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ABSTRACT 
Finding a small dominating set is one of the most fundamental 
problems of traditional graph theory. In this paper, we present 
a new fully distributed approximation algorithm based on LP re- 
laxation techniques. For an arbitrary parameter k and maximum 
degree A, our algorithm computes a dominating set of expected 
size O(kA 2/k log AIDSoPTI) in O(k 2) rounds where each node 
has to send O(k2A) messages of size O(logA). This is the first 
algorithm which achieves a non-trivial approximation ratio in a 
constant number of rounds. 

Categories and Subject ]Descriptors 
F.2.2 [Analys is  of A l g o r i t h m s  a n d  P r o b l e m  C o m p l e x -  
ity]: Nonnumerical Algorithms and Problems--computa- 
tions on discrete structures; 
G.2.2 [ D i s c r e t e  M a t h e m a t i c s [ :  Graph Theory--graph al- 
gorithms; 
G.2.2 [Discrete  M a t h e m a t i c s ] :  Graph Theory--network 
problems 

General Terms 
Algorithms, Theory 

Keywords 
Dominating Sets, Approximation Algorithms, Distributed 
Algorithms, Linear Programming, Ad-Hoc Networks 

1. INTRODUCTION 
In a graph, a dominating set is a subset of nodes such that 
for every node v either a) v is in the dominating set or b) a 
direct neighbor of v is in the dominating set. The minimum 
dominating set (MDS) problem asks for a dominating set of 
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minimum size. MDS and the closely related minimum set 
cover problem are two of the first problems that have been 
shown to be NP-hard [8, 12]. In this paper, we present a 
distributed approximation algorithm for MDS. In computer 
networks it is often desirable to have a dominating set in or- 
der to enable a hierarchical structure in which the members 
of the dominating set provide a service for their neighbors. 

A particular application can be found in the fast growing 
field of mobile ad-hoc networks. In mobile ad-hoc networks, 
wireless devices (called nodes) communicate without sta- 
tionary server infrastructure. When sending a message from 
one  node to another, intermediate network nodes have to 
serve as reuters. Although a number of interesting sugges- 
tions have been made, finding efficient algorithms for the 
routing process remains the most important  problem for ad- 
hoc networks. Since the topology of an ad-hoc network is 
constantly changing, routing protocols for ad-hoc networks 
differ significantly from the standard routing schemes which 
are used in wired networks. One effective way to improve 
the performance of routing algorithms is by grouping nodes 
into clusters. The routing is then done between clusters. 
The most basic method for clustering is by calculating a 
dominating set. Only the nodes of the dominating set (the 
'cluster heads') act as reuters, all other nodes communicate 
via a neighbor in the dominating set. 

Between traditional wired networks and mobile ad-hoc net- 
works two main distinctions can be made: 1) typically wire- 
less devices have much lower bandwidth than their wired 
counterparts and 2) wireless devices are mobile and there- 
fore the topology of the network changes rather frequently. 
As a consequence, distributed algorithms which run on such 
devices should have as little communication as possible and 
they should run as fast as possible. Both goals can only be 
achieved by developing algorithms requiring a small num- 
ber of communication rounds only (often called local algo- 
rithms). So far, the only algorithm which achieves a non- 
trivial approximation r a t io - -o (A) - - in  a nontrivial number 
of rounds--o(diam(G))--for MDS was developed by Jia, 
Rajaraman, and Suel [10]. In expectation, their algorithm 
achieves an O(logA)-approximation while the number of 
rounds is O( logn logA)  with high probability. In this pa- 
per, we present the first distributed MDS algorithm which 
achieves a nontrivial approximation ratio in a constant num- 
ber of rounds. Precisely, for an arbitrary parameter k, in 
O(k 2) rounds, we achieve an expected approximation ratio 

of O(kA 2/k log A). All messages are of size O(log A). 
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The paper is structured in the following way. Section 2 gives 
an overview over relevant previous work, Section 3 intro- 
duces some notation as well as some well-known facts, and 
in Sections 4 and 5 the dominating set algorithm is devel- 
oped. Thereby Section 4 introduces the fractional dominat- 
ing set problem (LP relaxation) and presents an algorithm 
to deduce a dominating set from a solution to the fractional 
variant of the problem, whereas Section 5 shows how to ap- 
proximate the fractional dominating set problem by means 
of a distributed algorithm. The paper is concluded in Sec- 
tion 6. 

2. RELATED W O R K  
The problem of finding small dominating sets in a graph and 
the closely related problem of finding small set covers has 
extensively been studied over the last 30 years. The prob- 
lem of finding a minimum dominating set has been proven 
to be NP-hard in [8, 12]. The best known approximation 
is achieved by the greedy algorithm [11, 14, 18]. As long 
as there are uncovered nodes, the greedy algorithm picks a 
node which covers the biggest number of uncovered nodes 
and puts it into the dominating set. It achieves an approx- 
imation ratio of In A where A is the highest degree in the 
graph. Unless the problems of NP can be solved by deter- 
ministic n °0°gl°s n) algorithms, this is the best possible up 
to lower order terms [6]. For the related problem of find- 
ing small connected dominating sets, a similar approach is 
shown to be a (ln A + O(1))-approximation in [9]. 

For the distributed construction of dominating sets, several 
algorithms have been developed. In [13] an algorithm which 
calculates a dominating set of size at most n/2  in O(log*n) 
rounds has been proposed. [19] presents a (connected) dom- 
inating set algorithm which runs in a constant number of 
rounds .  None of those algorithms achieves a non-trivial 
asymptotic bound on the approximation ratio. Note that  
O(A) is trivial since the set V of all nodes of G forms a 
dominating set of size at most (A + 1) times the size of 
an optimal one. The first algorithm which achieves a non- 
trivial approximation ratio in less than O(diam(G)) rounds 
was presented in [10]. The expected approximation ratio is 
asymptotically optimal--O(log A ) - - a n d  the algorithm ter- 
minates after O(lognlog A) rounds with high probability. 
The algorithm of [10] is related to the parallel set cover al- 
gorithms in [3, 16], which achieve O(log A) approximations 
in polylogarithmic time. For the connected dominating set 
problem, a distributed algorithm which also achieves an ap- 
proximation ratio of O(log A) in a polylogarithmic number 
of rounds has been presented in [5], recently. In our algo- 
rithm, we first solve the LP relaxat ion--a positive linear 
program---of MDS. Parallel and distributed algorithms for 
positive linear programming have been studied in [15] and 
[2], respectively. In polylogarithmic time they both achieve 
a (1 + e)-approximation for the linear program. 

For ad-hoc networks, the (connected) dominating set prob- 
lem has also been studied for special graphs. In particular 
for the unit  disk graph a number of publications have been 
written (e.g. [1, 7]). For the unit  disk graph the problem 
is known to remain NP-hard; however, constant factor ap- 
proximations are possible in this case. For a recent survey 
on ad-hoc routing and related problems, we refer to [17]. 

3. NOTATION AND PRELIMINARIES 
In this section we introduce notations as well as some math- 
ematical theorems which are used in the paper. 

The subject of this paper is the distributed construction of 
dominating sets of a network graph G = (V, E). For conve- 
nience, we assume that  V = {vl, v2 , . . . ,  v~}, i.e. we assume 
that the network nodes are labeled from 1 to n. These la- 
bels are not used in our algorithms, but  they simplify some 
proofs. By Ni, we denote the closed neighborhood of v~, i.e. 
Ni includes v~ as well as all direct neighbors of vi. Where 
appropriate, Ni also denotes the set of the indices of the 
nodes in N~. The degree of a node v~ is called 5~ whereas 
A denotes the maximum degree in the network graph G. 
We will often make use of the maximum degree in a certain 
range around a node vi. For this purpose we define 5~ 1) and 
5~ 2) : 

,,~1) :-~- maxSj,  5~2) := maxS!1). 
j E N  i j E N ~  3 

Thus 5~1) is the maximum degree of all nodes in the closed 

neighborhood Ni of v~ whereas 5~2) is the maximum degree 
among all nodes at distance at most 2 from vi. 

For our algorithms, we use a purely synchronous model for 
communication. That  is, in every communication round, 
each node is allowed to send a message to each of its direct 
neighbors in G. In principle, those messages can be of ar- 
bitrary size; however, our algorithms only use messages of 
size O(log A). 

We conclude this section by giving two facts which will then 
be used in subsequent sections. Proofs are omitted and can 
be found in standard mathematical text books. 

FACT 3.1. ( M e a n s  I n e q u a l i t y )  Le .,4 C R + be a set of 
positive real numbers. The product of the values in .,4 can be 
upper bounded by replacing each factor with the arithmetic 
mean of the elements of A: 

rI -< 
x ¢ ~4 

FACT 3.2. For n > x > 1, we have 

<_ 

4. APPROXIMATING MDS BY LP RELAX- 
ATION 

The Minimum Dominating Set (MDS) problem has been 
introduced in Section 1. In this section, we show how to 
obtain a In A approximation by using LP relaxation tech- 
niques. For an introduction to linear programming see e.g. 
[4]. We first derive the integer program which describes the 
MDS problem. Let S C V denote a subset of the nodes of G. 
To each vi E V, we assign a bit xl such that  x~ = 1 ~ vi E S. 
For S to be a dominating set, we have to demand that  for 
each node vi E V, at least one of the nodes in N~ is in 
S. Therefore, S is a dominating set of G if and only if 
Vi E [1,n] : ~ , e g . x j  > 1. We define the neighborhood ma- 
trix N to be the sum of the adjacency matrix of G and the 
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identity matrix (N is the adjacency matrix with ones in the 
diagonal). The MDS problem can then be formulated as an 
integer program: 

min ~ xl  
i = l  

subject to N - _x >_ .1_ 

~e {0,1F. 

(IPMDs) 

By relaxing the condition x E {0, 1} ~ to x > 0, we get the 
following linear program: 

min ~ xi 
i = 1  

subject to N • x > 1 

x > O .  

(LPMDs) 

In the literature, the LP form of the dominating set prob- 
lem has also been named fractional dominating set problem. 
The corresponding dual linear program looks very similar to 
LPMDs: 

n 

max ~ Yi 
i----1 

subject to N - y _< ! 

_y _>_0. 

(DLPMDS) 

We have to assign a positive value yi to each node vl. The 
sum of the y-values of the nodes in the neighborhood Ni of 
a node vi has to be less than or equal to 1 (for the corre- 
sponding x-values, this sum has to be greater than or equal 
to 1) and the sum of all y-values, i.e. the objective function 
has to be maximized. As a consequence we get the following 
lower bound on the size of a minimum dominating set. 

LEMMA 4.1. Let ~1) be the maximum of the degrees of all 
nodes in Ni as defined in Section 3. For any dominating set 
D S  (i. e. also for  an optimal one), we have 

~}a----y----- <-IDSI. 
i = l  "1- 1 

PROOF. Assigning yi := 1/(5~1)+ 1) yields a feasible so- 
lution to the dual linear program DLPMDs. By the weak 
duality theorem, the value of the objective function for any 
feasible solution for DLPMDs is smaller or equal to the value 
of the objective function for any feasible solution for LPMDs. 
Hence, the objective function for the DLPMDs-solution is 
also smaller or equal to the size of any dominating set be- 
cause any feasible solution for the integer program IPMDs is 
feasible for LPMDs too. [] 

Let x* be an optimal solution for LPMDs. Further let x (=) be 
an a-approximation for LPMD$, i.e. x (=) is a feasible solution 

for which 

_(4) < ~ .  ~ xT. (i) 
i=i i = 1  

In order to get an approximate solution XDS for IPMDs from 
an a-approximation x (s) for LPMDs, each node applies the 
distributed Algorithm 1. 

A l g o r i t h m  1 LPMDs ~ IPMDs 

I n p u t :  feasible solution _x (~) for LPMDs 
O u t p u t :  IPMDs-Solution X_D s (dom. set) 
1: calculate 5~2) 

2: pi := min{1, xi'(~), ln(5~2)+ 1)} 

10 with probability pl 
3: XDS,i := otherwise 

4: s end  XDS# to all neighbors 
5: if XDSj = 0 for all j E Ni t h e n  
6: XDS,i :---- 1 
7: fi 

Remark: 
In line 2, ~2) is calculated as follows. In a first round, each 

node vi sends its degree 5j to all neighbors. Afterwards 3~1) 
(:= maxj~g~ ~k) is sent to all neighbors in a second round. 
~i~ 2) can then be computed as maxj~Ni ~1). 

THEOREM 4.2. Let DSOPT be a minimum dominating set 
and let ~ be the greatest degree of the network graph G. ~'~) 
is an a-approximation for  LPMDs and _XDs is the IPMDs- 
solution calculated by Algorithm 1 with _x (~) as its input. 
For the expected value of the size of the corresponding dom- 
inating set D S  (vi E D S  ¢==~ xDs,i = 1), we have 

E [IDS[] < (1 + a l n ( A  + 1))-[DSoPT[. 

PROOF. A node can become a member of the dominating 
set in lines 3 and 6 of Algorithm 1. Let the random variables 
X and Y denote the numbers of nodes which are selected in 
lines 3 and 6, respectively. For the the expected value of X, 
we have 

n IX] 
n 

---- Z p i  <_ ~'~"~x!~) • ln(5~2)+ 1 ) ,  
i = l  i = 0  

<_ ln(A + 1) ~ ~i-(~) 
(zx_>6} 2)) i=i 

n 

E q n .  (1 )  i = O  

< a ln(,~ + 1). [DSoPT[. 

In order to compute the expected value of Y, we look at 
the probability ql that no node in the direct neighborhood 
of node vi (i.e. no node in Ni) has been selected. If -(~) ~ j  • 

ln(5~ 2)) ~_ 1 for a vj E Ni, the correspondingpj  = 1 and 
therefore qi = 0. Thus, we only have to consider the case 
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where all pj < 1. We obtain 

q~ = H ( 1 - p j )  <_ H ( 1 -  xj-(~)ln(5}1)+ 1)) 
jENi jENi 

_< ( l _ ~ J e N - ( O d l n ( 5 } l ) - b l ) )  5 ' + a x i S ~  + 1 

_< 1 51 + 1 <_ e -  1~(~?)+1) 

1 

5} 1) + 1 

The first inequality follows from 5} 1) _< 5J 2), the second in- 
equality follows from Fact 3.1, the third inequality holds be- 
cause _x (~) is feasible and therefore the sum ~jeN~ xj-('~) _> 1, 
and the fourth inequality follows from Fact 3.2. For E [Y], 
we then have 

° 1 
E[Y] = E q i  < (1) <- I DS°PTI '  

~=1 i=1 5i + 1 

The last inequality follows from Lemma 4.1. Adding E IX] 
and E [Y] concludes the proof. []  

Remark 1: 
In line 3 of Algori thm 1 we could mult iply xi with (ln(5~(~) + 

1) - lnln(5,(~ ) + 1)) instead of ln(5~(~ ) + 1). We would then 

obtain qi _< ln(A + 1) / (5~ ) + 1) and the expected total  size 
of the resulting dominat ing set would be less than or equal 
to 2 a ( l n ( A  + 1) - l n ln (A + 1)) IDSoPT [. 

Remark 2: 
Note tha t  for regular graphs, Algorithm 1 provides a very 
simple dis t r ibuted algori thm to approximate MDS. Let the 
degree of each node of a regular graph be 5. Assigning 
x~ := 1/(~ + 1) for all nodes vi yields an optimal solu- 
tion for LPMDs- Applying Algori thm 1 then results in a 
(1 + ln(5 + 1))-approximation for the MDS problem. 

In [6], Feige has proven that  the dominating set problem 
cannot be approximated bet ter  than by an approximation 
ratio of l n A  unless NP E DTIME(n  °0°gl°g'~)) (up to lower 
order terms). Hence, unless NP almost equals P ,  the above 
algorithm is opt imal  when applied to an optimal solution 
of the LP relaxation LPMDs of the dominating set prob- 
lem. However, the strength of the approach of Algorithm 
1 lies in the potential  of distr ibuting the calculation over 
the nodes of the network graph. When applied on a single 
computer,  the greedy algori thm achieves the same approxi- 
mat ion ratio in t ime O(nA)  [18] while computing the linear 
program LPMDs with an interior point method would take 
significantly longer. In the next section, we will show how 
to compute an approximation of the linear program LPMDs 
using a dis t r ibuted algorithm. 

5. A P P R O X I M A T I N G  T H E  L I N E A R  PRO- 
G R A M  

In this section, we present the main algorithm of this pa- 
per. We show how to find a O(kA2/k)-approximat ion of 
LPMDs in O(k 2) rounds. We will present the algorithm in 

two variants. For the sake Of simplicity and clarity, we will 
first present an algorithm for the case that  all nodes know 
the highest degree A in the network. In a second step, we 
will then generalize this algorithm such tha t  the knowledge 
of A is not necessary any more. 

During the algorithms, the nodes increase their  x-values over 
time. In accordance with other dominat ing set papers (e.g. 
[9, 10]), we say that  a node vl is colored gray as soon as 
the sum of the weights xj  for vj E N~ exceeds 1, i.e. as 
soon as the node is covered. Init ially all nodes are colored 
white. The number of white nodes vj E N / a t  a given t ime is 
called the dynamic degree of vi and denoted by 5(vi). When 
start ing the algorithms, all nodes are white, thus 5(vi) = 
5 / + 1 .  

Assume now tha t  all nodes know A, the maximum degree 
of the network. Algorithm 2 is synchronously executed by 
all nodes (a(vl) and zi are auxiliary variables which are ex- 
plained later). 

A l g o r i t h m  2 LPMDs approximation (A known) 

1: xi := 0; 
2: for  g := k -  l to 0 by - l  d o  
3: (* 5(v~) _< (A-.~... 1.) (~+~)/k, z~ :=: 0 *) 
4: f o r m : = k - 1  t o 0 b y - 1  d o  
5: ( ,  a(v~) < (zx + 1) ('~+~)/~ , )  
6: s e n d  color/ to all neighbors; 
7: 5(vi) := [{j e Ni I colorj = 'white '}l;  
8: if  5(vi) >_ (A + 1) e/k t h e n  

9: ~ := max {~ .  ~x;~7=r~ ) 
10: fi; 
11: s e n d  x/ to all neighbors; 
12: if  ~ e g x j  > 1 t h e n  colorl := 'gray '  fi; 
13: o d  
14: ( .  z./, < 1 / ( A  + 1) (~- j ) /~  *) 
15: o d  

Before coming to a detailed analysis of Algori thm 2, we give 
a general overview. During the algorithm, each node v~ cal- 
culates the corresponding component xl of the solution for 
LPMDs. Init ially all xi are set to 0, they are then gradually 
increased as the algorithm progresses. The algori thm con- 
sists of two nested loops. The purpose of the outer  loop is to 
gradually reduce the highest dynamic degree in the network. 
As indicated by the invariant in line 3, 5(vl) is reduced by 
a factor (A + 1) 1/k in every i teration of the outer loop. In 
the inner loop, the x-values are increased stepwise. By this 
we can guarantee that  the total  weight is not too high. 

Lemma 5.1 explains the invariant of line 3. 

LEMMA 5.1. At the beginning of each iteration of the outer 
loop off Algorithm 2, i.e. at line 3, the dynamic degree 5(vl) 
of each node vi is 5(vi) <_ (A + 1) (e+l)/k. 

PROOF. For £ = k - 1 the condition reduces to 5(v/) < 
A + 1 and therefore follows from the definition of A. For 
all other iterations the lemma is true because in the very 
last step of the preceding i terat ion (£ + 1), all nodes with 
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5(vi) >_ (A + 1) (e+~)/~ have set x~ := 1 in line 9. By this all 
nodes in Ni have turned gray and therefore 5(vl) has become 
0. Thus all degrees exceeding (zh + 1) (~+l)/a have been set 
to 0, for all others the invariant already held beforehand. 

[] 

In a single iteration of the outer loop, only nodes with 
~(vi) > (A + 1) e/~ increase their x-value (lines 8-10). We 
call those nodes active. The number of active nodes in the 
closed neighborhood Ni of a white node vi at the beginning 
of an inner-loop iteration (line 5) is called a(vi). We define 
a(vi) := 0 if vi is a gray node. The purpose of the inner 
loop is to gradually reduce the maximum a(v) in the graph 
(invariant in line 5): 

LEMMA 5.2. At the beginning of each iteration of the in- 
ner loop of Algorithm 2, i.e. at line 5, a(vi) < ( A + I )  (m+l)/k 
for all nodes v~ ~ V. 

PROOF. For m = k - 1 we have a(vl) _< (zX + 1) which 
is always true. For the other, cases, we prove that all nodes 
vi with a(vi) too high have been covered in the previous 
iteration of the inner loop (i.e. they have become gray and 
therefore a(vi) has become 0). We show that all nodes vi for 
which a(vi) > (A + 1) m/k at line 5 are colored gray at the 
end of the inner-loop iteration (i.e. after line 14). All active 
nodes vj increase xj  such that xj _> 1/(zX+ 1) m/k (lines 8-10 
of Algorithm 2). If a(vi) > (A + 1) m/~ there are more than 
(A + 1) m/k active nodes in N~;. Therefore the sum of the 
x-values in N~ is greater or equal to 1 after line 10. [] 

In order to count the weights assigned during the iterations 
of the inner loop, we assign a w~riable zi to each node vi. In 
line 3 all zi are set to 0. Whenever a node vi increases x~, the 
additional weight is equally distributed among the zj of all 
the nodes vj in Ni which are white before the increase of xi.. 
Hence the sum of the z-values is always equal to the sum of 
the x-increases during the current iteration of the outer loop. 
We can show that  at the end of every iteration of the outer 
loop, i.e. at line 14, all zi < 1 / ( ,~+ 1) (~-l)/k. Together with 
the invariant in line 3, this enables us to prove a bound on 
the total weight of the additional x-values in each iteration 
of the outer loop. 

LEMMA 5.3. At the end of an iteration of the outer loop 
of Algorithm 2, i.e. at line 14, 

1 

(A +-1) 

for all nodes vl E V. 

PROOF. Because zi is set to 0 in line 3, we only have to 
consider a single iteration of the outer loop, i.e. a period in 
which g remains constant, zi can only be increased as long as 
vi is a white node. The increases all happen in line 9 because 
only there the x-values are increased. For each white node 
vi, we divide the iteration of the outer loop into two phases. 
The first phase consists of all inner-loop iterations where vi 

remains white. The second phase consist of the remaining 
inner-loop iterations where vi becomes or is gray. During ~ 
the whole first phase ~jEN~ xj < 1. Because all increases of 

x-values are distributed among at least (A + 1) ~/k z-values 
we therefore get 

Zi < ~ j e N  i Xj  1 < (2) 

for phase 1. In line 9 of the first inner-loop iteration of 
the second phase, z~ gets its final value because only z- 
values of white nodes are increased. All active nodes have 
already been active in the preceding inner-loop iteration 
because 5(vj) can only become smaller over time. Thus 
from the preceding iteration, all active nodes vj E Ni have 
xj  > 1/(A + 1) (m+l)/k. In line 9 they are now increased 
to 1/(A + 1) '~/k. The difference of this value is distributed 
among at least (~  + 1) ~/k z-values and because the number 
of active nodes in Ni is a(vl), the increase of zi is at most 

1 1 

(~+1)'~ ( a + l ) z ' ~  a(vi). (3) 
(zh + 1)~: 

To obtain a bound on z~, we have to add its value before 
the increase which is given by Equation (2). From Lemma 
5.2 we know that a(v,) < (A + 1) (m+l)/k. Plugging this into 
the sum of (2) and (3), we obtain 

z~ _< (A + 1) ¼ - 1 + __.......1_....._ _ 1 

(A + 1)~- ( A +  1)~ (A + 1 ) ~  z '  

which concludes the proof. [] 

We are now ready to consider the overall approximatioff ra- 
tio of Algorithm 2. 

THEOREM 5.4. For all network graphs G, Algorithm 2 
computes a feasible solution x for the linear program LPMDs 
such that x is a k (A  + 1)2~k-approximation of LPMDs. Fur- 
ther Algorithm 2 terminates after 2k 2 rounds. 

PROOF. For the number of rounds, we see that each iter- 
ation of the inner loop involves the sending of two messages 
and therefore takes two rounds. The number of such itera- 
tions is k 2. 

Further, the calculated x-values form a feasible solution of 
LPMDs because in the very last iteration of the inner loop 
(g = 0, m = 0) all nodes vl with 5(vi) > 1 set xi := 1. This 
includes all remaining white nodes. We prove the approxi- 
mation ratio of k(A + 1) 2/k by showing that the additional 
weight (i.e. sum of x-values) is upper-bounded by (A + 1) 2/k 
in each iteration of the outer loop. From Lemma 5.1, we 
know that at line 3, i.e. when the iteration starts, the dy- 
namic degree 5(vl) of each node vl is 5(vi) < (A + 1) (t+l)/k. 
Hence there are at most (A + 1) (t+l)/k non-zero z-values in 
the closed neighborhood of every node v~ at the end of an 
outer-loop iteration at line 14. Further Lemma 5.3 implies 
that all z-values are less than or equal to (A + 1) -(~-l)/k 
at line 14. The sum of the z-values in the direct neighbor- 
hood of a node vi during each iteration of the outer loop is 
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therefore upper-bounded by 

E z~ < ( A +  1)-~-- = ( A + I ) ~ .  
~eN, -- (ZX + 1) -~-~ 

If we assign Yi := z~/(A + 1) 2/k, the y-values form a feasible 
solution for the dual LP DLPMDs because Vi : ~ j e N .  Y~ <-- 1. 
Hence the sum of all y-values is a lower bound on ' the  size 
of DSoPT and therefore ~ 1  z~ <_ (A + 1)u/alDSoPw I for 
every iteration of the outer loop. Because z is defined such 
that the sum over all z-values is equal to the sum over all 
increases of the x-values, and because there are k iterations 
of the outer loop, we have 

n 

_ ~ I DSoPTI. < + 1) 
i = 1  

at the end of Algorithm 2. [] 

The only thing which cannot be calculated locally in Algo- 
rithm 2 is the maximum degree ZX. Algorithm 3 is an adap- 
tation of Algorithm 2 where nodes do not need to know A. 
In each iteration, Algorithm 3 assigns an xi which is greater 
or equal to the xi assigned in the corresponding iteration 
of Algorithm 2. However, the xi are chosen such that the 
approximation ratio of k(A + 1) 2/~ is preserved. 

A l g o r i t h m  3 LPMDs approximation (A not known) 

1: xi := 0; 
~(2). ( .  2 cornrn.unication rounds *) 2: calculate- i  , 

3: @2)(vi) := 5} 2) + 1; 5 (v i ) :=  5i + 1; 
4 : f o r £ : = k - 1  t o 0 b y - l d o  
5: (* ~ ( v d  < (~  + 1) (~+~)I~,  z~ : =  0 .)  
6: f o r m : = k - 1  t o 0 b y - 1  do 

2 7: if ~(vl) > 3 ̀()(vi) t+~ t h e n  
8: s e n d  'active node' to all neighbors 
9: fi; 

10: a(vi) := I{J E Nilvj is 'active node'}l; 
11: if colori = 'gray' t h e n  a(vi) := 0 fi; 
12: s e n d  a(vi) to all neighbors; 
13: a(1)(vi) := maxjeN,{a(vj)}; 
14: (, o.(,,d~ (~.(:~)(~) _< (~  + 1) ( m + ~ ) / ~  *) 

2 -Z--  15: if 5(vi) > 3`()(vi) ~+~ t h e n  

16: Xi := rnax {xi,a(1)(vl) - ~ - f  } 
17: fi; 
18: s e n d  xi to all neighbors; 
19: if ~je~v x~ >_ 1 t h e n  colors := 'gray' fi; 
20: s e n d  colori to all neighbors; 
21: 5(vi) := I{J e Ni I colors = 'white'} I 
22: od; 
23: ( .  zl _< (1. ~- (zX -t- 1.):~/k)/@a)(v~) ~/(~+~) *) 
24: s e n d  5(vi) to all neighbors; 
25: @~)(vi) := maxjeg,{5(vj)};  
26: s e n d  @l)(vl) to all neighbors; 
27: @2)(vl) := max3eN,{@~)(vj)} 
28: od  

As for Algorithm 2, we first introduce some n o t a t i o n .  3`(d)(vi) 
denotes the maximum dynamic degree of all nodes with dis- 
tance at most d from vi at the beginning of the outer-loop 

iteration. We use the notation @d)(vl) instead of 5(a)(vi) 
because 3`(d)(vi) remains constant during an iteration of the 
outer loop while 5(vi) potentially changes after every iter- 
ation of the inner loop. In each inner-loop iteration, all 
nodes which assign a new x-value in line 16 of Algorithm 
3 are called active. As before, a(vi) denotes the number of 
active nodes in the direct neighborhood Ni of a white node 
vi; for gray nodes a(vi) := 0. a(1)(vi) is the maximum a(vj) 
among all j E Ni. 5(v~) and zi are used as in the previ- 
ous algorithm. We are now showing that  Lemma 5.1 and 
Lemma 5.2 (cf. Lemma 5.5 and 5.6) also hold for Algorithm 
3. 

LEMMA 5.5. At the beginning of each iteration of the outer 
loop of Algorithm 3, i.e. at line 5, the dynamic degree 5(v~) 
of each node vi is 5(v~) <_ (A + 1) (~+l)/k. 

PROOF. We use induction to prove the lemma. Analo- 
gously to Lemma 5.1, for the first iteration (~ = k - 1), the 
lemma follows from the definition of A. To prove the lemma 
for subsequent iterations (iteration step), we show that  as 
for Algorithm 2, all nodes with 5(v~) >_ ( A +  1) t/k set x~ := 1 
in the last iteration (m = 0) of the inner loop. According 
to lines 15-17 of the algorithm, we see that  all nodes with 
5(vi) > 3`(2)(vl)e/(e+l) set xi := 1 for m = 0. Hence we have 
to show that Vi :@2)(vi)e/(e+l) < (2~ + 1) e/k. By the induc- 
tion hypothesis, we know that  Vi :5(vl) _< (A + 1) (e+l)/k at 
the beginning of the outer-loop iteration. Because 3`(2)(vi) 
represents 5(vj) of some node vj in the two-hop neighbor- 
hood of v~, we also have Vi : @2)(vi) < (A + 1) (e+l)/k and 
therefore 

3`(2)(vi)d-~ < (zX + 1) ~ '-~1 = ( ~  + 1) ~. 

[] 

LEMMA 5.6. Before assigning a new value xi to vi in lines 
15-17 of Algorithm 3, a(vi) _< (~  + 1) (m+l)/k for all nodes 
vi E V .  

PROOF. As for Lemma 5.2, we prove that  all nodes v/ 
for which a(vi) > (A + 1) m/k at line 14 are colored gray 
at the end of the inner-loop iteration (i.e. after line 21). 
We use induction over the iterations of the inner loop. By 
the definition of A for every first iteration of the inner loop 
(a(v~) < A + 1) and by the induction hypothesis for all other 
iterations, we have Vi : a(v~) < (A + 1) (m+l)/k at line 14. 
Therefore the weight each active node vj assigns in line 16 
is 

1 1 
xj > ,. 

-- a(1)(vj),,,.+l -- (ZX + 1 ) " L : " , : ; '  
1 

(A + 1) ~ '  

Because nodes vl with a(vi) _> (A + 1) m/k have at least 
( ~ +  1) talk active nodes in the direct neighborhood, they are 
covered after each of their a(vi) neighbor nodes vj assigns a 
weight xj > 1/(A + 1) m/k. [] 

Lemma 5.7 is the analogue to Lemma 5.3. 

30 



LEMMA 5.7. At line 23 of Algorithm 3, 

1 + (~x + 1) 
zi 

for all nodes vi ~ V. 

(4) 

PROOF. As in Algorithm 2, z~ is set to 0 at line 5. There- 
fore, we only have to consider a single iteration of the outer 
loop. Again we consider two phases. In the iterations of 
the first phase vi remains white, the second phase consists 
of the iterations where vi becomes or is gray. While the 
algorithm is in the first phase ~jEN i Xj < 1. Further, 
all increases of values xj are distributed among at least 
7(2)(Vj) e/Oe+l) ~ "~(1)(Vi)£/(£+1) z-values. Therefore, in anal- 
ogy to (2), we have 

xj  1 
z~ < ~ 7(~)(~1,~ < ~ (51 

~eN~ 70)(vi) r~r 

for phase 1. In line 16 of the first inner-loop iteration of the 
second phase, zi is changed for the last time because only 
z-values of white nodes are increased. There each active 
neighbor xj contributes at most 

1 1 

1 ._L_ 

to the values zi. Because a(vl) _< aO)(v~) and because vi has 
a(v~) active nodes in the closed neighborhood N~ the total 
increase of z~ is at most 

1 
a(vi) m+l 1 ,,, 1 e .a(vi) = 1 ~ .  (6) 

a(vi)~z~ 7 (1)(vi) ~.¥~- 7() (Vl)  T M  

By Lemma 5.6, we have a(v~) < (A + 1) (m+~)/k during an 
iteration of the inner loop. Plugging this into (6) and adding 
the value of z~ from the preceding iterations (5) concludes 
the proof: 

1 

( (A + 1):"~-"~-) "y+' + 1  ( A +  1)¼ + 1  
Zi ~ 

1 

[] 

As for the other algorithm, we analyze each outer-loop it- 
eration separately to determine the approximation ratio of 
Algorithm 3. By the definition of z, the sum of the x-values 
of an outer-loop iteration is equal to the sum of the corre- 
sponding z-values. By Lemma 5.7 the sum of the z-values 
in the closed neighborhood of a node v~ in a single iteration 
of the outer loop is 

E zj < I + ( A + I ) ~  - ~ _L_ . ~ ( ~ ) .  ( 7 )  
3eg~ 7()(v~) ~+1 

Because 70)(vi) is the maximum dynamic degree in N~, 
5(vl) < 70)(vi). Equation (7) can thus be formulated as 

E z j ~ ( l + ( A + l ) ~ ) 7 ( ' > ( v i ) ~  --~. (8) 
jENi 

By Lemma 5.5 we know that 7(1)(v~) < (A + 1) (e+l)/k and 
therefore 

7(1)(vi)T-~ -f < (z~x "-b 1) 1/k. 

Plugging this into Equation (8) yields 

E zj <_ (LX+i)  1 / k + ( ~ + 1 )  2/k. 
jENi 

By dividing all zi by the right hand side of the above in- 
equality, we obtain a feasible solution for DLPMDs: 

Zi 
Yi:= ( A + i ) ~ + ( A + i )  ~ ~ E y i _ < l .  

jEN~ 

The sum of the z-values of an outer-loop iteration is there- 
fore at most by a factor (A + 1) 1/k + (A + 1) 2/k larger than 
the size of an optimal dominating set. At the end of the 
algorithm the sum over all xi (objective function of LPMDs) 
is equal to the sum over the sums of the z~ for each outer 
loop iteration. Therefore 

n 
E X i  ~ k  ( ( ~  + j .)l /k ..~ (z~ --~ 1)Z/k) • I D S o P T [ .  
i=1 

[] 

THEOREM 5.8. For all network graphs G, Algorithm 3 
computes a feasible solution x with approximation ratio 

((~X -l- 1) 1/k -F (A + 1) z/k) k 

for the linear program LPMDs • Further Algorithm 3 termi- 
nates after 4k z + O(k) rounds. 

PROOF. The running time (i.e. number of rounds) can be 
determined as for Algorithm 2. In each iteration of the inner 
loop, 4 messages have to be sent. This yields 4k 2 rounds 
for the totally k 2 inner-loop iterations. There is a constant 
number of additional rounds in each outer-loop iteration as 
well as at the beginning of the algorithm. Together, we get 
the claimed 4k 2 + O(k) rounds. 

Analogously to Algorithm 2 x is feasible because in the very 
last iteration of the inner loop (~ = 0, m = 0), all white 
nodes vi set xi := 1. 

Combining Algorithms 3 and i we obtain a distributed dom- 
inating set algorithm. 

THEOREM 5.9. Applying Algorithm 3 to obtain a LPMDs- 
approximation and Algorithm 1 to convert this approxima- 
tion into a dominating set yields a distributed algorithm for 
the minimum dominating problem which achieves an approx- 

imation ratio of O(k~2 /k  log ~x) in O(k 2) rounds. 

PROOF. Theorem 5.9 directly follows from Theorems 4.2 
and 5.8. [] 

Remark:  
By setting k = e(log~x), we obtain an algorithm which 
computes a O(log 2 ~ )  approximation for MDS in O(log z ~x) 
rounds. 
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6. CONCLUSION 
In this paper, we presented a distributed approximation al- 
gorithm for the minimum dominating set problem. By com- 
puting an O(kA 2/k log A)-approximation in O(k 2) rounds 
it is the first algorithm which achieves a non-trivial approx- 
imation ratio in a constant number of rounds. Particularly 
in the context of mobile ad-hoc networks but also in more 
general network settings, we believe that  it is often advan- 
tageous to deploy algorithms which are very fast even when 
the calculated solution is not as good as the solution of a 
less local algorithm. 
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