodes. It is, however,
not realistic to expect sensors to compute and memorize optimal
trees for each subset. Universal trees provide a practical solution; a
sensor node only needs to know its parent in the universal tree while
being oblivious to the other nodes involved in the data movement.

A unifying theme among the above three scenarios is that each
seeks the design of a single structure that simultaneously approx-
imatesan optimal solution for every possible input. We refer to
such problems as universal problems and their solutions as univer-
sal approximations. Universal problems and approximations have
applications in scenarios where the input is uncertain; such un-
certainty may arise, for instance, due to limited knowledge about
the future or limited access to global information that may be dis-
tributed among multiple sources.

1.1 Our results
In this paper, we introduce a notion of universalityin the context

of optimization problems with uncertain inputs, and study universal
versions of classical optimization problems.

� We develop a general framework for universal versions of op-

386

timization problems. Our framework, which is described in
Section 2, allows the definition of a universal version of any
optimization problem, given two additional notions: a subin-
stance relation that is a partial ordering among instances, and
a restriction function that takes a solution for a given instance
and a subinstance, and returns a solution for the subinstance.

We formulate and study the Universal Traveling Salesman (UTSP),
Universal Steiner Tree (UST), and Universal Set Cover (USC)
problems. Our main technical results concern the UTSP and UST
problems.

� For UTSP problem, we obtain a universal tour � for a given
metric space over � vertices such that for any subset � of the
vertices, the sub-tour of � induced by � is within
������ �� ��� ��� �� of an optimal tour for �. For the spe-
cial case of doubling metrics, which includes both constant-
dimensional Euclidean and growth-restricted metrics, our al-
gorithm yields an ����� �� bound. These results appear in
Section 4.

� We adapt our UTSP algorithm to the UST problem, and
show that given a metric space over � vertices and a root ver-
tex, one can find a spanning tree � in polynomial-time such
that for every subset � of vertices containing the root, the
sub-tree of � induced by � is within ������ �� ��� ��� ��
of an optimal Steiner tree for �. As for UTSP, our algo-
rithm achieves an ����� �� upper bound for doubling met-
rics. We complement these results with a lower bound of
����� �� ��� ��� �� for UST that holds even when all the
vertices are on the plane. These results appear in Section 5.
Our algorithms for UTSP and UST both rely on a new no-
tion of sparse partitions, defined in Section 3, that may be of
independent interest.

� For USC, we show that given a weighted set cover instance
with � elements, we can compute an assignment from ele-
ments to sets such that, for any subset of the elements, the
weight of the sets to which the elements in the subset are
assigned is within ��

�
� ��� �� of the weight of an optimal

cover for the subset. We improve the bound to ��
�
�� for

unweighted USC and present a matching lower bound for
this case. These results are described in Section 6.

Universal problems are naturally captured by ��� , the second level
of the polynomial-hierarchy, since they have the following form:
there exists (�) solution for a given instance such that for all (�)
subinstances the solution (suitably modified) is (close to) optimal.
We believe that UST and UTSP are, in fact, ��

� -hard and present
preliminary evidence towards this conjecture.

� We establish the coNP-hardness of a slight generalization of
UST in which the universal tree is required to connect a
given subset of the vertices. We also establish that given a
spanning tree, finding a subset for which the tree has worst-
case performance is NP-hard. We discuss the complexity of
UST, UTSP, and USC problems in Section 7.

We hope this preliminary work will stimulate the reexamination
of classical problems in a universal context. It would be especially
interesting to identify problems for which there exist universal al-
gorithms that are almost as good (within a constant factor) as the
best algorithms in the standard approximation framework.

1.2 Related work
The existing literature contains numerous approaches for deal-

ing with the problems posed by an uncertain world. These include
competitive analysis, stochastic optimization, probabilistic approx-
imations, distributional assumptions on inputs and many others.
Here we survey a fraction of this vast body of work.

The word “universal” itself has been used many times before, no-
tably in the context of hash functions [9], and routing [27]. Here,
universal has meant the use of randomization to convert a bad de-
terministic performance guarantee to a good expected solution; fur-
ther the randomized solution is oblivious to (some aspects of) the
input.

The study of online algorithms considers problems in which the
input is given one piece at a time, and upon receiving an input,
the algorithm must take an action without the knowledge of future
inputs [8, 12, 26]. In contrast, a universal algorithm computes a
single solution, whose performance is measured against all pos-
sible inputs. Several researchers have considered settings where
a certain distribution over the space of input is assumed [18, 16,
17, 21]. Stochastic optimization, studied in [16, 10], is a variant
where the input is allowed to be modified rather than just com-
pleted. In these situations the goal is to optimize the expectation
over the input distribution. Recently, incremental variants of fa-
cility location problems have been introduced and studied in [19,
20, 24]. These are similar in spirit to the universal problems we
consider in that they are oblivious to the number of facilities. In
fact, these problems fit within the framework of Section 2. Simi-
larly, the recent results on oblivious routing [4, 25], when viewed
in terms of flows rather than routes, are analogous to the universal
results in this paper; the oblivious routing solution is universal over
all demand matrices much as the solutions in this paper are univer-
sal over all subinstances of a given problem. We note that oblivious
flows are exactly computable in polynomial time [4], whereas our
problems are intractable and appear to be much harder.

Of particular relevance to our results on UST is the substantial
body of work on tree-embeddings of metric spaces [5, 6, 11]. It
follows from these results that one can construct a spanning tree
over any metric of � vertices such that for any subset of the ver-
tices, the expected costof the subtree induced by the subset is
within ����� �� of the optimal. From a technical standpoint, our
UST results are incomparable; while we obtain a single tree, rather
than a distribution over trees, that achieves a deterministicpoly-
logarithmic performance guarantee, our guarantee applies only for
subsets containing a distinguished root. It is worth noting here
that a version of UST without a fixed root does not admit an ����
performance guarantee. Also related to our work is [14], which
constructs a single aggregation tree for a fixed set of sinks that si-
multaneously approximates the optimal for all concave aggregation
functions.

For the special case of UTSP on the plane, our ����� �� bound
also follows from an early work of Platzman and Bartholdi [23].
(See also the related work of [7].) Their result is, in fact, stronger
than ours for this special case; they show that any space-filling
curve within a certain class yields a solution with an ����� ��
performance guarantee. Our overall results for UTSP are more
general, however, since our ����� �� bound applies to doubling
metrics, and we also obtain a polylogarithmic bound for arbitrary
metrics.

As mentioned in Section 1.1, our UST and UTSP algorithms
rely on a new notion of sparse partitions. Our definition is closely
related to the sparse partitions and covers of Awerbuch and Pe-
leg [22, 3]. Indeed, the sparse covers of [3] form an integral part of
our partitioning scheme.

387

2. A FRAMEWORK FOR UNIVERSAL
APPROXIMATION

In this section, we introduce a framework for universal approx-
imation of optimization problems. Let � denote any optimization
problem. Let Insts��� denote the set of instances of �, and for any
instance � � Insts���, let Sols��� denote the set of feasible solu-
tions for � . For a feasible solution � of an instance, let Cost���
denote the cost of the solution.

We develop a universal version of � in terms of two additional
notions: a subinstancerelation � and a restrictionfunction 	. The
relation � is a partial order on Insts���; we say that �� is a subin-
stance of � whenever �� � � . A restriction 	 takes an instance �
of � (� � Insts���), a subsinstance �� of � (� � � �), and a feasi-
ble solution � of � (� � Sols���), and returns a feasible solution
	��
 � �
 �� of � � (��
 � �
 �� � Sols�� ��). A universal version of
� is given by the triple �, �, and 	.

We now define universal approximation. Fix a minimization
problem � and an associated subinstance relation � and a restric-
tion 	. Let � be an instance of � and � be any feasible solution of
� . We define the stretchof � for instance � as

	
�
����

Cost�	��
 � �
 ���
OptCost�� ��

where OptCost���� is the cost of an optimal solution for ��. Let
	 denote an algorithm for �; it takes as input an instance � and
outputs a solution � � Sols���. We say that 	 has a universal ap-
proximation of � for
�
�
 	�, where � is a function from positive
integers to reals, if for every instance � of � of size � sufficiently
large, the stretch is at most ����. The definition of universal ap-
proximation can be extended to maximization problems by appro-
priately redefining the stretch.

3. SPARSE PARTITIONS
We introduce a new notion of sparse partition, which is used in

our algorithms for UST and UTSP.

DEFINITION 1 (��

 ��-PARTITION). A ��

 ��-partition of
a metric space��
 �� is a partition���� of � such that (i) the di-
ameter of every set�� in the partition is at most� � and (ii) for
every node� � � , the ball����� intersects at most� sets in the
partition, where����� � �� � � ���
 �� � ��.

A �
 ��-partition scheme is a procedure that computes a ��

 ��-
partition for any � � .

3.1 General metric spaces
We present a polynomial-time ������ ��
 ����� ���-partition

scheme for general metric spaces. This is obtained using the sparse
cover construction of Awerbuch-Peleg [3]. A cover of some � �
� is defined to be a collection of subsets of � , such that for any
� � � , there is a subset containing it in the collection. Given a
metric space ��
 ��, and a real �, and a cover ������� � � �,
Awerbuch and Peleg give a polynomial-time algorithm to compute
a (coarsening) cover � such that (see Theorem 3.1 of [3]): (1) for
each � � � , ����� is contained in at least one set in �; (2) every
vertex � is contained in at most ����� �� sets in �; (3) each set in
� has radius at most ������ ��.

We compute a partition � from � as follows. For each � we
select an arbitrary set ���� in � that contains �����. We set � �
��� � ���� � �� � � � �� � ���.

LEMMA 1. The collection� is a��
 ����� ��
 ����� ���-partition.

PROOF. Since each � is assigned to a unique ����, � is a parti-
tion. Also, since every set in � is a subset of a set in �, and every
set in � has radius at most ������ �� by property 3, every set in
� has diameter ������ ��. It remains to show that for every node
�, ����� intersects � ����� �� sets in � . Consider two distinct
sets � and � in � that intersect �����; let � and � be nodes in
� � ����� and � � �����, respectively. It follows that node �
belongs to both ����� and �����, which are contained in ����
and ����, respectively. Since � and � are distinct, so are ����
and ����. Thus the number of sets in � that intersect ����� is at
most the number of sets in � that contain �, which is bounded by
����� �� by property 2 above.

3.2 Special metric spaces
We present an improved partition scheme for doubling metric

spaces, which include constant dimensional Euclidean spaces and
growth-restricted metric spaces. A metric space ��
 �� is called
doubling if every ball in � can be covered by at most � balls of
half the radius [15]. The minimum value of such � is called the
doubling constantof the space.

LEMMA 2. For a doubling metric space��
 �� with doubling
constant�, a ��
 �
 ���-partition can be computed efficiently for
any� � .

PROOF. Given the metric space ��
 �� and �, we compute the
partition as follows. Start from � � �, pick some arbitrary �� �
� � � � , let �� � �� � � � � ����
 �� � ����. � � � � � �
��
 � � � � �. Repeat until � � is empty. Let � be the collection
of the centers, ��, of the partition subsets. Obviously, ��
 � �
�
 ���
 �� � ���. We verify the two conditions. The diameter
of each partition subset is at most � by construction; As for the
intersection condition, consider any ball �����
 � � � , and assume
that it intersects � partition subsets ��. Now, ������ completely
contains these subsets, and it can be covered by at most �� balls
of radius ��� due to the doubling property. But covering �, the
� centers of these subsets, requires at least � balls of radius ���.
Hence � � ��.

While the existence of �����
 �����-partition schemes for con-
stant dimensional Euclidean and growth-restricted metric space fol-
lows from the lemma above, we obtain slightly better parameters by
a more direct argument.

LEMMA 3. If the points are in�-dimensional Euclidean space,
a ��

�
��� � ��
 ���-partition can be computed efficiently for any

� � .

PROOF. Divide the space into �-cubes with edge size �� � ���,
where � is any positive real. Each �-cube is a potential set of the
partition we want, each node � is assigned to some �-cube that
contains it. It is easy to see that the resulting nonempty �-cubes
form a ��

�
��� � ��
 ���-partition.

It is known that growth-restricted metrics form a subclass of dou-
bling metric space [15].

For the sake of completeness, we provide a proof below.

LEMMA 4. A growth-restricted metric space��
 ��with expan-
sion rate is a doubing metric space with doubling constant� �
 �.

PROOF. Consider any � � and let �� be any ball of radius �,
� be the concentric ball with radius �

�
�. We want to cover �� by

balls of radius ��� and bound the number of such balls used. Let
� � �� be a set of maximally separated points, such that ��
 � �

388

�
 ���
 �� � ���. The balls centered at points of � with radius
��� cover ��. Once we show that � � �, the lemma is proved.
Note for each �� � �, ������� covers �, hence ������� � �.
By the growth restriction property, �������� � �������� � �
�� � . Observe that �������� � � and �������� is disjoint from
�������� if � �� !. Therefore,

� �
����
���

�������� � � � �� �

We conclude that � � �, and this completes the proof.

Lemmas 2 and 4 imply that for a growth-restricted metric space
��
 �� with expansion rate , a ��
 �
 ���-partition can be com-
puted efficiently for any � � . We show slightly better parameters
in the following lemma.

LEMMA 5. For a growth-restricted metric space��
 ��with ex-
pansion rate , a ��
 �
 ��-partition can be computed efficiently for
any� � .

PROOF. Given the metric space ��
 �� and �, we compute the
partition as follows. Start from � � �, pick some arbitrary �� �
� � � � , let �� � �� � � � � ����
 �� � ���. � � � � � � ��
 � �
�� �. Repeat until � � is empty. Let � be the collection of the cen-
ters, ��, of the partition subsets. Obviously, ��
 � � �
 ���
 �� �
��. We verify the two conditions. The diameter of each parti-
tion subset is at most �� by construction; As for the intersection
condition, consider any ball �	���
 � � � , and assume that it in-
tersects � partition subsets. Wlog, let the subsets be �� centered
at ��, � � �
 " " "
�. Let � � �
�����	����. For each ��, we
have � � ��	����. Hence, by the growth-restriction property,
�	���� � ��	����� � � �� � . But �	���� � � and �	����
is disjoint from �	���� for � �� !. Therefore,

� �

�
���

�	���� � � � �� �

from which we conclude that � � �. This proves the intersection
condition and hence the lemma.

4. UNIVERSAL TSP
We present a polynomial-time algorithm for UTSP that achieves

polylogarithmic stretch for arbitrary metrics and logarithmic stretch
for doubling metrics.

DEFINITION 2 (UTSP). An instance ofUTSP is a metric space
��
 ��. For any cycle (tour)� containing all the vertices in� and
a subset� of � , let �� denote the unique cycle over� in which
the ordering of vertices in� is consistent with their ordering in� .
The stretch of� is defined as	
���� ������OptTr��, where
OptTr� denotes the minimum cost tour on set�. The universal
traveling salesman problem is to find a tour on� with minimum
stretch.

In the framework of Section 2, we have: (i) for any instance � �
��
 ��, Sols��� is the set of Hamiltonian cycles over � ; (ii) a subin-
stance of ��
 �� is �� �
 ���, where � � � � and �� is the restric-
tion of � to � �; and (iii) for any instance � � ��
 ��, subinstance
� � � �� �
 ���, and solution � for � , 	��
 ��
 �� is �� � .

Our polynomial-time algorithm, UTSP-ALG defined below, ob-
tains a spanning tree by applying a subroutine CONSTRUCTTREE

to the underlying set of vertices and then returns a tour obtained by
traversing the vertices inorder, according to the tree. The construc-
tion of the spanning tree relies on a hierarchical decomposition of

the vertices by iteratively applying the partitioning scheme intro-
duced in section 3. Also, the output from CONSTRUCTTREE���
can be viewed as a decomposition tree of � , where the vertices
of � are the leaves located at the bottom level, and all the inter-
nal vertices (leaders) are copiesof some vertices of � . Physical
trees � 	�
 can be trivially obtained from the tree returned from
CONSTRUCTTREE��� by collapsing copies of each vertex. This
view of a leveled decomposition tree is helpful for the analysis of
UTSP and the presentation of our UST algorithm.

Algorithm 1 UTSP-ALG
Input: Metric space ��� ��.

1. � � CONSTRUCTTREE�� �.
2. Output: Recall that � is a leveled decomposition tree where the vertices

of � are located at the bottom level, and all the other vertices are (vir-
tual) copies of some vertices of � . Return a tour � on � obtained by
traversing � in a depth-first manner, starting from the root of the tree.

CONSTRUCTTREE���

1. Initialization. Set � to diameter of � , �� � � , 	 � �, and � � �.
2. Levels of hierarchy. While ��� �
 � do

a. Using a ��� ��-partitioning scheme, compute a �� � �� ��-partition �
of �� , with � � ������ ���, where � � 	�.

b. For every set � in � , select an arbitrary vertex in � as leader���;
add to � an edge between each vertex � in �� and the leader of the
set in � that contains �. If � � leader���, the edge between them is
virtual and of cost zero.

c. Set ���� � �leader���
 � � ��, and 	 � 	 � �.

3. Return � .

The following theorem is the main result of this section.

THEOREM 1. Given a metric space��
 ��with� vertices and a
�
 ��-partitioning scheme,UTSP-ALG returns a tour with stretch
���� ���� �� in polynomial time.

It is clear that the above algorithm is polynomial-time. We assume,
without loss of generality, that the minimum distance between any
pair of vertices is 1.

We first analyze the procedure CONSTRUCTTREE, called on an
input set � of vertices. For any vertex � in � and !, we define
#��
 !� as the unique vertex in �� that is an ancestor of � in � .
Note that #��
 � is �. We place an upper bound on ���
 #��
 !��
as follows. Since the cost of an edge between a vertex in �� and
its parent vertex in ���� is at most �� (by property (i) of the
partition), we obtain (wlog, assume � � �)

���
 #��
 !�� �
����
���

��#��
 ��
 #��
 � � ��� �
����
���

�� � �

�
����

(1)
Let � denote the tree returned by CONSTRUCTTREE���. Let � be
any subset of � . Our analysis of the stretch achieved by UTSP-ALG
relies on an upper bound on the cost of �� , which is obtained by
bounding the cost of the edges at each level of �� separately as
follows. For any ! � �, let $�� be a maximal subset of vertices of
� that are pairwise separated by distance at least ����.

LEMMA 6. For ! � �, the cost of edges in�� at level! is at
most$�������.

PROOF. Consider the set � � �#��
 ! � �� � � � $�����
and � � �#��
 ! � �� � � � ��. Note that � is a subset of
� , which is a subset of ����. Since $���� is a maximal subset
with pairwise separation at least ����, each vertex in � is within
���� of some vertex in $����. By Equation 1, each vertex �

389

in � (resp., $����) is within �"����� of #��
 ! � ��, which lies
in � (resp., �). Therefore, each vertex in � is within ����� of
a vertex in � (for �, sufficiently large). Thus the balls of radius
���� � ����� around the vertices in � cover � . Consider the
partitioning of ����. The balls of radius ���� around vertices in
� , taken together, intersect all the sets in the partition that contain
the vertices in � . By property (ii) of the partitioning scheme, the
number of such sets is at most �� . The total cost of edges at level
! is at most ���� � $������� .

The following technical lemma is useful in our analysis.

LEMMA 7. If �� � �
 � � �
 " " "
 �, � �, then

��
���

�� � � �
�
����	
�

�
��� � �

�
�	
�

�
��� � ��

PROOF. Let % � 	
�� ��, & � 	
����� � ��, and �� �
���� �

�
�. Since � � �� � � � & , we have � � ���& . Now

��
���

�� � � �

�����
���

�� � � �
��

����

�� � �

� �% � ���� � �� � �� � ��&

� �& � ���� & � ���
&

%
� ��&

� ���� % � ��&

Proof of Theorem 1: Let � � � , � be the tree constructed by
CONSTRUCTTREE�� �, and �� be the induced subtree of � by �.
It is easy to see that �� can be obtained directly from �� by an
inorder walk from root of �� . Hence the cost of �� is at most
twice that of ����. In fact we can say something more general.
Let �� denote the set of vertices at level ! of �� and let �� � �� .
For any � � �, if the pairwise distance between any two vertices in
�� is at most �, then

���� � �� � � � �

����
���

���� (2)

For ! � or �, ���� is �����, which is ����OptTr���.
Recall that for any ! � �, $�� is a maximal subset of vertices of
� that are pairwise separated by distance at least ����. Let !�

denote the smallest value of ! at which $���� � �; if no such !
exists, then let !� be the value of ! at the root of �� . By Lemma 6,
we obtain that for ! ' !�, ���� is at most $������� . On
the other hand, the cost of an optimal tour over � has cost at least
$��������. Thus, for ! ' !�, ���� is ���OptTr�����.
Plugging this bound into Equation 2 with � � !� and invoking
Lemma 7, we obtain

���� � ���� ������	 � � �� � �OptTr���

where � is the maximum pairwise distance between vertices in
��� .

By the definition of !�, either $����� � � or ��� � �. In
the former case, � is at most ��"� � � � �"������ � �����,
and ���� � �������

��� � ����������. In the latter case,
��� � � and � � . Thus, we have ���� is �����OptTr���.
Therefore, ���� is �����	 � � �� ��OptTr���, completing the
proof of the theorem.

Applying the parameters from Lemmas 1, 2, 3 and 5 to The-
orem 1, we derive the stated bounds on the stretch achieved by
UTSP-ALG in general and special metric spaces.

COROLLARY 1. For any metric space over� vertices, the algo-
rithm UTSP-ALG returns a tour with stretch������ �� ��� ��� ��.

COROLLARY 2. For any doubling, Euclidean, or growth-restricted
metric space over� vertices,UTSP-ALG returns a tree with stretch
����� ��.

We remark here that if the underlying vertices (�) are in Eu-
clidean space, we can give a succinct description of our universal
ordering, which is, in fact, independent of � . This property is a
key aspect of the work of [23] on the use of space-filling curves for
TSP on the plane. We omit the details from this extended abstract.

5. UNIVERSAL STEINER TREES
We present a polynomial-time algorithm for UST that achieves

polylogarithmic stretch for arbitrary metrics and logarithmic stretch
for doubling metrics (Section 5.1), and also derive a nearly logarith-
mic lower bound for the optimal stretch achievable in the Euclidean
plane (Section 5.2).

We begin by introducing some notation and definitions. Given a
metric space ��
 ��, where � is the underlying set of vertices and �
is the metric distance function over � , let� � 	
������ ����
 ���
denote the diameter of � and (� ��������. We assume, without
loss of generality, that the minimum distance between any pair of
vertices is 1. For any graph) � ��
*� over the vertices in the
metric space ��
 ��, we define the cost of), �)�, to be the sum of
the distances of the edges of) according to the metric �; that is,
�)� � �	���
�� ���
 ��. For any tree � spanning � and subset
� of � , let �� denote the minimal subtree of � that connects �.
For notational convenience, we use � � � to denote � � ���, for
any set �. We denote by OptSt� a minimum Steiner tree spanning
�.

DEFINITION 3 (UST). An instance of the Universal Steiner
Tree (UST) problem is a triple
�
 �
 �� where��
 �� forms a met-
ric space, and� is a distinguished vertex in� that we refer to as
the root. For any spanning tree� of � , define thestretch of � as
	
���� ��������OptSt����. The goal of theUST problem is
to determine a spanning tree with minimum stretch.

In the framework of Section 2: (i) the set of solutions of any in-
stance � , Sols���, is the set of spanning trees; (ii) a subinstance of a
UST instance
�
 �
 �� is a triple
� �
 ��
 ��, where � � is a subset
of � that contains �, and �� equals � restricted to the subset � �;
and (iii) for any instance � �
�
 �
 ��, a spanning tree � of � , and
any subinstance �� �
� �
 ��
 ��, 	��
 � �
 � � is given by �� � .

5.1 A UST with polylogarithmic stretch
Our algorithm, UST-ALG defined below, begins by organizing

the vertices of the metric space in “bands”, according to the dis-
tance from the root, and then computing, for each band, a tree that
spans the vertices within the band and the root using the subroutine
CONSTRUCTTREE introduced in UTSP-ALG. We formalize the
notion of bands in the following.

For a nonnegative integer �, we define a bandof level �, denoted
by Band�, to be a set of vertices with distance from � of at least ��

and less than ����; thus, Band� � �� � � �� � ���
 �� ' �����.
A set � is said to be bandedif all the vertices of � lie in Band�, for
some �
 � � � (. A tree is said to be rooted if it contains �. A
rooted tree is said to be bandedif all the vertices in � � ��� lie in
Band� for some �
 � � � (. A rooted tree is said to be bandwise
if it is the edge disjoint union of banded trees with at most one
banded tree for each �
 � � � (.

390

THEOREM 2. Given a metric space��
 �� with � vertices, a
root � � � , and a�
 ��-partitioning scheme for��
 ��, a spanning
tree with stretch���� ���� �� can be constructed in polynomial
time.

Algorithm 2 UST-ALG
Input: Metric space ��� �� and a root .

1. Bandwise decomposition. Partition � into bands, Band� for � � � � �.
2. Bandwise tree. For � � � � �, � 	�
 � CONSTRUCTTREE�Band��.

3. Output. Connect the root of �	�
 to , for � � � � �, and return the
union of the resulting trees.

It is clear that our algorithm is polynomial-time. The approxi-
mation guarantee of ���� ���� �� is obtained in two steps. We
first show that for any subset � there exists an equivalent bandwise
rooted tree whose value is within a constant factor of the optimal
rooted Steiner tree on �. This allows us to restrict our attention
only to banded sets. We then show that for any banded set � ,
CONSTRUCTTREE��� returns a tree with cost within ���� ���� ��
of the optimum.

LEMMA 8. For any subset� of � containing�, there exists a
bandwise rooted tree spanning� with cost within a constant factor
of �OptSt��.

PROOF. Let �� � �� � Band�� � � for � � � (. Let
�� � �� odd�� and �� � �� even��. Do an Euler walk on the
tree OptSt� that visits all vertices in � and split the walk into
two trees, using shortcuts, one spanning �� and the other span-
ning ��. Let these trees be �� and ��. Since the Euler walk tra-
verses each edge at most twice and shortcuts do not increase cost,
we obtain that ���� � ��OptSt�� and ���� � ��OptSt��, i.e.
���� � ���� � ��OptSt��. Observe that �� and �� are disjoint.
Let � � �� � ��.

Define an inter-band edge to be any edge such that neither of
the endpoints is the root and the two endpoints are not in the same
band. Let + � ��
 �� � � be such an inter-band edge. Let � be in
Band� and � in Band� where � � ! � �. Note that �+� � ����.
Consider the two edges ��
 �� and ��
 ��. Note that ���
 ��� �
���� � ���� � �+�. Thus, ���
 ��� � ���
 ��� � ����
 ��� �
���
 ��� � ��+�. Hence, if we remove + and replace it with the
two edges ��
 �� and ��
 ��, then we increase the cost by at most
��+�. Observe that while the resulting graph may not be a tree, it
continues to be connected. We perform this operation of replacing
every inter-band edge by two edges from the root to its endpoints
to yield a graph that spans all the vertices in � and has cost at most
����. We select an arbitrary spanning tree �� of the resulting
graph. Tree � � has no inter-band edges and hence is a bandwise
rooted tree. Thus we have a bandwise rooted tree spanning � with
cost at most ���OptSt��.

LEMMA 9. Let � denote the rooted tree obtained after con-
necting the root ofCONSTRUCTTREE�Band�� to �, for some�,
 � � � (. For any subset�� � Band� � � containing�, ����� is
at most���� �� ����

�� �
�OptSt����.

PROOF. Wlog, we assume that � � �. Let � be ������. The
cost of the edge connecting � to the root of CONSTRUCTTREE�Band��
is clearly at most ��OptSt���. So we focus our attention on the re-
maining subtree �� of ��� . Our algorithm starts with a radius of
� and increases the radius at each level by a factor of � until the
radius exceeds ,, which is at most ����, after which �� will be
1. Consider the tree �� , let �� be the number of vertices at level !

(e.g., �� � �). Using Lemma 7, ����, the cost of tree �� can
be bounded as follows:�

�

���� �
�
�

���
� � ����	 �� � ��	
�

�
���

� (3)

The strategy of our proof is to show that at each level !, the bound
on the cost of the edges selected for �� , ���

�, does not exceed
�OptSt��� by more than a factor of �����. Hence	
�� ���

� �
������OptSt��� and the total cost of �� is ���� �� ���

�� 	
� times

that of �OptSt���.
The arguments for ! � and ! � � differ from those at the

third and higher levels. Consider the level ! � . Observe that
�OptSt��� � � since there are at least � edges in OptSt�� and
each edge has cost at least �. The cost of the edges of �� at level
 is at most ��� � �, while at level � is at most ��� �
��� . Therefore, the total cost of edges at both levels 0 and 1 is
�����OptSt����.

For level ! � �, we have an upper bound on the cost of the edges
of �� from Lemma 6. We now place a lower bound on the cost of
the optimal Steiner tree on �� . If $���� � �, we derive a lower
bound as:

�OptSt��� � �OptSt�� � �$�����������"

If $���� � �, we derive a lower bound as:

�OptSt��� � �� � ������ � $����������"

Using the bound from Lemma 6, we obtain that for ! � �, ���� �
�����OptSt��� � �����OptSt���. And using Equation 3 men-
tioned above, we obtain that ���� is within a factor of
���� �� ���

�� �
� of �OptSt���. Since �� � � � �, the lemma is

proved.

Proof of Theorem 2: Putting Lemma 8 and Lemma 9 together, we
can now prove the main theorem. Construct the bandwise rooted
spanning tree �� on the set � as specified in the algorithm above.
Consider any subset � of the vertices containing �. First observe
that by Lemma 8 there exists a bandwise rooted tree - on the
set � such that �-� is within a constant factor of �OptSt��. Let
�� � �� � Band�� � � for � � � (. Let -� denote the rooted
banded subtree of - spanning �� for � � � (. By Lemma 9,
�� �

��
� is within ���� ���� ��� of �OptSt��� and hence within

���� ���� ��� of �-��. But by definition �-� � �������-��
and �� �

�� � �������� �
��
�. Hence by summing over all bands we

get that �� �
�� is within ���� ���� �� of �-� and hence within

���� ���� �� of �OptSt��.
We can instantiate Theorem 2 with parameters from Lemma 1,

 � ����� �� and � � ����� ��, to derive the following corollary.

COROLLARY 3. For any metric space over� vertices,UST-ALG
returns a tree with stretch������ �� ��� ��� ��.

For special metrics, we can apply the parameters from Lemmas 2,
3 and 5 to derive the following bound.

COROLLARY 4. For any doubling, Euclidean, or growth-restricted
metric space over� vertices,UST-ALG returns a tree with stretch
����� ��.

As in the case of UTSP, for the special case of vertices in Eu-
clidean space, we can give a succinct description of our universal
tree, which is, in fact, independent of even the global set � of ver-
tices.

391

5.2 A lower bound for UST

We exploit a straightforward relation between universal Steiner
tree problem and online Steiner tree problem to prove a lower bound
for UST.

THEOREM 3. There exists a set of� vertices in two-dimensional
Euclidean space, for which every spanning tree has an�� �� �

�� �� �
�

stretch.

We derive the above theorem from a result of Alon and Azar for the
online Steiner tree problem [2]:

THEOREM 4 ([2], THEOREM 1.1). No on-line algorithm can
achieve a competitive ratio which is better than����� �� ��� ��� ��
for the Steiner tree problem of� vertices in the plane, or even for
� vertices in the� by� grid.

We make use of the lower bound for � � � grid. Given any algo-
rithm . for contructing a UST with stretch �, we obtain an online
algorithm as follows. Let �� be the first vertex given. Build a UST
� spanning the �� grid vertices with root ��. For each vertex ��
given, connect it to the previous ones by following edges of � .
Since � has a stretch of �, the competitive ratio thus achieved for
the online Steiner tree problem is at most �. But according to Alon
and Azar’s result presented above, this ratio is ����� �� ��� ��� ��.
Hence � is also ����� �� ��� ��� ��.

6. UNIVERSAL SET COVER
In this section, we define the universal set cover problem and

present nearly tight upper and lower bounds for the problem.

DEFINITION 4 (UNIVERSAL SET COVER (USC)). An instance
of USC is a triple
�
�
 �, where� � �+�
 +�
 " " "
 +�� is a
ground set of elements,� � ���
 ��
 " " "
 �
� is a collection of
sets, and is a cost function mapping� to /�. We define anas-
signment � as a function from� to � that satisfies+ � ��+� for
all + in � . We extend the definition of� to apply to any� � �
as follows: ���� is the set���+� � + � ��. We next define the
cost of����, ������, as

�
���	�
 ��� and thestretch of an as-

signment� as	
����
	�	�

���	�

, where�01��� is the cost of the
optimal (minimum) set cover solution to�. And the goal is to com-
pute an assignment� with minimum stretch.

In the framework of Section 2, we have: (i) the set of solutions for
any instance � , Sols���, is the set of assignments for �; (ii) a subin-
stance of a USC instance
�
 �
 � is a triple
� �
 �
 � satisfying
� � � � ; and (iii) for any instance � �
�
 �
 �, a assignment �
for � , and any subinstance �� �
� �
 �
 �, 	��
 � �
 �� is given by
� restricted to the domain � �.

Algorithm 3 USC-ALG

1. �� �.
2. While � 	� � , do

Find the set � that minimizes 	�

�����

; we refer to this ratio as the cost-

effectiveness of �. For every � � � ��, we set ���� � �.
3. Output � .

THEOREM 5. For any USC instance with� elements,USC-
ALG has a stretch of��

�
� ����.

PROOF. Let � be an arbitrary subset of � and let � � �. We
consider two cases. The first case is when � is in �. Let � be the

number of iterations performed by the algorithm in step �, and let
��
 ��
 � � �
 �� be the sets selected in that order. For a given set
��, let &� (resp., ��) be the number of elements in � (resp., �)
that are assigned to �� by the algorithm. That is, &� � �+ � � �
��+� � ��� and �� � �+ � � � ��+� � ���. Since � is always a
candidate set, our selection of �� according to the cost-effectiveness
criteria implies that

 �����
&�

� ����
�� �� � � � � � ����

By reordering, summing up, and invoking Schwarz inequality, we
get

 ���� � ���� � � � � � ����

 ���

�
�
&��
�

�

�
&��

�� ��
� � � ��

�
&��

�� �� � � � � � ����

�
���� ��

���

&� �
�

�

�
�

�

�� ��
� � � �� �

�� �� � � � � � ����

� �
� ���

�
�� ��

� ��
�
� ����

We now consider the second case when � �� �. Let ��
 ��
 � � �
 ��
be an optimal collection of sets that together cover �. From the first
case, we know that ������� � ��� ���� ����. Hence ������ ��

� ������� � ��� ����
�

� ����.

For the special case of USC in which every set in the collection
� has the same cost, a slightly more careful analysis of USC-ALG
achieves an upper bound of

�
��.

The proof is similar to that for USC and we just provide a brief
sketch here. We only consider the first case. The second case car-
ries over similarly from the first as in USC. Using the same nota-
tions as in the proof of Theorem 5, we obtain for the first case:

��
&�

� ��
�� � ���� � � � �� ��

&� � �� � ���� � � � �� �� � � � �� �

Summing them up, we have

� � &� � � � ��&� � ��� � ���� � ����

Hence, 	�	�

���	�

� � � �
��.

THEOREM 6. There exists an�-element instance ofUSC with
uniform costs for which the best stretch achievable is��

�
��.

PROOF. Let 2 be some prime number between
�
��� and

�
�,

whose existence is justified by the well known Bertrand postulate.
We now describe the � elements of the ground set � . We include
2� elements, each represented by ��
 ��, for all � and � belonging
to the finite field -� . We also include an additional ��2� elements,
denoted by +�
 " " "
 +���� , respectively, to complete the definition
of � .

We now describe the covering set collection �. Consider the
collections of subsets defined as follows:

� �!� � ���
 �� � � � � � -�
 � � $ �!�����
where 3
 4
 � -� and $ �!���� � 3�� � 4�� is a polynomial
of degree at most 2 over -� which uniquely identifies � �!�. With
3
 4
 ranging over -� , we obtain 2� distinct subsets of �. We also
add one more subset �� � �+� � � � � � �� 2�� to complete the
definition of �. And let the cost of each subset be 1.

392

Let � be any assignment for the above USC instance. We focus
our attention on the 2� elements. Since each element of � is as-
signed to a single subset of � and 2� � 2�, we know that at least
one of � �!� is not assigned to by � . The optimal cost for � �!�
is �. Since no two distinct polynomials of degree at most 2 can
intersect at more than 2 points, � �!� does not intersect with any
other � ��!��� on more than 2 elements. Therefore, the actual cost
incurred by the assignment � is ������ � �

�
. This proves that the

achievable stretch is lower bounded by 2�� � ��
�
��.

Thus our lower bound is within a constant factor of the upper
bound for the unweighted USC and within an ��

�
��� �� factor in

general.

7. ON THE COMPLEXITY OF UST, UTSP,
AND USC

In this section, we analyze the complexity of the universal prob-
lems studied in this paper. We begin by establishing the co-NP-
hardness of a slight generalization of the UST problem in which
the input terminals are constrained to be selected from a specified
subset of nodes.

DEFINITION 5 (TCUST). We are given a metric��
 ��, a� �
� , a set� � � (of allowed terminals), a bound� � /�. Is there
an undirected tree� that connects�, � , and possibly other ver-
tices, such that

	
�
"��

��"	
���
�OptSt"	
���

� ��

(Recall that for any set � of edges, ��� is the sum of the met-
ric distances of the edges and for any set �, OptSt� is an optimal
Steiner tree for �.)

THEOREM 7. TCUST is coNP-hard.

PROOF. Our proof is by a reduction from the unweighted undi-
rected minimum Steiner tree problem UNWEIGHTED-STEINER-
TREE [13, page 208]. An instance of the UNWEIGHTED-STEINER-
TREE problem consists of an undirected graph) � ��
*�, a sub-
set 	 � � , and a positive integer �, and we are asked whether
there exists a subtree of) that includes all the vertices of 	 and
uses no more than � edges.

We now describe the reduction from UNWEIGHTED-STEINER-
TREE to TCUST. Given an UNWEIGHTED-STEINER-TREE in-
stance)# � ��#
 *#� and an 	 � �# and a � (let � � �#
 � �
), we construct a metric space ��
 �� of TCUST as follows.
The vertex set � includes the set �#, a new vertex �, and for each
�� � 	
 � � �
 " " "
�, a pair of new vertices, ��
 ��. For conve-
nience, we denote the collection of all ��’s and ��’s as � and �
respectively. We now describe the distance function �. We classify
the edges of the complete graph over � into two categories.

� Physical edges: For each ��
 �� � *#, we set 5��
 �� �
�. We set 5��
 ��� � 6 � ��. 5���
 ��� � 5���
 ��� �
��
 5���
 ��� � �, where � � ��.

� Virtual edges: For any other edge ��
 �� whose weight has
not been defined, we set 5��
 �� to the lightest path weight
between � and � using only physical edges.

By construction, the function � is a metric. To complete the con-
struction of an instance of TCUST we need to specify the root,
the set � of allowable terminals, and the bound �. We take �
as the root, and take 	 � � � � as the set � . Let the bound

� � $������%�

$������%�

. This completes the reduction, which is clearly
polynomial time.

We now prove that there exists a tree for the TCUST instance
with stretch at most � if and only if the minimum Steiner tree for
the UNWEIGHTED-STEINER-TREE instance has at least � edges,
thus establishing the coNP-hardness of TCUST.

Let �� �)#� be a minimum Steiner tree for the UNWEIGHTED-
STEINER-TREE instance. Consider the tree

� � �� �)#� � ���
 ���� �

	
���

����
 ���� �

	
���

����
 ����"

By construction, � connects all the terminals in � and the root �.
In the following, we show that � is an optimal tree for the TCUST
instance in the sense that it achieves minimum stretch. We first
observe that for tree � , a subset 7 � � that maximizes the stretch
of � is 7 � � , and thus

0�� � �
6�5��� �)#�� � �� ��
6�5��� �)#�� � �� ��

which is a decreasing function of � and equals � in the limit. We
assume henceforth that � is large enough that 0�� � ' �"�.

Now consider any tree � � that connects � and �. If � � contains
two edges incident on �, then we let 7 consist of two vertices in
� that belong to two different branches of � � rooted at �. The ra-
tio �� �

"	
����OptSt"	
�� approaches � as � increases, implying
that the stretch of � � is at least that of � .

In the remainder, we assume that � � contains only one edge adja-
cent to �. Consider some pair ��
 ��, and let ��� (resp., ��� denote the
first hop on the path in � � from �� (resp., ��� to �. Let ��� , (resp., ���)
denote the first hop on a lightest path, using only physical edges,
from �� to ��� (resp., �� to ���). If both ��� and ��� are equal to ��,
then we denote the scenario by �� 89 ��. If only ��� � �� (resp.,
��� � ��), then ��� � �� (resp., ��� � ��); we denote such a sce-
nario by �� �� (resp., �� ��). It is easy to see that ��� � �� and
��� � �� can not happen at the same time.

We pick a subset 7 � � for � � as follows. For each �: if
�� 89 ��, we add both �� and �� to 7 ; if �� ��, add �� to 7 ;
otherwise (�� ��), we add �� to 7 . Out of the � pairs of ��
 ��,
let 1 be the number of pairs such that �� �� or �� ��. Note that
 � 1 � �. We now estimate the ratio of 7 on � �.

 & � �7 � ���� � 6� 5��� �)#�� � �� � ��� 1� � �� � 1
� 6� 5��� �)#�� � �� ��� � � 1

�OptSt"	
��� � 6� 5��� �)#�� � �� � ��� 1� � �� � 1
� 6� 5��� �)#�� � �� ��� � � 1

Hence 0�� �� � 0�� �.
We have thus shown that the optimal stretch achievable for the

TCUST instance is 0�� �. Since 0�� � is a decreasing function of
5��� �)#��, it follows that the optimal stretch for the TCUST
instance is at most � if and only if the optimal Steiner tree for the
UNWEIGHTED-STEINER-TREE instance has more than � edges.
This completes the proof of coNP-hardness of TCUST.

In studying the complexity of UST, a natural problem to con-
sider is the following: given a spanning tree, determine the subset
of vertices (containing the root) for which the tree has the worst
performance, when compared with an optimal Steiner tree for the
subset. The formal definition is as follows:

DEFINITION 6 (MAX RATIO SUBSET PROBLEM (MRS)). An
instance of the MRS problem is a finite metric space��
 ��, with

393

vertex set� and metric function� � ��
 � � ! /�, some span-
ning tree� , with edge weights specified by���
 ��, a specified ver-
tex � � � and a lower bound� � /�. The decision ques-
tion is whether there is a nonempty subset7 � � , such that
� 	"	
��

���	"	
��

� �, where & �7 � ���� is the cost of connect-
ing 7 and� using only the edges of� , and�01�7 � ���� is the
cost of minimum spanning tree of7 ���� in the sub-metric space
�7 � ���,d)?

Using a reduction very similar to that in the proof of Theorem 7,
we can prove that this problem is NP-hard. We defer the proof
to the full paper. On the basis of this NP-hardness result and the
coNP-hardness of TCUST, we conjecture that UST is ��

� -hard.
For the UTSP problem, our preliminary work suggests that the

strategy of the coNP-hardness proof for the UST problem can be
applied to a variant of UTSP in which a distinguished vertex has to
be on every tour. We defer the details to the full paper.

We finally show that USC is in NP. Consider the decision ver-
sion of USC in which we are asked whether there exists a feasible
assignment for a USC instance with stretch at most �, for a given
number �. The upper bound proof for USC (Theorem 5) shows
that the stretch for any assignment is, in fact, achieved on a set
in �. Thus, the decision version of USC can be solved in non-
deterministic polynomial time by first guessing the assignment and
then verifying that it achieves the desired bound for each of the sets
in �.

8. OPEN PROBLEMS
In this paper, we have introduced universal approximations, a

new paradigm for approximation algorithms, and have studied uni-
versal approximations for three classic optimization problems: TSP,
(rooted) Steiner trees, and set cover. There are a number of research
directions that merit further study.

� Tight bound for metric UST: An immediate open problem
for UST is to resolve the ������ �� factor gap between our
upper and lower bounds, for general metric spaces.

� Lower bound for UTSP: We believe that the best stretch
achievable for UTSP is at least logarithmic in the number of
nodes, even for the Euclidean case. The best lower bound we
have thus far, however, is a constant. In this regard, M. Grigni
has posed a very interesting conjecture (presented here in
terms of the notion of universality): Given �� points forming
an �� � grid on the plane, every universal tour has a stretch
of ����� �� [1].

� A graph version of UST: Our formulation of the UST prob-
lem assumes that the universal tree can include an edge be-
tween any two nodes of the underlying metric space. A nat-
ural variant that we are currently investigating is where the
metric space is induced by an undirected weighted graph and
the universal tree is required to include graph edges only. A
plausible approach to solving this graph version of UST is
to extend our partitioning scheme to graphs, a challenging
problem that is of independent interest.

� Complexity: We have shown that USC is in NP, and have
provided preliminary evidence that the UST and UTSP may
be ��

� -hard. Resolving the complexity of UST and UTSP
is an important problem.

� Universal approximations for other problems: Finally, we
believe that the universal approximations framework has the

potential to yield insightful results on the approximability of
diverse optimization problems, and plan to explore this line
of research.

Acknowledgments
We would like to thank R. Ravi and A. Frieze for directing us to
the work on Euclidean TSP tours using space-filling curves, and
M. Goemans for pointers to some work on stochastic optimization.
The authors Jia, Lin, and Rajaraman were partially supported by
NSF awards Career CCR-9983901 and IIS-0330201, Noubir was
partially supported by NSF Career award CNS-0448330, and Sun-
daram was partially supported by a grant from DARPA.

9. REFERENCES
[1] http://www.mathcs.emory.edu/˜mic/interests.html.
[2] N. Alon and Y. Azar. On-line Steiner trees in the Euclidean

plane. In Proceedings of the Eighth Annual ACM Symposium
on Computational Geometry, pages 337–343, 1992.

[3] B. Awerbuch and D. Peleg. Sparse partitions. In Proceedings
of the Thirty-First IEEE Symposium on Foundations of
Computer Science (FOCS), pages 503–513, 1990.

[4] Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Racke.
Optimal oblivious routing in polynomial time. In
Proceedings of the Thirty-Fifth ACM Symposium on Theory
of Computing (STOC), pages 383–388, 2003.

[5] Y. Bartal. Probabilistic approximations of metric spaces and
its algorithmic applications. In Proceedings of the
Thirty-Seventh IEEE Symposium on Foundations of
Computer Science (FOCS), pages 184–193, 1996.

[6] Y. Bartal. On approximating arbitrary metrics by tree
metrics. In Proceedings of the Thirtieth ACM Symposium on
Theory of Computing (STOC), pages 161–168, 1998.

[7] D. Bertsimas and M. Grigni. On the space-filling curve
heuristic for the euclidean traveling salesman problem.
Operations Research Letters, 8:241–244, October 1989.

[8] A. Borodin and R. El-Yaniv. Online Computation and
Competitive Analysis. Cambridge University Press,
Cambridge, UK, 1998.

[9] J. L. Carter and M. N. Wegman. Universal classes of hash
functions. Journal of Computer Systems and Sciences
(JCSS), 18:143–154, 1979.

[10] B. Dean, M. Goemans, and J. Vondrak. Approximating the
stochastic knapsack problem: the benefit of adaptivity. In
Proceedings of the Forty-Fifth IEEE Symposium on
Foundations of Computer Science (FOCS), 2004.

[11] J. Fakcheroenphol, S. Rao, and K. Talwar. A tight bound on
approximating arbitrary metrics by tree metrics. In
Proceedings of the Thirty-Fifth ACM Symposium on Theory
of Computing (STOC), pages 448–455, 2003.

[12] A. Fiat and G. J. Woeginger, editors. Online Algorithms: The
State of the Art. Springer, 1998.

[13] M. R. Garey and D. S. Johnson. Computers and
Intractability: A guide to the theory of NP-completeness. W.
H. Freeman, San Francisco, 1979.

[14] A. Goel and D. Estrin. Simultaneous optimization for
concave costs: single sink aggregation or single source
buy-at-bulk. In Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA-03),
pages 499–505, 2003.

[15] A. Gupta, R. Krauthgamer, and J. R. Lee. Bounded
geometries, fractals, and low-distortion embeddings. In

394

Proceedings of the Forty-Fourth IEEE Symposium on
Foundations of Computer Science (FOCS), 2003.

[16] A. Gupta, M. Pal, R. Ravi, and A. Sinha. Boosted sampling:
Approximation algorithms for stochastic optimization. In
Proceedings of the Thirty-Sixth ACM Symposium on Theory
of Computing (STOC), pages 417–426, 2004.

[17] N. Immorlica, D. R. Karger, M. Minkoff, and V. S. Mirrokni.
On the costs and benefits of procrastination: Approximation
algorithms for stochastic combinatorial optimization
problems. In Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA-04),
pages 691–700, 2004.

[18] D. R. Karger and M. Minkoff. Building steiner trees with
incomplete global knowledge. In Proceedings of the
Forty-First IEEE Symposium on Foundations of Computer
Science (FOCS), pages 613–623, 2000.

[19] R. R. Mettu and C. G. Plaxton. The online median problem.
In Proceedings of the Forty-First IEEE Symposium on
Foundations of Computer Science (FOCS), pages 339–348,
2000.

[20] A. Meyerson. Online facility location. In Proceedings of the
Forty-Second IEEE Symposium on Foundations of Computer
Science (FOCS), pages 426–433, 2001.

[21] M. Minkoff. Approximation Algorithms for Combinatorial
Optimization Under Uncertainty. PhD thesis, M.I.T.,
Cambridge, MA, 2003.

[22] D. Peleg. Distributed Computing: A Locality-Sensitive
Approach. SIAM, Philadelphia, PA, 2000.

[23] L. K. Platzman and I. J. J. Bartholdi. Spacefilling curves and
the planar travelling salesman problem. Journal of the ACM
(JACM), 36(4):719–737, October 1989.

[24] C. G. Plaxton. Approximation algorithms for hierarchical
location problems. In Proceedings of the Thirty-Fifth ACM
Symposium on Theory of Computing (STOC), pages 40–49,
2003.

[25] H. Racke. Minimizing congestion in general networks. In
Proceedings of the Forty-Third IEEE Symposium on
Foundations of Computer Science (FOCS), pages 43–52,
2002.

[26] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list
update and paging rules. Communications of the ACM,
28(2):202–208, 1985.

[27] L. G. Valiant and G. Brebner. Universal schemes for parallel
communication. In Proceedings of the Thirteenth ACM
Symposium on Theory of Computing (STOC), pages
263–277, 1981.

395

