
On the Locality of Bounded Growth

Fabian Kuhn
Computer Engineering and

Networks Laboratory
ETH Zurich

8092 Zurich, Switzerland

kuhn@tik.ee.ethz.ch

Thomas Moscibroda
Computer Engineering and

Networks Laboratory
ETH Zurich

8092 Zurich, Switzerland

moscitho@tik.ee.ethz.ch

Roger Wattenhofer
Computer Engineering and

Networks Laboratory
ETH Zurich

8092 Zurich, Switzerland

wattenhofer@tik.ee.ethz.ch

ABSTRACT
Many large-scale networks such as ad hoc and sensor net-
works, peer-to-peer networks, or the Internet have the prop-
erty that the number of independent nodes does not grow
arbitrarily when looking at neighborhoods of increasing size.
Due to this bounded “volume growth,” one could expect
that distributed algorithms are able to solve many problems
more efficiently than on general graphs. The goal of this
paper is to help understanding the distributed complexity
of problems on “bounded growth” graphs. We show that on
the widely used unit disk graph, covering and packing linear
programs can be approximated by constant factors in con-
stant time. For a more general network model which is based
on the assumption that nodes are in a metric space of con-
stant doubling dimension, we show that in O(log∗n) rounds
it is possible to construct a (O(1), O(1))-network decompo-
sition. This results in asymptotically optimal O(log∗n) time
algorithms for many important problems.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—computa-
tions on discrete structures;
G.2.2 [Discrete Mathematics]: Graph Theory—graph al-
gorithms;
G.2.2 [Discrete Mathematics]: Graph Theory—network
problems

General Terms
Algorithms, Theory

Keywords
bounded growth, covering, distributed algorithms, dominat-
ing sets, doubling dimension, locality, maximal independent
set, network decomposition, packing, unit disk graphs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’05,July 17–20, 2005, Las Vegas, Nevada, USA.
Copyright 2005 ACM 1-59593-994-2/05/0007 ...$5.00.

1. INTRODUCTION
The advent of wireless multi-hop networks such as mo-

bile ad hoc and sensor networks has brought about many
new algorithmic challenges and paradigms, and it has cre-
ated a flurry of research activity in this new field. Some of
the specific challenges stemming from these network types
are mobility and energy constraints. Yet, in spite of these
new aspects, most of the algorithmic design principles have
remained the same as in classical distributed systems. One
important difference between wireless and classical networks
is that wireless networks look different. While in classical
systems, there often is no restriction on the network topol-
ogy, in wireless networks, it is usually assumed that the
network structure is defined by some geometric graph.

1.1 Model
In the ad hoc and sensor networks community, the most

important and most widely used graph model is the unit
disk graph (UDG). It is assumed that all nodes are in the
Euclidean plane. There is an edge between two nodes if
and only if their distance is at most 1. The UDG model
idealizes a real scenario where the radios of all wireless nodes
have equal transmission ranges (normalized to 1) such that
two nodes can communicate whenever they are within each
others transmission range.

While on the one hand, issues such as mobility or en-
ergy make ad hoc networks a theoretically interesting and
tremendously challenging subject to study, the fact that
UDGs are a lot simpler than general graphs should on the
other hand make many problems easier than in the general
case. In a non-distributed setting, it is indeed true that for
many problems UDGs often allow constant approximations
or even polynomial time approximation schemes (PTAS)
whereas the same problems cannot be approximated well
for general graphs. In a distributed scenario, often, the best
known algorithms for UDGs are not faster than the best al-
gorithms for general graphs. On general graphs, for many
network coordination tasks such as the construction of small
dominating sets, maximal independent sets, or graph color-
ings, strong upper and lower bounds are known (e.g. [16, 17,
20, 22]). A lot less is known about the distributed complex-
ity of the same problems on UDGs. In fact, to the best of
our knowledge, the only non-trivial lower bound that applies
to UDGs is Linial’s Ω(log∗n) for coloring the ring [20]. With
the exception of [10] (expected O(1) approximation for dom-
inating set in O(log log n) rounds), time upper bounds are
usually polylogarithmic. However, as the example of the
minimum vertex cover problem shows, there are problems

which are simpler on UDGs than on general graphs. On the
one hand, it can be shown that all non-isolated nodes of a
UDG form a 2-approximation for minimum vertex cover. On
the other hand, it is shown in [17] that Ω(

p
log n/ log log n)

rounds are needed on general graphs.
The goal of this paper is to improve this situation by giv-

ing fast algorithms for all of the discussed problems for the
UDG and interesting generalizations of the UDG. For our
algorithms, we assume that each node can learn the dis-
tances to all its neighbors. Our main result (Section 5)
is formulated for the following generalization of the UDG
model which we call unit ball graph (UBG). Assume that
nodes are points in some metric space. Two nodes are con-
nected by an edge if and only if their distance is at most 1.
Each node knows the distances to all its direct neighbors.1

Our result for UBGs depend on the doubling dimension of
the underlying metric; they are particularly strong if we
have a doubling metric (constant doubling dimension). We
define the doubling dimension of a metric as the smallest ρ
such that every ball can be covered by at most 2ρ balls of
half the radius. Note that this definition is up to constants
equivalent to alternative definitions which have been used
in the literature.

Besides that the described extension of UDGs towards
general metric spaces makes our results stronger, it is mainly
interesting for two reasons. First, although in theory the
UDG model is widely used, describing ad hoc and sensor
networks as UDGs is usually far from reality. On the other
hand, a realistic graph model should comprise the geomet-
ric properties of wireless network graphs. While having a
distance metric which is doubling certainly keeps many of
the good properties real wireless networks have, many of the
too idealized assumptions are dropped. The second reason
for looking at networks which are based on metric spaces of
small doubling dimension is that growth restrictions are a
natural assumption in many other networks such as peer-to-
peer networks or the Internet. It is for example commonly
assumed that the distance metric induced by Internet laten-
cies is doubling. Hence, from that perspective, this paper
proves strong upper bounds on the locality of many prob-
lems in the Internet.

All our algorithms and results apply to the standard syn-
chronous message passing model where time is divided in
rounds. In every round, each node can send a message to all
of its neighbors. Although we give upper bounds on message
sizes at some places, we generally assume that message size
is unbounded and that there is no restriction to local com-
putations. Note that we assume that each node can send
a different message to each neighbor while in wireless net-
works, it is often assumed that a node can only send the
same message to all neighbors (local broadcast). As long as
there is no assumption on the maximum message size, the
two models are equivalent because a node can pack the in-
formation for all neighbors into one large message which is
then locally broadcasted.

1.2 Results
The paper has two main results. In Section 4 we show

that in the described UDG model, an arbitrary covering or
packing linear program (LP) can be approximated with a

1In fact it is even sufficient that all nodes know the dis-
tances to their neighbors up to a constant factor and that
the triangle inequality holds up to a constant factor.

constant factor in a constant number of rounds. The frac-
tional versions of many important problems such as mini-
mum dominating set, maximum matching, or certain flow
problems fall into this category. The result is especially in-
teresting in light of recent lower bounds for fractional cover-
ing and packing problems which show that on general graphs
for a constant approximation, at least Ω(

p
log n/ log log n)

rounds are required [16, 17].
In Section 5, we give a deterministic algorithm which com-

putes an (O(1), O(1))-decomposition in O(log∗n) rounds on
a UBG if the underlying metric is doubling. A (d(n), c(n))-
network decomposition of a graph G = (V, E) is a partition
of V in disjoint clusters, such that the subgraph induced
by each cluster is connected, the diameter of each cluster
is in d(n), and the chromatic number of the resulting clus-
ter graph is in c(n), where the cluster graph is obtained by
contracting each cluster into a single node [5]. A network
decomposition is a very basic structure which can be used
as the basis of distributed algorithms for a huge number of
problems. For instance, given a (d(n), c(n))-decomposition
a maximal independent set (MIS) or a ∆+1-graph coloring
can be computed in time d(n) · c(n) (∆ is the largest degree
of the graph). First all clusters of the first color compute
a MIS/coloring in parallel in time d(c). Subsequently, the
clusters of the next colors add their contributions to the
MIS/coloring. In a similar way, a c(n)-approximation for
minimum dominating set can be computed in time d(n).
Here, the clusters of different colors do not have to wait for
each other. Another essential application of network decom-
position is the synchronization of asynchronous systems as
introduced by Awerbuch [4]. Note that the time complexity
O(log∗n) of our decomposition algorithm is asymptotically
optimal due to the matching Ω(log∗n)-lower bound for com-
puting a MIS on a ring [20].

All our algorithms are formulated for the synchronous
message passing model. Time is divided in rounds. In each
round, each node can send a message to each of its neigh-
bors.

The rest of the paper is organized as follows. Section 2
discusses related work. The technical results are presented
in Sections 3, 4, and 5. The paper is concluded in Section 6

2. RELATED WORK
Unit disk graphs have been used in a great number of pa-

pers on ad hoc and sensor networks. Especially interesting
in the context of the present paper are local distributed ap-
proximation algorithms for problems such as the minimum
dominating set problem which is used in order to cluster
wireless networks [2, 10]. Also closely related to our work are
distributed algorithms which locally construct sub-graphs
of the UDG with certain desirable properties (spanner, pla-
nar, etc.), a task which is usually called topology control
[28, 27]. In ad hoc and sensor networks, nodes are often
assumed to know the distances to their neighbors or even
their coordinates. In [8], distances are used to construct lo-
cal coordinate systems which can then for instance be used
for routing. Other applications such as geometric routing
[19] or location services [1] build on the fact that nodes even
know their coordinates in the plane.

Bounded growth metrics in general and doubling metrics
in particular have found quite a lot of attention recently [12,
14, 15, 24, 26]. It is proposed that latencies of many real
networks such as peer-to-peer networks or the Internet are

7 7

77 8 8

8 8

4 4

4

44 2 32

6 5 6

2 3432

3

5

1 3

11

1

1

1

5 6

2

5 6

23

Figure 1: Coloring of the grid with 8 colors

doubling. The network-related problems which are solved
include metric embeddings [12, 14], distance labeling and
compact routing [26], and nearest neighbor search [15]. The
doubling dimension has been introduced in [12], however, a
similar notion has already been used in [3].

The concept of network decomposition has been intro-
duced in [5] in which the authors present a deterministic
O(f(n)c) time algorithm for computing an (f(n)c, f(n)c)-
decomposition, where c is a constant and where f(n) =

n
√

log log n/ log n. They also showed how their decomposi-
tion algorithm can be used in order to obtain determin-
istic O(f(n)c) algorithms for finding a maximal indepen-
dent set or a (∆ + 1) coloring in G. Building on earlier re-
sults in [6], it was shown in [21] that every graph G admits
a (log n, log n)-decomposition. Algorithm [21] gives a ran-
domized distributed algorithm with expected running time
O(log2 n) that computes such a decomposition. The deter-
ministic algorithm of [5] was subsequently improved in [23],
yielding a (g(n)d, g(n))-decomposition in time O(g(n)d),

where d is a constant and g(n) = n
√

1/ log n. For unit disk
graphs, the fastest known (randomized) algorithm to com-
pute a (O(1), O(1))-decomposition is to first compute a MIS
in expected time O(log n) using an algorithm by Luby [22],
the nodes are then clustered around the MIS nodes which
become cluster leaders.

3. GLOBAL COORDINATES
In the literature, wireless ad-hoc and sensor networks are

often modeled as unit disk graphs. Additionally, many al-
gorithms assume that nodes have access to coordinate in-
formation [1, 2, 19, 27, 28]. Nodes obtain this information
from a positioning system such as GPS either directly or
by running a distributed positioning algorithm. In this sec-
tion, we will have a closer look at this graph model and give
a simple construction of a (O(1), O(1))-decomposition. We
assume that nodes know their coordinates in the Euclidean
plane and that two nodes can communicate directly if and
only if their distance is at most 1 (UDG model). Note that
this means that nodes “see” a common global coordinate
system.

Having a global coordinate system enables to compute a
decomposition as described in Section 1. We use the stan-
dard trick of partitioning the plane by a grid into square
cells of side length 1/

√
2. Each square cell defines a cluster

of nodes. By checking their coordinates, nodes can decide
in which cell they are located and hence to which cluster
they belong. Since the length of the diagonal of a single
square cell is 1, the induced graph of each cluster is a clique.

A proper coloring of the cluster graph is obtained by glob-
ally coloring the grid such that no two cells whose distance
is less than 1 are colored with the same color. Figure 1
shows how this can be achieved using 8 colors. Hence, by
assigning each cluster the respective color, we obtain a (1, 8)-
decomposition.

It is of course not surprising that global information such
as coordinates helps devising fast distributed algorithms.
The possibility of computing a (O(1), O(1))-decomposition
from UDG coordinates alone indicates the power of such
coordinate information. It means that unit disk graph coor-
dinates suffice to compute essentially everything which can
be computed locally in a constant number of rounds. In the
next section, we will see that the described simple algorithm
for computing a network decomposition can even be applied
in some form in absence of global information.

4. FRACTIONAL COVERING AND PACK-
ING PROBLEMS

In most cases, it is not realistic to assume that there is
a positioning system which nodes could use to obtain coor-
dinate information. In this section, we show that the main
ideas of the last section can be adapted in order to solve
many interesting problems in the case where no global in-
formation is present.

We again consider the standard unit disk graph model.
In addition to knowing the direct neighbors, we merely as-
sume that nodes can sense the distances to their neighbors.
By exchanging this information for a few rounds, this en-
ables the nodes to build up a local coordinate system. That
is, distances between nodes can be used to compute angles
and to learn about the geometry of the neighborhood. It is
however not possible to align all those local coordinate sys-
tems, each node has its own local view. Assume for instance
that we want to compute a small dominating set. In the
presence of global coordinates, we can compute a network
decomposition as described in the last section. Choosing
one node per cluster (e.g., the node with the largest ID)
gives a dominating set which is only by a constant factor
larger than an optimal dominating set. If we try to do this
with the local coordinate systems, the clusters of different
local system will be different. Hence, also the selected nodes
(dominating set) will be different in each coordinate system.
This can lead to disastruous solutions and does not yield a
non-trivial approximation.

While all the local coordinate systems inherently differ
from each other, the set of all possible global coordinate sys-
tems is the same at every node. Hence, if we computed all
dominating sets corresponding to the clusterings of all (in-
finitely many) different global coordinate systems, all nodes
would come up with their local part of the same (multi-
)set of different global dominating sets. It is of course still
not possible to globally select one of these dominating sets.
However, if we assign values 0 and 1 to non-dominators and
dominators, respectively, it is possible to compute the av-
erage over all dominating sets. This does not result in a
global dominating set, however it does result in a common
fractional dominating set solution, that is, we solve the nat-
ural LP relaxation of the dominating set problem.

In the following, we present an explicit and more general
algorithm for the above intuitive description. We consider
fractional covering and packing problems. A covering prob-

lem (PLP) and its dual packing problem (DLP) are linear
programs of the form

min cTx

s.t. A · x ≥ b

x ≥ 0

max bTy

s.t. AT · y ≤ c

y ≥ 0

where all entries of A, b, and c are non-negative. The dual
LP of a covering LP is a packing LP and vice versa. We
assume that all variables xi and yi represent some value in
the graph, that is, they belong to some node or edge. We
assume that the conditions of the LP are local in the sense
that whenever a primal (dual) variable xi (yj) occurs in the
inequality corresponding to a dual (primal) variable yj (xi),
xi and yj are separated by at most a constant number of
hops in the network graph. This locality condition is true in
all natural network coordination problems such as minimum
dominating set (MDS), maximum matching (MM), etc. In
MDS, for each nodes vi there is a primal variable xi and a
dual variable yi. The primal feasibility condition demands
that the sum of the x-values in the 1-neighborhood of all
nodes is at least 1, the dual feasibility condition states that
the sum of the y-values of each 1-neighborhood is a most
1. Hence, only variables of adjacent nodes occur together
in an inequality of the MDS LP. For MM, x-variables are
associated with nodes and y-variables correspond to edges.
Again, only adjacent variables occur together in the same
inequality.

We will now first look at a solution of such LPs based
on the network decomposition of Section 3. We will then
show, how to convert this into a solution which does not
need global coordinates using the idea of averaging over the
set of all possible solutions.

Assume that we are given a (1, O(1))-decomposition as
described in Section 3. By exchanging the IDs among direct
neighbors, each cluster can select the node with the largest
ID as leader. In parallel, each leader then computes a local
LP such that the combined local solutions form a constant
approximation for (PLP) or (DLP). Let v0 be the leader of
some cluster C0. Let Y0 be the set of all dual y-variables
which belong to nodes at distance at most 1 from v0 or to
edges which are adjacent to neighbors of v0. The set Y0

has a corresponding set E0 of primal inequalities of (PLP).
Let X0 be the set of primal x-variables which occur in the
inequalities E0. Let P0 be the covering problems consisting
of the objective function of (PLP) and the inequalities E0.
P0 is a LP on the variables X0. Further, let D0 be the
packing LP which is obtained by deleting all variables from
(DLP) which are not in Y0. That is, we restrict the matrix A
to the rows and columns defined by Y0 and X0, respectively.
By the definition of (PLP) and (DLP), the nodes and edges
of the variables in X and Y are all within constant distance
from v0. Thus, v0 can locally solve P0 and D0 in a constant
number of rounds. The local solutions for each cluster can
be combined by summing up the values of all local LPs for
each variable.

Lemma 4.1. Summing up the described local LPs for all
clusters yields solutions for (PLP) and (DLP) with the same
value of the objective function. The solution of (PLP) is a
feasible constant approximation, the solution of (DLP) can
be made feasible by dividing each y-variable by a constant
factor.

Proof. We start by proving the feasibility of (PLP). Be-
cause all clusters have diameter 1, all dual y-variables are in
the set Yi of at least one cluster leader vi. Therefore, every
inequality of (PLP) occurs in some local LP Pi. Because the
x-values of all local LPs are summed up, it is sufficient to
make every primal covering constraint feasible once in order
to obtain a globally feasible solution for (PLP).

For the almost-feasibility of (DLP), observe that we have
chosen the set Y0 such that the solution of the local dual
problem D0 is feasible for (DLP) (set all unused y-variables
to 0): Clearly all inequalities which appear in D0 are also
feasible for (DLP); because all inequalities of (DLP) contain-
ing a variable yi ∈ Y0 also appear in D0, all other inequali-
ties of (DLP) are of the form 0 ≤ cj for some j. Because of
the locality condition for our LPs, all xi ∈ X0 are at a con-
stant distance from v0. Therefore, each xi can only occur in
a constant number of local covering LPs. Because there is
a one-to-one correspondence between primal variables and
dual inequalities, each dual inequality can as well only occur
in a constant number of local LPs. Because each local LP is
dual-feasible for (DLP), this means the the sum of all local
LPs is dual feasible for (DLP) up to a constant factor.

If all local LPs are solved optimally, the values of the
objective functions for a pair (P0, D0) of local LPs are equal.
Therefore, clearly, when summing up the local LPs, we get
the same objective function values for (PLP) and (DLP)
as well. By LP duality, the approximation factor of (PLP)
is at most equal to the constant factor by which the dual
inequalities have to be divided in order to obtain a feasible
(DLP) solution.

We will now show, how to average the described solution
over all possible coordinate systems. Equivalently to aver-
aging the x and y values for all possible coordinate systems,
we can choose one coordinate system uniformly at random2

and compute the expected values for the x and y variables.
In the above description, we have chosen the local LPs such
that they are independent of the nodes’ assignments to clus-
ters. They only depend on the choice of the cluster leaders.
Hence, each node vi can compute its local LP. Let pi be
the probability that vi is a cluster leader if the coordinate
system is chosen uniformly at random. If we assume that
every node vi can compute its pi, a constant-factor approx-
imation to a given covering or packing LP can be computed
as follows.

1. compute local LP and pi

2. increase all variables xj or yj of LP by pixj or piyj ,
respectively

3. if LP is a packing problem, divide by appropriate con-
stant factor

It remains to show that pi can really be computed. We
will present an elegant way to approximate pi up to a small
constant factor. By the construction of the network decom-
position of Section 3, pi is the probability that vi is the node
with the largest ID within its cell of a random square grid
of cell size 1/

√
2. Hence, pi is the probability that vi has

the largest ID in a random square or side length 1/
√

2 con-
taining vi. Because for every square of side length 1/

√
2,

2In principle, this means that the origin and the direction
of the x-axis are chosen uniformly at random

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

1/(2 2)
1

Figure 2: Computation of p′i: Node vi is at the cen-
ter, the encircled nodes are the neighbors of vi hav-
ing a larger ID than vi. The shaded area is propor-
tional to p′i.

there is a circle of diameter 1/
√

2 which is completely inside
the square, the probability p′i of having the largest ID in a
random circle of diameter 1/

√
2 is p′i ≥ pi. Using p′i instead

of pi in the above algorithm therefore guarantees that the
computed (PLP) solution is feasible.

We will now argue that the objective functions are not
affected too much by using p′i instead of pi. Let p′′i be the
probability that vi is the node with largest ID in a square of
side length 1/2 containing vi. Taking p′′i instead of pi cor-
responds to making the network decomposition with a grid
of cell size 1/2 instead of 1/

√
2. Using p′′i in the above algo-

rithm would therefore give a solution which is at most by a
factor 2 worse than the solution when using pi because the
area of each cell is smaller by a factor 2. Hence, the num-
ber of neighboring clusters in the decomposition doubles.
Additionally, we have that p′′i ≥ p′i because every circle of
diameter 1/

√
2 completely contains a square with side length

1/2. Thus, taking p′i instead of pi in the described algorithm
results in a feasible solution for (PLP) which is worse than
the solution using pi by at most a factor 2.

The probability p′i can be computed by vi as follows.

1. exchange 1-hop distances with neighbors

2. compute angles between adjacent neighbors

3. geometrically arrange neighbors in one possible way.

4. For some node v, let D(v) be the disk with radius
1/(2

√
2) around v. Further, let N+(v) be the set of

neighbors of v which have a larger ID than v. The
probability p′i can be computed as the area of

D(vi) \
[

u∈N+(vi)

D(u)

divided by the area of D(vi). That is, p′i is the fraction
of D(vi) which is not covered by any of the disks D(u)
with ID(u) > ID(vi).

Figure 2 illustrates step 4 of the described algorithm.

Lemma 4.2. The above algorithm correctly computes the
probability p′i that vi is the node with the largest ID in a
random circle of diameter 1/

√
2 containing vi.

Proof. We first assume that step 3 of the algorithm is
unique, that is, we have a local coordinate system where
vi and its neighbors are correctly geometrically arranged.
Choosing a random circle of diameter 1/

√
2 containing vi

can be done by placing the center of the circle uniformly
at random in the disk of radius 1/(2

√
2) around vi. For

a given center p, vi has the largest ID if there is no node
vj with ID(vj) > ID(vi) at distance at most 1/(2

√
2) from

p. Therefore, vi does have the largest ID if and only if
the center p is chosen at distance more than one from all
neighbors vj of vi with ID(vj) > ID(vi). This exactly is the
case if p is in the area which is computed in step 4 of the
algorithm. Hence, the lemma is true if step 3 is unique.

Let N(vi) be the induced graph of vi’s neighbors (not in-
cluding vi), that is, the edges of N(vi) are all edges between
neighbors of vi. We start with the case where N(vi) consists
of a single component. If we know the distances to two ad-
jacent neighbors as well as the distance between those two
neighbors, we can compute the angle at vi between the two
neighbors. If N(vi) is a single component, we can then find
the angles between all neighbors of vi. The geometry of the
1-neighborhood of vi is therefore determined up to rotation
around vi, that is, we can compute a local coordinate system
for which step 3 of the algorithm is unique.

Step 3 of the algorithm is not unique if N(vi) consists
of several connected components. The geometry of each
component can be determined, however the angle between
differenct components can not be infered from the knowl-
edge of the distances between neighbors alone. However,
two nodes from different components of N(vi) are at dis-
tance more than 1 from each other. Therefore, the disks of
radius 1/(2

√
2) around two nodes u, u′ ∈ N(vi) do not in-

tersect if u and u′ belong to different components in N(vi).
Thus, the area which is computed in step 4 is the same for
all possible geometric arrangments of the neighbors of vi.

The results of this section are summarized in the upcom-
ing theorem. The time bound for the fractional dominating
set problem follows because in this case the given algorithm
becomes particularly simple. The local LPs can be solved
in this case by assigning 1 to all cluster leaders and 0 to all
other nodes. Thus, the values p′i form a constant approxi-
mation for minimum fractional dominating set.

Theorem 4.3. In the given UDG model where distances
are known, all local fractional covering and packing prob-
lems can be approximated up to a constant factor in constant
time. In particular, the fractional minimum dominating set
problem can be approximated in a single round.

From a complexity theoretic point of view, looking at frac-
tional distributed problems is extremely interesting. On the
one hand, they usually still have the main properties of their
corresponding integer problems, on the other hand, some of
the synchronization problems occuring for the integer vari-
ants of the problems can be avoided. However, with some
exceptions [7], in practice we are mostly interested in in-
teger solutions. In the case of covering and packing prob-
lems, randomized rounding can be used in order to convert
fractional solutions into reasonable approximations for the
integer problems [25]. In [18, 16], an efficient distributed
formulation of randomized rounding is given.

To conclude this section, we would like to highlight an in-
triguing comparison concerning the distributed complexity

on unit disk graphs and on general graphs. In [17], we have
shown that on general graphs, approximating minimum frac-
tional dominating set up to a constant factor needs time at
least Ω(

p
log n/ log log n). The fact that in the given unit

disk graph model, we can compute a constant approximation
in a single communication round shows that there can be a
large gap between the distributed complexity of problems
on the unit disk graph and on general graphs.

5. NETWORK DECOMPOSITION
In the last section, we have seen that in the unit disk

graph, knowing the distances to direct neighbors is enough
to reasonably approximate important problems such as min-
imum dominating set in just one round or a constant num-
ber of rounds. If we want to compute more sophisticated
structures such as a maximal independent set or even a
(O(1), O(1))-decomposition, the methods of Section 4 can-
not be used. It is in fact not hard to see that it is not even
possible to construct a MIS or a decomposition in a constant
number or rounds. In [20], Linial proved that computing a
MIS on a ring needs at least Ω(log∗ n) rounds. Because a
ring where all edges have length 1 is a unit disk graph, this
lower bound applies to our model. Note that it does not
help to know the edge lengths if all edges have length 1. In
this section, we will show that in the model of Section 4, it
is indeed possible to compute a (O(1), O(1))-decomposition
in O(log∗ n) rounds. Our result even holds in a more general
model where nodes can “live” in an arbitrary metric space
instead of the Euclidean plane as in the UDG model. Anal-
ogously to the UDG model, we define the unit ball graph
where two nodes are connected by an edge if and only if
their distance is at most 1. Our result also applies in dif-
ferent related models where e.g. the distance between two
nodes reflects the propagation delay of messages between
the two nodes. The quality of the network decomposition
that we achieve depends on the doubling dimension of the
underlying metric.

5.1 Basic Algorithm
In this section, we will now first present a (potentially

slow) deterministic distributed algorithm which computs a
(2, O(1))-decomposition. In a second step (Section 5.2), we
will then show how the algorithm can be implemented such
that its runtime is O(log∗ n). For the slow version of the
algorithm, we assume that all nodes know the minimum dis-
tance dmin between any two nodes. This assumption would
not be necessary. However, making the assumption results
in a simpler, easier to understand algorithm. For the fast im-
plementation, the assumption is not needed anymore. The
computing of the decomposition is described by Algorithm
1.

Algorithm 1 starts with a small radius r which is increased
by a factor 2 in every iteration of the while loop. At the
beginning, the set V of possible cluster leaders contains all
nodes. In each iteration, a subset of the nodes is selected
such that the nodes selected in the subset form a maximal
independent set on the graph of all edges of length ≤ r.

Lemma 5.1. Algorithm 1 computes a (2, 24ρ)-decomposi-
tion where ρ is the doubling dimension of the underlying
metric. The maximum degree of the cluster graph is at most
24ρ − 1.

Algorithm 1 Network Decomposition: Clustering

1: r := min{2λ|λ ∈ Z ∧ 2λ ≥ dmin};
2: V := V ;
3: while r ≤ 1/2 do
4: G := (V, E) with E = {{u, v}|d(u, v) < r};
5: compute MIS on G; [9, 20]
6: V := {v ∈ V|v in MIS};
7: r := r · 2
8: od;
9: All nodes in V are cluster leaders, the other nodes belong

to the cluster of the nearest leader.
10: Let ∆C be the maximum degree of the cluster graph

GC . Color GC with ∆C + 1 colors. [9, 20]

Proof. We first prove that each node has a cluster leader
at distance at most 1 and that therefore, the diameter of
each cluster is at most 2. The algorithm maintains a set V
of nodes which are candidates for becoming cluster leader.
In each iteration, some nodes are removed from V. We have
to prove that for all nodes u which are removed, there is
a node v with d(u, v) ≤ 1 which stays in V until the end,
that is, v becomes cluster leader. Let ru = 2λu (λu ∈ Z)
be the radius at which u is removed from V. Whenever
a node is removed from V, there is a node at distance at
most r which stays in V. Otherwise, the independent set
which is computed in line 5 is not maximal. Hence, after
removing u, there is a node u0 ∈ V with d(u, u0) ≤ ru. If u0

is removed in the subsequent iteration, there is a node u1

with d(u0, u1) ≤ 2ru which remains in V. We hence get a
sequence u0, u1, . . . , ui, . . . of nodes where d(ui−1, ui) ≤ 2iru

such that ui remains in V, i iterations after the removal of
u. Summing up the distances results in a geometric series.
For the distance between u and ui, we therefore get

d(u, ui) ≤
iX

j=0

2jru < 2i+1ru = 2rui ,

where rui is the radius of the iteration where node ui remains
in V and where ui−1 is removed from V. Let v be the last
node in the sequence, that is, v is a cluster leader. Because
the radius of the last iteration of Algorithm 1 is 1/2, we have
d(u, v) < 1. Thus, the radius of each cluster is at most 1.

It now remains to show that the maximum degree ∆C of
the cluster graph is at most 24ρ− 1. On the one hand, from
the last iteration of the algorithm (r = 1/2), it is guaranteed
that the distance between any two cluster leaders is more
than 1/2. Otherwise, the nodes of the MIS of line 5 would
not be independent. Therefore, each ball of radius 1/4 or
smaller contains at most one cluster leader. On the other
hand, because the radius of each cluster is at most 1, the
distance between two cluster leaders of adjacent clusters is at
most 3. This means that for a cluster leader v, all leaders of
adjacent clusters are in B3(v), the ball with radius 3 around
v. By the definition of ρ, B3(v) can be covered by at most
24ρ balls of radius 3/16 < 1/4. Including v, the number of
cluster leaders in B3(v) is therefore at most 24ρ.

We will now have a close look at the complexity of a single
iteration of the while loop of Algorithm 1. From a complex-
ity point of view, the most important part is the computa-
tion of the MIS in line 5. Everything else (computing the
neighbors in G and informing neighbors about new V) can

be done in a constant number of rounds. The time complex-
ity for computing a MIS by a distributed algorithm depends
on the maximum degree ∆ of the graph. For small ∆, the
fastest known algorithms are based on coloring algorithms.
A coloring with K colors can be turned into a MIS in K
rounds of communication. Thus, if we can color a graph with
K colors in t rounds, we can compute a MIS in t+K rounds.3

In [9], an extremely elegant algorithm which colors a graph
with 3∆ colors in O(log∗ n) rounds is described, resulting
in a MIS algorithm with time complexity O(log∗ n + 3∆).
The algorithm was improved in [11] where an algorithm for
computing a MIS in time O(log ∆(∆2 + log∗n)) is given. In
[20], it is shown that it is even possible to color a graph
with O(∆2) colors in O(log∗ n) rounds giving a time com-
plexity of O(∆2 + log∗n) for computing a MIS. The proof
of [20] is based on the existence proof of a set system with
certain properties. It is shown that such a set system exists
and that it can be computed efficiently by a randomized al-
gorithm. If ∆ is constant, all three algorithms compute a
MIS in O(log∗ n) rounds. Lemma 5.2 bounds the maximum
degree of G.

Lemma 5.2. In each iteration of Algorithm 1, the maxi-
mum degree of G is at most 22ρ.

Proof. Let ` be the length of the minimum distance be-
tween any two nodes of G. Because the algorithm com-
putes an independent set in each iteration, we have ` > r/2.
Therefore, every ball of radius r/4 contains only one node.
All neighbors of a node v ∈ V are in the ball Br(v) of radius
r around v. By the definition of the doubling dimension ρ,
Br(v) can be covered by 22ρ balls of radius r/4. Therefore,
the number of nodes in Br(v) is at most 22ρ.

When using the algorithm of [20] for computing the MIS,
Lemma 5.2 implies the following corollary.

Corollary 5.3. The time complexity of a single itera-
tion of the while loop of Algorithm 1 is O(log∗ n+24ρ), that
is, for constant doubling dimension, the time complexity is
O(log∗ n).

Before coming to the description of a faster implementa-
tion the while loop of Algorithm 1, we have a look at the
complexity of lines 9 and 10. By Lemma 5.1, we know that
each node has a cluster leader in its neighborhood. Line
9 thus can be computed in a single communication round.
The time complexity of line 10 is more interesting. Similar
to the construction of a MIS, a distributed coloring algo-
rithm which colors a graph with K colors in time t can be
turned into a coloring algorithm whith colors a graph with
∆ + 1 colors in time t + K (∆ is the maximum degree).
Algorithm 2 shows how this can be achieved.

By Lemma 5.1, the maximum degree of the cluster graph
is at most 24ρ−1. If we use the algorithm of [20] for comput-
ing the initial coloring, this results in the following corollary.

Corollary 5.4. The time complexity of line 10 of Al-
gorithm 1 is O(log∗ n + 28ρ), that is, for constant doubling
dimension, the time complexity is O(log∗ n).

3Converting a coloring to a MIS works essentially in the
same way as the reduction of the number of colors which
will be discussed in Algorithm 2. In fact, all nodes of color
1 form a MIS after applying algorithm 2

Algorithm 2 Color Reduction (node vi)

Input: coloring with colors {1, . . . , K}
Output: coloring with colors {1, . . . , ∆ + 1}
1: for c := 1 to K do
2: send color(vi) to all neighbors;
3: if color(vi) = c then
4: color(vi) := minimal possible color
5: fi
6: od

5.2 Fast Implementation of the Basic Algo-
rithm

In this section, we will have a second look at the com-
plexity of Algorithm 1 resulting in the main result of this
paper. We need to start with a few general considerations
concerning the synchronous message passing model. If nodes
communicate for k rounds, they can only gather information
which is at most k hops away. In principle, every distributed
k-round algorithm can be formulated as follows.

1. Collect complete k-neighborhood in graph in k com-
munication rounds

2. Compute the output by locally simulating the relevant
part of the distributed algorithm (no communication
needed)

Collecting the complete k-neighborhood can be achieved if
all nodes send their complete states to all their neighbors
in every round. After round i, all nodes know their i-
neighborhood. Learning the i-neighborhoods of all neigh-
bors in round i + 1 suffices to know the i + 1-neighborhood.
The above formulation of a distributed algorithm of course
has the drawback that messages can get extremely large.
We will show that the message size can be kept moderate in
our example.

Let us again consider a single iteration of the while loop
of Algorithm 1. All communication which is needed to com-
pute an iteration of the while loop is on G. Hence, all mes-
sages are sent on edges which have length at most r. If we
communicate for k rounds and if all messages of those k
rounds are on edges of length at most r, then all collected
information comes from distance at most k · r. In order to
be able to compute everything locally, the nodes have to col-
lect the complete neighborhood up to distance kr (w.r.t. the
metric). That is, the nodes have to collect all information
which is accessible by paths of length at most kr. Note that
it is not necessary and it might not be possible to collect
the whole ball of radius kr. Because of the triangle inequal-
ity, it is possible to collect this information in 2kr rounds.
Applying this to Algorithm 1, we get Lemma 5.5.

Lemma 5.5. Algorithm 1 can be computed in O(log∗ n +
28ρ) rounds, that is, for constant doubling dimension, the
time complexity can be reduced to O(log∗ n).

Proof. By Corollary 5.3, the number of rounds of an
iteration of the while loop of Algorithm 1 is O(log∗ n+24ρ).
Nodes therefore need to collect information from distance
at most O(r(log∗ n + 24ρ)). To obtain the distance from
which we need information in order to be able to locally
compute the results of all iterations of the while loop, we
have to sum up the distances for all iterations. We do not

know the number of iterations. However because r grows
exponentially by a factor of 2 in each iteration, we have a
geometric series and can upper bound the sum by taking 2
times the maximum summand. Therefore, the whole while
loop can be computed in O(log∗ n + 24ρ) rounds. Together
with Corallary 5.4, we get the required result.

Note that when collecting the whole neighborhood, it is
not necessary that nodes know the minimum distance dmin

between nodes. Because the radius grows exponentially, the
locality of the problem is independent of the starting ra-
dius. Each node can just use the smallest distance in the
collected neighborhood in order to locally simulate the dis-
tributed Algorithm 1. The complete algorithm to compute a
(O(1), O(1))-decomposition in the given network model can
be summarized as follows.

1. exchange 1-hop distances with neighbors

2. locally compute the while loop of Algorithm 1 for r ∈
O(1/(log∗ n + 24ρ)) (up to the radius for which it suf-
fices to know the 1-neighborhood).

3. collect O(log∗ n+24ρ)-neighborhood (it is sufficient to
only collect data about nodes which are still in V)

4. compute the remaining iterations of the while loop

5. compute clusters and cluster coloring (lines 9,10 of Al-
gorithm 1)

Computing the solution for small radii first and then collect-
ing the rest of the neighborhood is done in order to obtain
reasonable message sizes. We are now ready to formulate
our main theorem.

Theorem 5.6. In the unit ball graph model, the above al-
gorithm computes a (2, 24ρ)-decomposition in time O(log∗ n+
28ρ) where ρ is the doubling dimension of the underlying
metric. Given that all distances and node IDs can be repre-
sented by K bits, the maximal message size is at most

O
şhą

log∗ n + 24ρćO(ρ)
+ ∆

i
·K

ť

bits. Hence, for constant ρ, the time complexity is O(log∗ n)

and largest message needs at most O(((log∗ n)O(1) + ∆)K)
bits.

Proof. The time complexity follows from Lemma 5.5.
For the correctness of the algorithm, it remains to prove
that only collecting information about nodes in V for r ≥
O(1/(log∗ n + 24ρ)) (steps 3 and 4) is sufficient. Because all
communication of Algorithm 1 is on G, this is however clear.

For the bound on the message size, we need to have a
closer look at steps 1, 3, and 5 where messages are ex-
changed. In step 1, all nodes send at most ∆ distances and
node IDs to their neighbors. This requires messages of size
O(∆·K). In step 3, a message can at most contain the whole
R-neighborhood of a node, where R := O(log∗ n + 24ρ).
Let N be the maximum number of nodes which such a R-
neighborhood can contain. If r ∈ Θ(1/(log∗ n+24ρ)) denotes
the larges radius for which the while loop has been computed
in step 2, we know that for all pairs of nodes u, v ∈ V, we
have d(u, v) > r. Therefore, balls of radius at most r/2
contain at most 1 such node. By the definition of ρ, the

maximum number of nodes in a ball of radius R, therefore
is

N ≤ (2ρ)(log2(R/r)+1) =

ţ
R

r

űρ+1

.

The number of edges in the R-neighborhood is at most
quadratic in N . By the definition of R and r, the theorem
thus follows.

Remark 1:
Theorem 5.6 even holds if the nodes only know approxi-
mations of the distances to their neighbors or if the triangle
inequality is not completely satisfied. If distances are known
up to a constant factor and/or if the triangle inequality holds
up to a constant factor, it is not hard to see that the results
of this section remain true up to constant factors.

Remark 2:
The results of this section can be extended to other situa-
tions than the unit ball graph model. Assume for instance
that we have given a doubling metric (X, d). All points in X
have to provide their part of the solution of a global prob-
lem. Thereby, each member x ∈ X has to base its decision
the ball Br(x) for some radius r. Theorem 5.6 shows that
chosing the radius r ∈ O(log∗n) suffices for many natural
problems. As a particular example, we might wish to con-
struct an ε-net, that is, we want to select a set of points S
such that any two selected points have distance at least ε
and such that any point has a point in S at distance less
than ε. In algorithms for metric spaces, ε-nets are a widely
used structure [13]. Theorem 5.6 shows that every node
can decide about whether it is in S based on its O(ε log∗n)-
neighborhood only.

6. CONCLUSIONS
The communication graphs typically encountered in wire-

less networking, peer-to-peer networks, or in the Internet
tend to contain structure, which remains uncaptured when
modeling them as general graphs. Specifically, these commu-
nication graphs often have the property of bounded volume
growth.

In this paper, we have studied the distributed time com-
plexity of many natural network coordination problems in
growth-bounded graphs. In particular, we have presented
an algorithm that computes a (O(1), O(1))-network decom-
position in time O(log∗n), based only on the assumption
that nodes know the distances to their neighbors. Using
this decomposition algorithm, it is straightforward to ob-
tain O(log∗n) time algorithms for computing a maximal in-
dependent set, a ∆ + 1 coloring, or a constant approxima-
tion to the minimum dominating set problem in graphs with
bounded growth. The frequently studied unit disk graph be-
ing a growth-bounded graph, all these results directly carry
over to unit disk graphs, thus greatly improving the fastest
previously known algorithms for these problems in unit disk
graphs.

Moreover, our result are asymptotically optimal due to a
matching Ω(log∗n) time-lower bound for computing a MIS
on a ring [20]. We find it intriguing that from the point of
view of locality, a simple toy-network such as the ring is as
hard as the vast family of growth-bounded graphs.

7. REFERENCES
[1] I. Abraham, D. Dolev, and D. Malkhi. Lls: A locality

aware location service for mobile ad hoc networks. In
Proc. of 2nd Joint Workshop on Foundations of
Mobile Computing (DIALM-POMC), 2004.

[2] K. Alzoubi, P.-J. Wan, and O. Frieder.
Message-optimal connected dominating sets in mobile
ad hoc networks. In MobiHOC, 2002.

[3] P. Assouad. Plongements lipschitziens dans Rn. Bull.
Soc. Math. France, 111(4):429–448, 1983.

[4] B. Awerbuch. Complexity of network synchronization.
Journal of the ACM (JACM), 32(4):804–823, 1985.

[5] B. Awerbuch, A. V. Goldberg, M. Luby, and S. A.
Plotkin. Network decomposition and locality in
distributed computation. In Proc. of the 30th Symp.
on Foundations of Computer Science (FOCS), pages
364–369, 1989.

[6] B. Awerbuch and D. Peleg. Routing with polynomial
communication-space trade-off. SIAM J. Discret.
Math., 5(2):151–162, 1992.

[7] Y. Bartal, J. W. Byers, and D. Raz. Global
optimization using local information with applications
to flow control. In Proc. of the 38th IEEE Symp. on
the Foundations of Computer Science (FOCS), pages
303–312, 1997.

[8] S. Capkun, M. Hamdi, and J. P. Hubaux. Gps-free
positioning in mobile ad-hoc networks. Cluster
Computing, 5(2), April 2002.

[9] R. Cole and U. Vishkin. Deterministic coin tossing
with applications to optimal parallel list ranking.
Information and Control, 70(1):32–53, 1986.

[10] J. Gao, L. Guibas, J. Hershberger, L. Zhang, and
A. Zhu. Discrete mobile centers. In Proc. of the 17th
annual symposium on Computational geometry (SCG),
pages 188–196. ACM Press, 2001.

[11] A. Goldberg, S. Plotkin, and G. Shannon. Parallel
symmetry-breaking in sparse graphs. SIAM Journal
on Discrete Mathematics (SIDMA), 1(4):434–446,
1988.

[12] A. Gupta, R. Krauthgamer, and J. Lee. Bounded
geometries, fractals, and low-distortion embeddings.
In Proc. of 44th IEEE Symp. on Foundations of
Computer Science (FOCS), 2003.

[13] J. Heinonen. Lectures on Analysis of Metric Spaces.
Springer-Verlag, New York, 2001.

[14] J. Kleinberg, A. Slivkins, and T. Wexler.
Triangulation and embedding using small sets of
beacons. In Proc. of 45th IEEE Symp. on Foundations
of Computer Science (FOCS), 2004.

[15] R. Krauthgamer and J. Lee. Navigating nets: Simple
algorithms for proximity search. In Proc. of 15th
ACM-SIAM Symp. on Discrete Algorithms (SODA),
2004.

[16] F. Kuhn, T. Moscibroda, and R. Wattenhofer. The
price of being near-sighted. submitted, 2004.

[17] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What
cannot be computed locally! In Proc. of the 23rd
ACM Symposium on Principles of Distributed
Computing (PODC), pages 300–309, 2004.

[18] F. Kuhn and R. Wattenhofer. Constant-time
distributed dominating set approximation. In Proc. of
the 22nd ACM Symp. on Principles of Distributed
Computing (PODC), pages 25–32, 2003.

[19] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger.
Geometric ad-hoc routing: Of theory and practice. In
Proc. of 22nd ACM Symp. on Principles of
Distributed Computing (PODC), 2003.

[20] N. Linial. Locality in distributed graph algorithms.
SIAM Journal on Computing, 21(1):193–201,
February 1992.

[21] N. Linial and M. Saks. Low diameter graph
decompositions. Combinatorica, 13(4):441–454, 1993.

[22] M. Luby. A simple parallel algorithm for the maximal
independent set problem. SIAM Journal on
Computing, 15:1036–1053, 1986.

[23] A. Panconesi and A. Srinivasan. Improved distributed
algorithms for coloring and network decomposition
problems. In Proc. of the 24th annual ACM
symposium on Theory of computing (STOC), pages
581–592. ACM Press, 1992.

[24] C. G. Plaxton, R. Rajaraman, and A. W. Richa.
Accessing nearby copies of replicated objects in a
distributed environment. In Proceedings of the 9th
Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA), pages 311–320, 1997.

[25] P. Raghavan and C. D. Thompson. Randomized
rounding: A technique for provably good algorithms
and algorithmic proofs. Combinatorica, 7(4):365–374,
1987.

[26] K. Talwar. Bypassing the embedding: Approximation
schemes and compact representations for low
dimensional metrics. In Proc. of 36th ACM Symp. on
Theory of Computing (STOC), 2004.

[27] Y. Wang and X.-Y. Li. Localized construction of
bounded degree and planar spanner for wireless ad
hoc networks. In Proc. of 1st Joint Workshop on
Foundations of Mobile Computing (DIALM-POMC),
2003.

[28] R. Wattenhofer, L. Li, P. Bahl, and Y.-M. Wang.
Distributed topology control for power efficient
operation in multihop wireless ad hoc networks. In
Proc. of 20th INFOCOM, 2001.

