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Abstract
Among the foremost goals of topology control in wire-

less ad-hoc networks is interference reduction. This pa-
per presents a receiver-centric interference model featuring
two main advantages over previous work. First, it reflects
the fact that interference occurs at the intended receiver
of a message. Second, the presented interference measure
is robust with respect to addition or removal of single net-
work nodes. Regarding both of these aspects our model in-
tuitively corresponds to the behavior of interference in re-
ality. Based on this interference model, we show that cur-
rently known topology control algorithms poorly reduce in-
terference. Motivated by the observation that already one-
dimensional network instances display the intricacy of the
considered problem, we continue to focus on the so-called
highway model. Setting out to analyze the special case of
the exponential node chain, we eventually describe an al-
gorithm guaranteeing to achieve a4

√
∆-approximation of

the optimal connectivity-preserving topology in the general
highway model.

1. Introduction

Wireless ad-hoc networks consist of mobile nodes
equipped with, among other components, a proces-
sor, some memory, a wireless radio, and a power source.
Due to physical constraints nodes are primarily pow-
ered by a weak battery.

Since consequently energy is the limiting factor for net-
work lifetime, great efforts have been made to reduce
node power consumption and thus extend network life-
time. One of the foremost approaches to achieve substantial
energy conservation is by minimizing interference be-
tween network nodes. Confining interference lowers energy
consumption by reducing the number of collisions and con-
sequently packet retransmissions on the media access layer.
The concept oftopology controlrestricts interference by re-
ducing the transmission power levels at the network
nodes and cutting off long-range connections in a coordi-
nated way. At the same time transmission power reduction

has to proceed in such a way that the resulting topol-
ogy preserves connectivity1.

Even though interference reduction has always been one
of the main motivations for topology control, most of the
previous work addresses the interference issue implicitly by
constructing topologies featuring sparseness or low node
degree. However, [2] reveals that such an implicit notion
of interference is not sufficient to reduce interference since
message transmission can affect nodes even if they are not
direct neighbors of the sending node in the resulting topol-
ogy. Besides demonstrating the weakness of modeling inter-
ference implicitly, [2] introduces an explicit definition for
interference in wireless networks.

The definition of interference suggested in [2] is prob-
lematic in two respects. First, it is based on the number
of nodes affected by communication over a given link. In
other words, interference is considered to be an issue at
the sender instead of at the receiver, where message colli-
sions actually prevent proper reception. It can therefore be
argued that such sender-centric perspective hardly reflects
real-world interference.

The second weakness of the model introduced in [2] is
of more technical nature. According to its definition of in-
terference, adding (or removing) a single node to a given
network can dramatically influence the interference mea-
sure. In the network depicted in Figure 1, addition of the
rightmost node to the cluster of roughly homogeneously
distributed nodes entails the construction of a communica-
tion link covering all nodes in the network; accordingly—
merely by introduction of one additional node—the interfer-
ence value of the represented topology is pushed up from a
small constant to the maximum possible value, that is the
number of nodes in the network. This behavior contrasts to
the intuition that a single additional node also represents but
one additional packet source potentially causing collisions.

In summary, the concept of sender-centricity and the ob-
served susceptibility of the proposed interference measure

1 The term “topology control” sometimes also refers to clustering and
the computation of dominating sets. In this paper we exclusively con-
sider topology control based on transmission power reduction.



Figure 1. In the interference model presented in
[2], addition of a single node increases interfer-
ence from a small constant to the maximum pos-
sible value, the total number of network nodes.

to small changes in the network inevitably lead to the con-
clusion that the interference model introduced in [2] is ques-
tionable.

In contrast to this sender-centric interference definition,
we explicitly consider interference at its point of impact,
particularly at the receiver. Informally, the definition of in-
terference considered in this paper is based on the natural
question by how many other nodes a given network node
can be disturbed. Our interference model is inspired by [4],
where low interference topologies are analyzed in the con-
text of data gathering, a generic application domain of sen-
sor networks. In this paper we adapt this notion of interfer-
ence to be suitable also in general ad-hoc networks. Techni-
cally, we consider arbitrary undirected networks as opposed
to the directed data gathering trees studied in [4].

Interestingly, our interference definition not only reflects
intuition due to its receiver-centricity. Moreover, this defi-
nition also results in a robust interference model in terms of
measure increase due to the arrival of additional nodes in
the network. Particularly, an additional node causes an in-
terference increase of at most one at other nodes of the net-
work. In clear contrast to the above sender-centric model,
this corresponds to reality, where one added node contend-
ing for the shared medium constitutes only one additional
possible collision source for nearby nodes in the network.

Interference reduction as such is meaningless—every
node setting its transmission power to a minimum value
trivially minimizes interference—without the formulation
of additional requirements to be met by the resulting topol-
ogy. In this paper we study the fundamental requirement
that the considered topology control algorithms should pre-
serve connectivity of the given network. For this require-
ment we show that most currently proposed topology
control algorithms trying to reduce interference implic-
itly commit a substantial mistake—even by having every
node connect to its nearest neighbor. Based on the intu-
ition that already one-dimensional networks exhibit most
of the complexity of finding minimum-interference topolo-

gies, we precisely anatomize networks restricted to one
dimension—a model also known as thehighway model.
We first look at a particular network where distances be-
tween nodes increase exponentially from left to right.
[11] introduces this network as a high interference ex-
ample yielding interferenceO(∆), where∆ is the maxi-
mum node degree. We show that it is intriguingly possible
to achieve interferenceO

(√
∆

)
in our model for this net-

work, which matches a lower bound also presented in this
paper. Based on the insights gained thereby we then con-
sider general highway instances where nodes can be
distributed arbitrarily in one dimension. For the prob-
lem of finding a minimum-interference topology while
maintaining connectivity we propose an approximation al-
gorithm with approximation ratioO

(
4
√

∆
)
.

The paper is organized as follows: After discussing re-
lated work in the following section, we introduce the model
for this paper in Section 3. Section 4 focuses on the draw-
backs of currently proposed topology control algorithms
with respect to interference. In the subsequent section we
consider the important case where nodes are distributed in
one dimension by providing a lower bound for the inter-
ference in such networks and presenting an algorithm that
matches this lower bound. Section 6 concludes the paper.

2. Related Work

In a very general way, topology control can be consid-
ered the task of—given a network communication graph—
constructing a subgraph with certain desired properties. A
first generation of topology control algorithms [6, 7, 14, 15],
adopting structures from the field of computational geome-
try, focused on preserving energy-efficient paths or comput-
ing planar subgraphs for geometric routing [1, 8]. In a sec-
ond wave of research, initiated by the CBTC algorithm [18],
constructions were proposed which are based on local in-
formation and simultaneously reconcile several properties,
such as planarity, the spanner property, or constant-bounded
node degree [9, 10, 17]. Other approaches try to build on
minimal assumptions about the capabilities of nodes and
signal propagation characteristics [19].

If these contributions often mention interference reduc-
tion as one of the aims of topology control, this goal is stated
to be achieved implicitly. In particular generating sparse
constructions or topologies with low degree is commonly
maintained to imply low interference.

An exception in this respect is formed by [11], intro-
ducing an explicit definition of interference and establish-
ing trade-offs between the concepts of congestion, power
consumption, and dilation. With [11] more attention is also
being paid to the fact that—if nodes are capable of adapt-
ing their transmission power, an assumption already made
in early work that can be considered originators of topology
control considerations [5, 16]—interference ranges corre-



late with the length of communication links. More precisely
the interference range of a link depends on the transmission
power levels chosen by the two nodes communicating over
the respective link.

Where [11] defines interference based on current net-
work traffic, [2] introduces a traffic-independent notion of
interference. Moreover, the latter work shows that the above
statement that graph sparseness or small degree implies
low interference is misleading. The interference model de-
scribed in [2]—further analyzed in [12]—builds on the
question of how many nodes are affected by communica-
tion over a given link. This sender-centric perspective can
however be accused to be somewhat artificial and to poorly
represent reality, interference occurring at the intendedre-
ceiverof a message. Furthermore, as described in the intro-
duction, this interference measure is susceptible to drastic
changes even if single nodes are added to or removed from
a network.

An attempt to correct for this deficiency was made in [4],
which defines a receiver-centric concept of interference in
the context of data-gathering structures in sensor networks.
In this paper we go beyond [4] by defining and employing a
suitable robust interference model for the analysis of topol-
ogy control in ad-hoc networks in general.

3. Network and Interference Model

We model the wireless network with the well-known
Unit Disk Graph(UDG) [3]. In a UDGG = (V,E), there
is an edge{u, v} ∈ E iff the Euclidean distance between
u andv is at most 1. That is, we assume all nodes to have
the same limited transmission ranges. In the following, let
∆ refer to the maximum node degree inG. In order to
prevent already basic communication between neighboring
nodes from becoming unacceptably cumbersome [13], it is
required that a message sent over a link can be acknowl-
edged by sending a corresponding message over the same
link in the opposite direction. In other words, onlyundi-
rected(symmetric) edges are considered.

We assume that each node can adjust its transmission
power to any value between zero and its maximum trans-
mission power level. The main goal of atopology controlal-
gorithm is then to compute a subgraph of the given network
graphG that maintains connectivity by reducing transmis-
sion power levels of the nodes inV and thereby attempting
to reduce interference and energy consumption.

Let Nu denote the set of all neighbors of a nodeu ∈ V
in the resulting topology. Then, each nodeu features a value
ru defined as the distance fromu to its farthest neigh-
bor. More preciselyru = maxv∈Nu{|u, v|}, where|u, v|
denotes the Euclidean distance between nodesu and v.
Since we assume the nodes to use omnidirectional antennas,
D(u, ru) denotes the disk centered atu with radiusru cov-
ering all nodes that are possibly affected by message trans-

v

u

Figure 2. A sample topology consisting of five
nodes with their corresponding interference radii
(dashed circles). Node u experiences interference
I(u) = 2 since it is covered not only by its di-
rect neighbor but also by node v.

mission ofu to one of its neighbors. Then the interference
of a nodev is defined as the number of other nodes that po-
tentially affect message reception at nodev:

Definition 3.1. Given a graphG′ = (V, E′), the interfer-
ence of a nodev ∈ V is defined as

I(v) = |{u|u ∈ V \ {v}, v ∈ D(u, ru)}|.

In other words, the interferenceI of a nodev represents
the number of nodes coveringv with their disks induced by
their transmission ranges set to a value as to reach their far-
thest neighbor inG′. Note that even though each node is
also covered by its own disk, we do not consider this kind
of self-interference. The node level interference defined so
far is now extended to a graph interference measure as the
maximum interference occurring in a graph:

Definition 3.2. The interference of a graphG′ = (V, E′) is
defined as

I(G′) = max
v∈V

I(v).

Note that∆, the maximum node degree of the given
UDG G = (V,E) is an upper bound for the interference of
any subgraphG′ of the given graph since inG each node is
directly connected to all potentially interfering nodes. How-
ever, in arbitrary subgraphs ofG the degree of a node only
lower-bounds the interference of that node because a node
can be covered by non-neighboring nodes (cf. Figure 2).

In this paper we study the combinatorial optimization
problem of finding a resulting topology which maintains
connectivity of the given network with minimum interfer-
ence. Throughout the paper we only consider topologies
consisting of a tree for each connected component of the
given network since additional edges might unnecessarily
increase interference.

4. Interference in Known Topologies
As motivated in the previous section, we restrict our con-

siderations to resulting topologies consisting exclusively of
symmetric links (edges).



To the best of our knowledge, all currently known topol-
ogy control algorithms (with one exception, as explained
later) constructing only symmetric connections have in
common that every node establishes a link to at least its
nearest neighbor. Technically, this means that these topolo-
gies contain the so-calledNearest Neighbor Forestas a
subgraph. In this section, we show that this is already a sub-
stantial mistake, as thus interference becomes asymptot-
ically incomparable with the interference-minimal topol-
ogy.

Theorem 4.1.Any algorithm containing the Nearest Neigh-
bor Forest can haveΩ(n) times larger interference than the
interference of the optimum connected topology.

Proof. Our proof uses a node distribution for which the
Nearest Neighbor Forest yields interferenceΩ(n) while the
optimum interference is inO(1). Note that this example has
already been studied in [2], but for a different model.

Consider Figure 3: On the top, there is a horizontal chain
of nodeshi with exponentially growing distances, that is,
the distance between nodeshi andhi+1 is 2i. Each of these
nodeshi has a corresponding nodevi vertically displaced
by a little more thanhi’s distance to its left neighbor, that
is, di > 2i−1 holds, wheredi is the distance betweenhi

andvi. Note that the nodesvi also form a (diagonal) ex-
ponential node chain. Finally, between two of these diago-
nal nodesvi−1 andvi, an additional helper nodeti is placed
such that|hi, ti| > |hi, vi|.

The Nearest Neighbor Forest for this node distribution—
assuming that the transmission radius of each node can be
chosen sufficiently large—is shown in Figure 4. In order to
calculate the interference, we first observe that an edge from
hi to hi+1 covers all nodes to the left, that is, all nodeshj

for j < i. In particular, the leftmost nodeh0 on the horizon-
tal chain is covered by all nodeshi with i > 0. As roughly
one third of all nodes are part of the horizontally connected
exponential chain,h0 is covered by at leastΩ(n) nodes.

The optimal tree on the other hand does not connect the
horizontal node chain, as depicted in Figure 5. In particu-
lar, it is easy to see that the resulting graph has constant in-
terference.

Finally, it has to be mentioned that, as a notable excep-
tion, the topology control algorithms presented in [2] do not
necessarily include the Nearest Neighbor Forest. Unfortu-
nately however, it can be shown that also those algorithms
perform badly for our interference model.

5. Analysis of the Highway Model
In this section we study interference for thehigh-

way model in which the node distribution is restricted
to one dimension. After analyzing an important artifi-
cially constructed problem instance, we provide a lower
bound for interference of general problem instances in the

Figure 3. Two exponential node chains.

Figure 4. The Nearest Neighbor Forest yields in-
terference Ω(n).

Figure 5. Optimal tree with constant interference.

highway model as well as an asymptotically optimal al-
gorithm matching this bound. Finally, an approximation
algorithm is presented.

5.1. The Exponential Node Chain

How cann nodes arbitrarily distributed in one dimension
connect to each other minimizing interference while main-
taining connectivity? [11] introduces an instance which
seems to yield inherently high interference: the so called
exponential node chainis a one-dimensional graphG =
(V,E) where the distance between two consecutive nodes
grows exponentially from left to right as depicted in Fig-
ure 6. The distance between two nodesvi andvi+1 in V
is thus2i. Throughout the consideration of the exponential
node chain we assume that the distance between the left-
most and the rightmost node is not greater than 1: Each node
can potentially connect to all other nodes inV and there-
fore∆ = n− 1, wheren = |V |. The nodes are termedlin-
early connectedif each node—except for the leftmost and



Figure 6. In the exponential node chain, the dis-
tance between two consecutive nodes grows ex-
ponentially from left to right.

the rightmost—maintains an edge to its nearest neighbor to
the left and to the right, that is, nodevi is connected to node
vi+1 for all i = 1, . . . , n − 1 in the resulting topology. In
addition to the disksD(vi, rvi

) for each nodevi ∈ V , Fig-
ure 7 depicts their interference valuesI(vi). Since all but
the disk of the rightmost node coverv1, interference at the
leftmost node isn− 2 ∈ Ω(n) and consequently also inter-
ference of the linearly connected exponential node chain is
in Ω(n).

As we show in the following, the exponential node chain
can surprisingly be connected in a significantly better way.

According to the construction of the exponential node
chain, only nodes connecting to at least one node to their
right increasev1’s interference. We call such a node ahub
and define it as follows:

Definition 5.1. Given a connected topology for the expo-
nential node chainG = (V, E). A nodevi ∈ V is defined
to be ahub in G iff there exists an edge(vi, vj) with j > i.

The following algorithm Aexp constructs a topol-
ogy for the exponential node chainG that yields in-
terferenceO

(√
n
)
. The algorithm starts with a graph

Gexp = (V,Eexp), whereV is the set of nodes in the expo-
nential node chain andEexp is initially the empty set. Fol-
lowing the scan-line principle,Aexp processes all nodes
in the order of their occurrence from left to right. Ini-
tially, the leftmost node is set to be the current hubh. Then,
for each nodevi Aexp inserts an edge{h, vi} into Eexp.
This is repeated untilI(Gexp) increases due to the ad-
dition of such an edge. Now nodevi becomes the cur-
rent hub and subsequent nodes are connected tovi as
long as the overall interferenceI(Gexp) does not increase.
Figure 8 depicts the resulting topology ifAexp is ap-
plied to the exponential node chain. The exponential node
chain is thereby depicted in a logarithmic scale. For clar-
ity of representation, edges inEexp are depicted as arcs.
In addition, Figure 8 shows the individual interference val-
ues at each node.

In the following we show thatAexp reduces interference
in the exponential node chain.

Theorem 5.1. Given the exponential node chainG, apply-
ing AlgorithmAexp results in a connected topology with in-
terferenceI(Gexp) ∈ O

(√
n
)
.

Proof. The topology resulting to application ofAexp shows
a clear structure (cf. Figure 8). Each hub, not taking into ac-

Figure 7. Connecting the exponential node chain
linearly yields interference of n − 2 at the leftmost
node since each node connected to the right cov-
ers all nodes to its left. The nodes are labelled ac-
cording to their experienced interference.

count the first two, is connected to one more node to its
right than its predecessor hub to the left. This follows from
the fact that if the current topology leads to interference
I(Gexp) = I immediately after the determination of a new
hub, this hub can be connected toI−1 nodes to its right un-
til I(Gexp) is again increased by one. Therefore the mini-
mum number of nodesn required in an exponential node
chain, such that interferenceI(Gexp) = I is obtained, re-
sults in

n =
I−1∑

i=1

i + 2 =
1
2
I2 − 1

2
I + 2.

By solving forI, with n ≥ 2, we have

I =
⌊√

8n− 15 + 1
2

⌋
∈ O

(√
n
)
.

This is an intriguing result since we show in the sequel
that

√
n is a lower bound for the interference of the expo-

nential node chain.
In the following we now show that there exist network

instances where every possible topology exhibits interfer-
ence at least

√
n. We therefore again consider the exponen-

tial node chain introduced in Section 5.1 with alln nodes
located within distance one.

Theorem 5.2. Given an exponential node chainG =
(V,E) with n = |V |, √n is a lower bound for the inter-
ferenceI(G).

Proof. Let H denote the set of hubs (cf. Definition 5.1) in
G andS the nodes inG \H. In order to prove the theorem,
we state two properties forI(G) in the exponential node
chainG. First, it holds thatI(G) is at least|H| − 1, since
the leftmost node is interfered with by exactly all hubs ex-
cept itself (Property 1). On the other hand,I(G) is at least
the maximum degree of the resulting topology (Property 2).
This holds since a node with maximum degree is covered
by at least all disks of its neighboring nodes. We assume
for the sake of contradiction that there exists a connected
graph that yields interference less than

√
n for the exponen-

tial node chainG. In other words, the degree of any node is
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Figure 8. The interference of the exponential node chain—shown in a logarithmic scale—is bounded by O
(√

n
)

by the topology control algorithm Aexp. Only hubs (hollow points) interfere with the leftmost node. For clarity
of representation edges are depicted as arcs.

required to be at most
√

n−1, and the number of hubs must
not exceed

√
n, including the leftmost node. By the defi-

nition of H andS, each node in the graph is either inH
or in S and therefore|H| + |S| = n holds. Due to Prop-
erty 1, it follows that|H| ≤ √

n. Without loss of general-
ity we assume that the hubs are linearly connected among
themselves in order to guarantee connectivity of the graph.
Consequently, with Property 2, each hub can connect to at
most

√
n − 3 nodes inS (the leftmost and the rightmost

hub, respectively, to
√

n − 2). By the definition of a hub,
nodes inS are only connected to hubs and not among them-
selves. Therefore we obtain|S| ≤ √

n (
√

n− 3) + 2. Con-
sequently,|H| + |S| results inn − 2

√
n + 2, which is less

thann for n ≥ 2 and thus leads to a contradiction.

From Theorems 5.1 and 5.2 it follows that Algorithm
Aexp from Section 5.1 is asymptotically optimal in terms
of interference in the exponential node chain.

5.2. The General Highway Model

We have considered an important artificially constructed
instance in the highway model in Section 5.1, yielding
a lower bound for the interference in arbitrary network
graphs. In this section we do not restrict ourselves to par-
ticular network instances but consider arbitrary distributed
nodes in one dimension.

The question arises if there are instances in the highway
model that are asymptotically worse than the exponential
node chain, that is, where a minimum-interference topol-
ogy exceedsΩ

(√
∆

)
. We answer this question in the nega-

tive by introducing AlgorithmAgen, which yields interfer-
ence inO

(√
∆

)
for anygiven node distribution.

In a first step, the algorithm determines∆ of the given
Unit Disk GraphG = (V, E) and partitions “the highway”
into segments of unit length 1. That is, within such a seg-
ment each node can potentially connect to every other node
in the segment.

In a second step,Agen considers each segment indepen-
dently as follows: Starting with the leftmost node of the
segment, every

⌈√
∆

⌉
-th node (according to their appear-

ance from left to right) becomes ahub. A hub is thereby
redefined along the lines of Definition 5.1 as a node that
has more than one neighboring node, in contrast toregu-
lar nodes, which are connected to exactly one hub. In order
to avoid boundary effects, the rightmost node of each seg-
ment is also considered a hub. Then, AlgorithmAgen con-
nects the hubs of a segment linearly. That is, each hub, ex-

cept the leftmost and the rightmost one, establishes an edge
to its nearest hub to the left and to the right. Two consecutive
hubs define aninterval.Agen connects all regular nodes in a
particular interval to their nearest hub—ties are broken arbi-
trarily. Figure 9 depicts one segment of an example instance
after the application ofAgen. Again, edges are thereby de-
picted as arcs. The nodes within a segment clearly form one
connected component.

Finally, AlgorithmAgen connects two adjacent segments
by connecting the rightmost node of the left segment with
the leftmost node of the right segment. This yields a con-
nected topology if the corresponding unit disk graph is also
connected. Note that using this construction, the hubs may
have a comparatively high transmission range (smaller than
one unit though). However, the interference range of regu-
lar nodes is restricted to their corresponding intervals. This
is due to the fact that nodes are connected to their nearest
hub only, which determines their transmission ranges.

To prove that the resulting topology ofAgen yields
O
(√

∆
)

interference, we introduce an additional lemma,
which shows that the interference of a node caused by
other nodes in the same segment constructed byAgen is
in O

(√
∆

)
.

Lemma 5.3. Each node in a segmentσ of AlgorithmAgen

experiences at mostO
(√

∆
)

interference in the resulting
topology ofAgen caused by nodes inσ.

Proof. By definition of a segment,∆ is an upper bound on
the number of nodes in the segment. AlgorithmAgen nom-
inates only every

⌈√
∆

⌉
-th node a hub. Thus, the number

of hubs inσ is upper-bounded by∆/d√∆e ∈ O
(√

∆
)
.

Let hubhl delimit the interval of a regular nodev to the
left, and hubhr to the right, respectively. Furthermore, we
can assume without loss of generality that|hl, v| < |v, hr|.
Therefore,Agen establishes a connection betweenhl and
v. Because this is the only connection ofv it follows that
rv = |hl, v|. Consequently, a regular node only interferes
with nodes in the same interval. Since a nodev is in at
most two intervals—hubs are in two intervals—with at most⌈√

∆
⌉

nodes,v exhibits interference of at mostO
(√

∆
)

reg-
ular nodes. Furthermorev is interfered with at mostO

(√
∆

)
hubs.

With Lemma 5.3 we are ready to prove that the topology
constructed byAgen results inO

(√
∆

)
interference.



segment

interval

Figure 9. Agen partitions the highway into segments of length 1. In each segment, every
⌈√

∆
⌉
-th node be-

comes a hub (hollow points). While the hubs are connected linearly, each of the remaining nodes in the interval
between two hubs is connected to its nearest hub.

Theorem 5.4. The resulting topology constructed by Algo-
rithmAgen from a given graphG = (V, E) yields interfer-
enceO

(√
∆

)
.

Proof. By Lemma 5.3, the interference of a detached seg-
ment constructed byAgen is bounded byO

(√
∆

)
. However,

interference at nodev in segmentσ depends also on nodes
in the adjacent segments ofσ, referred to asσl for the seg-
ment to the left ofσ andσr for the segment to the right, re-
spectively. Nodes in other segments do not interfere withv
as the length of a segment is chosen according to the maxi-
mum transmission range and thus the interference range of
a node is limited to two adjacent segments. We know that at
mostO

(√
∆

)
nodes ofσ interferev. On the other hand, by

Lemma 5.3, the rightmost nodev′ of σl is also covered by at
mostO

(√
∆

)
disks of nodes inσl. This implies that at most

O
(√

∆
)

nodes ofσl interfere withv since all nodes interfer-
ing with v must also coverv′ with their disks. By symmetry,
the same holds for segmentσr. Consequently,Agen results
in interference at most three times the interference of an in-
dividual segment at each node, which is inO

(√
∆

)
.

5.3. Approximation Algorithm

In contrast toAgen, achieving interference inO
(√

∆
)

for any network instance, this section introduces an algo-
rithm that approximates the optimum for the given network
instance. Particularly it yields interference at most a fac-
tor in O

(
4
√

∆
)

times the interference value resulting from
an interference-minimal connectivity-preserving topology.

Algorithm Agen introduced in Section 5.2 is in a sense
designed for theworst-case. Consider for example an in-
stance where the distances between consecutive nodes are
identical. Connecting these nodes linearly, that is, connect-
ing each node to its nearest neighbor in each direction,
yields constant interference. AlgorithmAgen however con-
structs a topology resulting inO

(√
∆

)
interference since

a hub connects to one half of the nodes in its correspond-
ing interval for this instance and an interval contains

⌈√
∆

⌉
nodes. Based on this observation, we introduce Algorithm
Aapx, a hybrid algorithm which detects high interference
instances and appliesAgen, or otherwise connects the nodes
linearly.

In the following, we first present a suitable criterion
to identify ”high interference” instances. Given a network
graphG = (V, E) in the highway model, let the graph
Glin = (V, Elin) denote the graph where all nodes inV
are linearly connected. In order to result in high interfer-
ence at a nodev in Glin, it is required that many nodes
coverv with their corresponding disks. However, with in-
creasing distance tov these nodes need increasing distances
to their nearest neighbors in the opposite direction ofv to
interfere with the latter. This leads to an exponential char-
acteristic of these nodes since the edges inElin account-
ing for the interference atv form a fragmented exponential
node chain. Consequently, thecritical nodesof v are de-
fined as follows:

Definition 5.2. Given a linearly connected graph
Glin = (V,Elin). The critical node set of a nodev is de-
fined as

Cv = {u|u 6= v, |u,w| ≥ |u, v|, {u,w} ∈ Elin}.
In other words, the critical nodes of a nodev are those

nodes interfering withv if the graphG is connected linearly.
Based on the results from Section 5.1 we are able to lower-
bound the interference of a minimum-interference topology
of G as follows.

Lemma 5.5. Given a graph G = (V, E), let
γ = maxv∈V |Cv| be the maximum number of criti-
cal nodes at any node. A minimum-interference topology
for G yields interference inΩ(

√
γ).

Proof. Let v ∈ V be the node with maximum interference
in Glin. Thus,|Cv| = γ as all nodes interfering withv are
in Cv. Without loss of generality, we assume that at least
half of the nodes inCv are to the right ofv. Let Cr

v be
the set of all nodes inCv to the right ofv. We number the
nodesci ∈ Cr

v according to their occurrence from left to
right. Note that the nodes inCr

v constitute avirtual expo-
nential node chain as the distance to their nearest neighbor
to the right must at least double fromci to ci+1. Therefore,
Theorem 5.2 applies directly to the nodes inCr

v . Due to the
fact that|Cr

v | ≥ |Cv|/2 and together with Theorem 5.2 we
obtainΩ

(√|Cv|
)

as a lower bound for the interference at
v.



AlgorithmAapx makes use of Lemma 5.5 in order to de-
cide whether the existing instance exhibits inherently high
interference. In particular AlgorithmAapx works as fol-
lows:Aapx first computesγ. If γ >

√
∆,Agen is applied to

the graph. Otherwise, ifγ ≤ √
∆,Aapx connects all nodes

of the given graph linearly.

Theorem 5.6. Given a graphG, AlgorithmAapx computes
a resulting topology which approximates the optimal inter-
ference ofG up to a factor inO

(
4
√

∆
)
.

Proof. We analyze the two possible cases inAapx.
Caseγ >

√
∆: According to Theorem 5.4,Agen yields

interference inO
(√

∆
)
. On the other hand, by Lemma 5.5,

a minimum-interference topology produces at leastΩ(
√

γ)
interference. We therefore obtain an approximation ratio in
O

(√
∆

)
/Ω(

√
γ) ∈ O

(
4
√

∆
)
.

Case γ ≤ √
∆: By Lemma 5.5, the minimum-

interference topology results in interference of at least
Ω(
√

γ). ConnectingG linearly we obtain interference
γ by definition. Consequently, the approximation ra-
tio of Aapx is in γ/Ω(

√
γ) ∈ O

(
4
√

∆
)
.

6. Conclusions

In contrast to previous work in the field of topology con-
trol, which either aims at implicit interference reduction or
is based on a sender-centric interference model that hardly
reflects reality, we study in this paper an explicit receiver-
centric model of interference. The advantages of this inter-
ference model are twofold: On the one hand this definition
corresponds to intuition due to its receiver-centricity, par-
ticularly modeling interference as an effect occurring at the
intended receiver of a message, where collisions actually
prevent proper reception. On the other hand this interfer-
ence model is robust with respect to addition or removal of
single nodes, in stark contrast to the previously proposed
sender-centric interference model.

Based on our interference model we show that there exist
network instances where, to the best of our knowledge, all
currently known topology control algorithms (establishing
exclusively symmetric connections) fail to effectively con-
fine interference at a low level if required to maintain net-
work connectivity. Led by the observation that already one-
dimensional networks exhibit the main complexity of find-
ing low-interference connectivity-preserving topologies, we
then focus on the so-called highway model. Starting out
to study the special case of the exponential node chain,
we finally obtain an algorithm that is guaranteed to always
compute a4

√
∆-approximation of the optimal connectivity-

preserving topology in the highway model in general.
Adaptation of our approach to higher dimensions re-

mains an open problem and is left for future work.
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